Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 834
Filter
1.
Cells ; 13(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39272995

ABSTRACT

Epidemiological, experimental, and ecological data have indicated the controversial effect of in utero chronic low dose rate (<6 mGy/h) with accumulative low (≤100 mGy) or high (>100 mGy) dose radiation exposure. Our main goal of this study was to examine if different low dose rates of chronic pre- and/or post-natal radiation exposure with accumulative high doses could induce hippocampal cellular, mRNA, and miRNA changes leading to neuropsychiatric disorders. The comprehensive mouse phenotypic traits, organ weight, pathological, and blood mRNA and miRNA changes were also studied. Using different approaches including SmithKline, Harwell, Imperial College, Royal Hospital, Phenotype Assessment (SHIRPA), neurobehavioral tests, pathological examination, immunohistochemistry, mRNA and miRNA sequencing, and real-time quantitative polymerase chain reaction (qRT-PCR) validation, we found that in prenatally irradiated (100 mGy/d for 18 days with an accumulative dose of 1.8 Gy) 1-year-old mice, no cellular changes, including immature neurons in the subgranular zone, mature neurons and glial cells in the hilus of the dentate gyrus and development of cognitive impairment, neuropsychiatric disorders, occurred. However, a significant reduction in body weight and mass index (BMI) was indicated by the SHIRPA test. A reduced exploratory behavior was shown by an open field test. Organ weights showed significant reductions in the testes, kidneys, heart, liver and epididymides with no abnormal pathology. mRNA and miRNA sequencing and qRT-PCR validation revealed the upregulation of Rubcnl and Abhd14b, and downregulation of Hspa1b, P4ha1, and Banp genes in both the hippocampus and blood of mice prenatally irradiated with 100 mGy/d. Meanwhile, downregulation of miR-448-3p and miR1298-5p in the hippocampus, miR-320-3p, miR-423-5p, miR-486b-5p, miR-486b-3p, miR-423-3p, miR-652-3p, miR-324-3p, miR-181b-5p, miR-let-7b, and miR-6904-5p in the blood was induced. The target scan revealed that Rubcnl is one of the miR-181b-5p targets in the blood. We, therefore, concluded that prenatal chronic irradiation with a low dose rate of 100 mGy/d and accumulative dose of 1.8 Gy or below might not induce significant adverse health effects on the offspring. Further study of different low dose rate radiation exposures with accumulative high doses may provide threshold doses for authorities or regulators to set new radiation safety guidelines to replace those extrapolated from acute high dose/dose rate irradiation to reduce unnecessary emergency evacuation or spending once a nuclear accident or leakage occurs.


Subject(s)
Hippocampus , MicroRNAs , Prenatal Exposure Delayed Effects , RNA, Messenger , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Hippocampus/radiation effects , Hippocampus/metabolism , Hippocampus/pathology , Female , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Prenatal Exposure Delayed Effects/genetics , Male , Behavior, Animal/radiation effects , Dose-Response Relationship, Radiation , Organ Size/radiation effects
2.
Georgian Med News ; (350): 103-109, 2024 May.
Article in English | MEDLINE | ID: mdl-39089280

ABSTRACT

This research article elucidates the pivotal role of radiopharmacy in the contemporary landscape, underscoring its potential therapeutic efficacy in addressing symptoms associated with aged-related neurocognitive processes. Clinical trials, characterized by the judicious application of modest radiation doses, exemplified by low-dose radon, have yielded affirmative outcomes in the amelioration of aged, related symptoms. MATERIAL AND METHODS: The study was conducted on an animal model. The effect of low doses of radon on cognitive processes is being studied by inhalation of randomized mineral water. Changes in the clinical picture were studied using behavioral tests, namely the Barnes maze tests. At the cellular level, radon-contained water inhalation causes different changes: in the fraction of synaptic membranes (determined by Na, K-ATPase activity), aged, related changes by telomerase activity and oxidative stress level changes. RESULTS: Our studies show that age-related changes in brain tissue are less noticeable after radon inhalation, namely, the concentration of amyloid plaques decreases in a group of aged rats after radon therapy. A significant improvement in cognitive function was observed after radon inhalation in aged rats. CONCLUSION: The results show that exposure to radon-containing mineral water leads to improved spatial perception, potentially improving age-related cognitive functions not only at the level of neurocognitive tests, but also changes at the level of cellular functioning.


Subject(s)
Mineral Waters , Radon , Animals , Mineral Waters/therapeutic use , Radon/therapeutic use , Rats , Male , Behavior, Animal/radiation effects , Behavior, Animal/drug effects , Maze Learning/drug effects , Administration, Inhalation , Oxidative Stress/drug effects , Memory/drug effects , Memory/radiation effects , Aging/physiology , Brain/radiation effects , Brain/drug effects , Brain/metabolism , Cognition/radiation effects , Cognition/drug effects , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
3.
J Photochem Photobiol B ; 258: 112998, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096719

ABSTRACT

Depression, a multifactorial mental disorder, characterized by cognitive slowing, anxiety, and impaired cognitive function, imposes a significant burden on public health. Photobiomodulation (PBM), involving exposure to sunlight or artificial light at a specific intensity and wavelength for a determined duration, influences brain activity, functional connectivity, and plasticity. It is recognized for its therapeutic efficacy in treating depression, yet its molecular and cellular underpinnings remain obscure. Here, we investigated the impact of PBM with 468 nm light on depression-like behavior and neuronal damage in the chronic unpredictable mild stress (CUMS) murine model, a commonly employed animal model for studying depression. Our results demonstrate that PBM treatment ameliorated behavioral deficits, inhibited neuroinflammation and apoptosis, and notably rejuvenates the hippocampal synaptic function in depressed mice, which may be mainly attributed to the up-regulation of brain-derived neurotrophic factor signaling pathways. In addition, in vitro experiments with a corticosterone-induced hippocampal neuron injury model demonstrate reduced oxidative stress and improved mitochondrial function, further validating the therapeutic potential of PBM. In summary, these findings suggest PBM as a promising, non-invasive treatment for depression, offering insights into its biological mechanisms and potential for clinical application.


Subject(s)
Depression , Disease Models, Animal , Hippocampus , Low-Level Light Therapy , Mitochondria , Animals , Mitochondria/metabolism , Mitochondria/radiation effects , Mice , Depression/metabolism , Depression/therapy , Hippocampus/radiation effects , Hippocampus/metabolism , Male , Brain-Derived Neurotrophic Factor/metabolism , Synapses/radiation effects , Synapses/metabolism , Oxidative Stress/radiation effects , Mice, Inbred C57BL , Neurons/radiation effects , Neurons/metabolism , Neuronal Plasticity/radiation effects , Corticosterone , Behavior, Animal/radiation effects , Apoptosis/radiation effects , Stress, Psychological
4.
Sci Rep ; 14(1): 17257, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39060318

ABSTRACT

Recent years, the rapid advancement of technology has raised concerns. We studied the effects of prenatal exposure to 900 MHz radiofrequency (RF) from mobile phones and the protective effects of linalool on learning and memory, and anxiety in adolescent male and female offspring rats. Pregnant rats were divided into four groups: control, wave, wave + linalool, and linalool. Rats received linalool (25mg/kg) by gavage for 21 days. Irradiation was conducted from day 0 to day 21 of pregnancy. Offsprings underwent behavioral and electrophysiological tests on days 50 and 60 after birth. Exposure to RF during pregnancy caused anxiety-like behavior in the EPM test and impairment of learning and memory in the Morris water maze and shuttle box tests. Electrophysiological properties and synaptic plasticity of the dorsal hippocampal CA3-CA1 synapse showed a decrease in fEPSP amplitude and slope. The trace element levels in both male and female offspring were consistent across all groups compared to their respective controls. In the hippocampus tissue, the levels of Fe, Cu, and Mn, as well as the Cu/Zn ratio, were significantly higher in the exposed groups (wave groups) compared to their controls. Moreover, Zn levels were significantly lower in the hippocampus tissue of the exposed groups. Linalool administration mitigated the excessive increase in Fe, Cu, Mn, and Cu/Zn ratio and normalized the disrupted levels of trace elements, except for Zn levels in both male and female offspring. Sex differences were observed in the EPM and shuttle box tests, females were more sensitive than males. In summary, our study demonstrates that prenatal exposure to mobile phone radiation induces stress-like behaviors, disrupts learning and memory, alters hippocampal electrophysiological properties and trace element balance in offspring. Treatment with linalool mitigates these deleterious effects, highlighting its potential as a therapeutic intervention. These findings contribute to our understanding of the impact of prenatal environmental exposures on neurodevelopment and offer insights into potential strategies for neuroprotection.


Subject(s)
Acyclic Monoterpenes , Hippocampus , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Acyclic Monoterpenes/pharmacology , Male , Rats , Hippocampus/drug effects , Hippocampus/radiation effects , Hippocampus/metabolism , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Radio Waves/adverse effects , Maze Learning/drug effects , Maze Learning/radiation effects , Memory/drug effects , Memory/radiation effects , Anxiety/prevention & control , Rats, Wistar , Neuronal Plasticity/drug effects , Neuronal Plasticity/radiation effects
5.
Neurotoxicology ; 104: 11-19, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981577

ABSTRACT

The Advanced Oxidative Processes have demonstrated potential for application in the degradation of organic pollutants, such as Paraquat (PQ) from water and wastewater, due to their low price, high efficiency, and non-toxic properties. In this study, we investigated whether the photodegradation of PQ with TiO2 nanotubes reduced its toxicity in Drosophila melanogaster. However, dietary ingestion of degradation products PQ for larvae resulted in a low axial ratio (pupal volume). In the adults, products of photodegradation of PQ exposure markedly diminished climbing ability in a time-dependent manner after 10 days of feeding. In addition, exposure of D. melanogaster to photodegradation of PQ reduced acetylcholinesterase and citrate synthase activities but improved oxidative stress, as evidenced by oxide nitric, protein carbonyl, and lactate production. These results suggest that the photodegradation of PQ with TiO2 nanotubes produced PQ fragments with higher toxicity than PQ, while the precise mechanism of its action needs further investigation.


Subject(s)
Drosophila melanogaster , Paraquat , Titanium , Animals , Drosophila melanogaster/drug effects , Paraquat/toxicity , Titanium/toxicity , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Acetylcholinesterase/metabolism , Herbicides/toxicity , Herbicides/radiation effects , Nanotubes/chemistry , Nanotubes/toxicity , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Larva/drug effects , Catalysis , Protein Carbonylation/drug effects
6.
Toxicol Appl Pharmacol ; 489: 116994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857790

ABSTRACT

Radiation-induced cognitive impairment has recently fueled scientific interest with an increasing prevalence of cancer patients requiring whole brain irradiation (WBI) in their treatment algorithm. Saxagliptin (SAXA), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, has exhibited competent neuroprotective effects against varied neurodegenerative disorders. Hence, this study aimed at examining the efficacy of SAXA in alleviating WBI-induced cognitive deficits. Male Sprague Dawley rats were distributed into control group, WBI group exposed to 20 Gy ϒ-radiation, SAXA group treated for three weeks with SAXA (10 mg/kg. orally, once daily), and WBI/SAXA group exposed to 20 Gy ϒ-radiation then treated with SAXA (10 mg/kg. orally, once daily). SAXA effectively reversed memory deterioration and motor dysfunction induced by 20 Gy WBI during behavioural tests and preserved normal histological architecture of the hippocampal tissues of irradiated rats. Mechanistically, SAXA inhibited WBI-induced hippocampal oxidative stress via decreasing lipid peroxidation while restoring catalase antioxidant activity. Moreover, SAXA abrogated radiation-induced hippocampal neuronal apoptosis through downregulating proapoptotic Bcl-2 Associated X-protein (Bax) and upregulating antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions and eventually diminishing expression of cleaved caspase 3. Furthermore, SAXA boosted hippocampal neurogenesis by upregulating brain-derived neurotrophic factor (BDNF) expression. These valuable neuroprotective capabilities of SAXA were linked to activating protein kinase B (Akt), and cAMP-response element-binding protein (CREB) along with elevating the expression of sirtuin 1 (SIRT-1). SAXA successfully mitigated cognitive dysfunction triggered by WBI, attenuated oxidative injury, and neuronal apoptosis, and enhanced neurogenesis through switching on Akt/CREB/BDNF/SIRT-1 signaling axes. Such fruitful neurorestorative effects of SAXA provide an innovative therapeutic strategy for improving the cognitive capacity of cancer patients exposed to radiotherapy.


Subject(s)
Adamantane , Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Cyclic AMP Response Element-Binding Protein , Dipeptides , Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Sirtuin 1/metabolism , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dipeptides/pharmacology , Rats , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Adamantane/analogs & derivatives , Adamantane/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Hippocampus/metabolism , Hippocampus/pathology , Apoptosis/drug effects , Apoptosis/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Cranial Irradiation/adverse effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Behavior, Animal/drug effects , Behavior, Animal/radiation effects
7.
J Exp Biol ; 227(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38873751

ABSTRACT

The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.


Subject(s)
Circadian Rhythm , Light , Lighting , Animals , Mice/physiology , Male , Circadian Rhythm/physiology , Circadian Rhythm/radiation effects , Female , Behavior, Animal/radiation effects , Behavior, Animal/physiology , Motor Activity/radiation effects , Temperature
8.
Environ Toxicol Chem ; 43(7): 1615-1626, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837484

ABSTRACT

Amphibians are the most threatened vertebrate class globally. Multiple factors have been implicated in their global decline, and it has been hypothesized that interactions between stressors may be a major cause. Increased ultraviolet (UV) radiation, as a result of ozone depletion, has been identified as one such stressor. Exposure to UV radiation has been shown to have detrimental effects on amphibians and can exacerbate the effects of other stressors, such as chemical pollutants. Chemical pollution has likewise been recognized as a major factor contributing to amphibian declines, particularly, endocrine-disrupting chemicals. In this regard, 17ß-trenbolone is a potent anabolic steroid used in the agricultural industry to increase muscle mass in cattle and has been repeatedly detected in the environment where amphibians live and breed. At high concentrations, 17ß-trenbolone has been shown to impact amphibian survival and gonadal development. In the present study, we investigated the effects of environmentally realistic UV radiation and 17ß-trenbolone exposure, both in isolation and in combination, on the morphology and behavior of tadpoles (Limnodynastes tasmaniensis). We found that neither stressor in isolation affected tadpoles, nor did we find any interactive effects. The results from our 17ß-trenbolone treatment are consistent with recent research suggesting that, at environmentally realistic concentrations, tadpoles may be less vulnerable to this pollutant compared to other vertebrate classes. The absence of UV radiation-induced effects found in the present study could be due to species-specific variation in susceptibility, as well as the dosage utilized. We suggest that future research should incorporate long-term studies with multiple stressors to accurately identify the threats to, and subsequent consequences for, amphibians under natural conditions. Environ Toxicol Chem 2024;43:1615-1626. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Larva , Ultraviolet Rays , Water Pollutants, Chemical , Animals , Larva/drug effects , Water Pollutants, Chemical/toxicity , Trenbolone Acetate/toxicity , Anura , Behavior, Animal/drug effects , Behavior, Animal/radiation effects
9.
Bull Exp Biol Med ; 176(6): 727-730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38904931

ABSTRACT

High doses of ionizing radiation are the risk factor of cognitive dysfunction and anxiety disorders developing in humans and experimental animals. However, the data on the effect of low doses, especially in case of chronic or fractionated exposure, is limited and contradictory. Here we studied the effect of fractionated γ-radiation at cumulative doses of 0.1, 1, and 5 Gy on the parameters of the anxiety-like behavior in neonatal C57BL/6 mice. The anxiety was evaluated using the marble burying test and elevated plus maze. Fractionated irradiation resulted in dose-dependent changes in mouse behavior: the low dose caused an increase in anxiety, wherein the dose raise led to the decrease in anxiety-like behavior indicators compared to non-irradiated animals.


Subject(s)
Animals, Newborn , Anxiety , Behavior, Animal , Dose-Response Relationship, Radiation , Gamma Rays , Mice, Inbred C57BL , Animals , Gamma Rays/adverse effects , Mice , Behavior, Animal/radiation effects , Male , Maze Learning/radiation effects , Dose Fractionation, Radiation , Female
10.
Cell Rep ; 43(6): 114356, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865246

ABSTRACT

In addition to its role in vision, light also serves non-image-forming visual functions. Despite clinical evidence suggesting the antipruritic effects of bright light treatment, the circuit mechanisms underlying the effects of light on itch-related behaviors remain poorly understood. In this study, we demonstrate that bright light treatment reduces itch-related behaviors in mice through a visual circuit related to the lateral parabrachial nucleus (LPBN). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which subsequently inhibit CaMKIIα+ neurons in the LPBN. Activation of both the vLGN/IGL-projecting RGCs and the vLGN/IGL-to-LPBN projections is sufficient to reduce itch-related behaviors induced by various pruritogens. Importantly, we demonstrate that the antipruritic effects of bright light treatment rely on the activation of the retina-vLGN/IGL-LPBN pathway. Collectively, our findings elucidate a visual circuit related to the LPBN that underlies the antipruritic effects of bright light treatment.


Subject(s)
Parabrachial Nucleus , Pruritus , Animals , Mice , Parabrachial Nucleus/physiology , Pruritus/pathology , Light , Retinal Ganglion Cells/radiation effects , Visual Pathways/radiation effects , Mice, Inbred C57BL , Male , Antipruritics/pharmacology , Antipruritics/therapeutic use , GABAergic Neurons/metabolism , GABAergic Neurons/radiation effects , Behavior, Animal/radiation effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
11.
Electromagn Biol Med ; 43(3): 156-163, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38734994

ABSTRACT

Biological effects of radio frequency electromagnetic radiation (RF-EMR) in the range of 900-1800 MHz emerging from the mobile phone were investigated and were found to influence the locomotor pattern when exposure was initiated from 1 hour post fertilization (hpf) in zebrafish embryos (ZE), Danio rerio. Mobile phones and other wireless devices offer tremendous advantages. However, on the flipside they are leading to an increased electromagnetic energy in the environment, an excess of which could be termed as electromagnetic pollution. Herein, we tried to understand the effects of RF-EMR emerging from the mobile phone, on the development and behavior of ZE, exposed to RF-EMR (specific absorption rate of 1.13 W/kg and 1800 MHz frequency) 1 hr daily, for 5 days. To understand if there could be any developmental stage-specific vulnerability to RF-EMR, the exposure was initiated at three different time points: 1hpf, 6hpf and 24hpf of ZE development. Observations revealed no significant changes in the survival rate, morphology, oxidative stress or cortisol levels. However, statistically significant variations were observed in the batch where exposure started at 1hpf, with respect to locomotion patterns (distance travelled: 659.1 ± 173.1 mm Vs 963.5 ± 200.4 mm), which could be correlated to anxiety-like behavior; along with a corresponding increase in yolk consumption (yolk sac area: 0.251 ± 0.019 mm2 Vs 0.225 ± 0.018 mm2). Therefore, we conclude that RF-EMR exposure influences the organism maximally during the earliest stage of development, and we also believe that an increase in the time of exposure (corresponding to the patterns of current usage of mobile phones) might reveal added afflictions.


Mobile phones and other wireless devices are on a rampant usage worldwide. They work by radiating low energy radiofrequency electromagnetic radiations. An excessive usage of wireless devices is leading to increased presence of these radiations in our surroundings. Since these radiations are not physically sensed by the organisms, its impact stays elusive. Nevertheless, the interaction of these radiations with biological systems may produce some unwarranted effects. When we exposed the ZE to the mobile phone radiation daily 1hr for 5days, our observations revealed that the youngest of the experimental group showed susceptibility. The effect was evident through haphazard movements and stressed behavior. So, it is important to be aware of the potential effects and take necessary precautions by following safety guidelines, especially when the organism is in its early life stage.


Subject(s)
Behavior, Animal , Embryo, Nonmammalian , Radio Waves , Zebrafish , Animals , Zebrafish/embryology , Radio Waves/adverse effects , Embryo, Nonmammalian/radiation effects , Behavior, Animal/radiation effects , Cell Phone , Hydrocortisone/metabolism , Radiation, Nonionizing/adverse effects , Oxidative Stress/radiation effects , Locomotion/radiation effects , Embryonic Development/radiation effects
12.
Sci Rep ; 14(1): 12274, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806540

ABSTRACT

Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.


Subject(s)
Cranial Irradiation , Extracellular Vesicles , GABAergic Neurons , Animals , Extracellular Vesicles/metabolism , Rats , Cranial Irradiation/adverse effects , GABAergic Neurons/metabolism , GABAergic Neurons/radiation effects , Male , Hippocampus/radiation effects , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/radiation effects , Neurons/metabolism , Glutamic Acid/metabolism , Neuronal Plasticity/radiation effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Behavior, Animal/radiation effects
13.
Life Sci Space Res (Amst) ; 41: 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38670655

ABSTRACT

Future NASA missions will require astronauts to travel farther and spend longer durations in space than ever before. This will also expose astronauts to longer periods of several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI), which could have unknown negative effects on physical and mental health. Each also has the potential to negatively impact sleep which can reduce the ability to cope with stressful experiences and lead to sensorimotor, neurocognitive, and physical deficits. The effects of SI and SR on gross motor performance has been shown to vary, and depend on, individual differences in stress resilience and vulnerability based on our established animal model in which stress produces different effects on sleep. In this study, the impact that SI and SR, either alone or together, had on fine motor skill performance (bilateral tactile adhesive removal task (BTAR)) was assessed in male rats. We also examined emotional, exploratory, and other off-task behavioral responses during testing and assessed whether sensorimotor performance and emotion varied with individual differences in resilience and vulnerability. BTAR task performance was differentially impacted by SI and SR, and were further influenced by the stress resilience/vulnerability phenotype of the rats. These findings further demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that inflight stressors have on astronauts and their ability to perform mission-related tasks.


Subject(s)
Behavior, Animal , Cosmic Radiation , Motor Skills , Social Isolation , Animals , Cosmic Radiation/adverse effects , Male , Rats , Motor Skills/radiation effects , Behavior, Animal/radiation effects , Stress, Psychological , Space Flight
14.
Sci Total Environ ; 927: 172391, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608899

ABSTRACT

The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.


Subject(s)
Anxiety , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Gastrointestinal Microbiome/physiology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Radio Waves/adverse effects , Inflammasomes/metabolism , Neurons , Male , Behavior, Animal/radiation effects
15.
Int J Radiat Oncol Biol Phys ; 120(1): 178-188, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38462014

ABSTRACT

PURPOSE: Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB). METHODS AND MATERIALS: Normal Fischer rats (n = 6-7/group) were irradiated with one of the two modalities, exposing the entire brain to MBI valley/peak doses of 0/0, 5/200, 10/400, 13/520, 17/680, or 25/1000 Gy or to hBB doses of 7, 10, 13, 17, or 25 Gy. Two additional groups of rats received an MBI valley dose of 10 Gy coupled with an hBB dose of 7 or 15 Gy (groups MBI17* and MBI25*). Behavioral parameters were evaluated for 10 months after irradiation combined with veterinary observations. RESULTS: MBI peak doses of ≥680 Gy caused acute toxicity and death. Animals exposed to hBB or MBI dose-dependently gained less weight than controls; rats in the hBB25 and MBI25* groups died within 6 months after irradiation. Increasing doses of MBI caused hyperactivity but no other detectable behavioral alterations in our tests. Importantly, no health concerns were seen up to an MBI valley dose of 17 Gy. CONCLUSIONS: While acute toxicity of microbeam exposures depends on very high peak doses, late toxicity mainly relates to delivery of high MBI valley doses. MBI seems to have a low impact on normal rat behavior, but further tests are warranted to fully explore this hypothesis. However, high peak and valley doses are well tolerated from a veterinary point of view. This normal tissue tolerance to whole-brain, high-dose MBI reveals a promising avenue for microbeam radiation therapy, that is, therapeutic applications of microbeams that are poised for translation to a clinical environment.


Subject(s)
Behavior, Animal , Brain , Rats, Inbred F344 , Synchrotrons , Animals , Rats , Brain/radiation effects , Behavior, Animal/radiation effects , Male , Cranial Irradiation/adverse effects , Cranial Irradiation/methods , Time Factors , Radiation Injuries, Experimental , Dose-Response Relationship, Radiation , Follow-Up Studies , Radiotherapy Dosage
16.
Environ Pollut ; 316(Pt 2): 120594, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36370979

ABSTRACT

Anthropogenic disturbances are known to cause significant physiological and behavioural changes in animals and, thus, are the critical focus of numerous studies. Light pollution is an increasingly recognised source of disturbance that has the potential to impact animal physiology and behaviour. Here, we investigate the effect of constant light on a personality trait and metabolic rate in the European hermit crab Pagurus bernhardus. We used Bayesian mixed models to estimate average behavioural change (i.e. sample mean level behavioural plasticity) and between- and within-individual variation in boldness in response to laboratory light. Hermit crabs experiencing constant light were consistently less bold and had a higher metabolic rate than those kept under a standard laboratory light regime (12:12 h light/dark). However, there was no effect of light on individual consistency in behaviour. As boldness is associated with coping with risk, hermit crabs exposed to light pollution at night may experience increased perceived predation risk, adjusting their behaviour to compensate for the increased conspicuousness. However, reduced boldness could lead to lower rates of foraging and this, in combination with elevated metabolic rate, has the potential for a reduction in energy balance.


Subject(s)
Anomura , Behavior, Animal , Light Pollution , Animals , Anomura/radiation effects , Bayes Theorem , Behavior, Animal/radiation effects , Personality/radiation effects
17.
Biosensors (Basel) ; 12(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35200340

ABSTRACT

Terahertz is a new radiation source with many unique advantages. In recent years, its application has rapidly expanded to various fields, but there are few studies on the individual effects of terahertz. In this study, we investigated the behavioral effects of terahertz radiation on C57BL/6 mice, and we conducted an open field test, an elevated plus maze test, a light-dark box test, a three-chamber social test, and a forced swim test to explore the effects of terahertz radiation on mice from a behavioral perspective. The results show that terahertz wave may increase anti-anxiety, anti-depression, and social interaction in mice.


Subject(s)
Behavior, Animal/radiation effects , Terahertz Radiation , Animals , Anxiety , Depression , Mice , Mice, Inbred C57BL , Social Interaction , Swimming
18.
Behav Brain Res ; 419: 113677, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34818568

ABSTRACT

In long-term spaceflight, astronauts will face unique cognitive loads and social challenges which will be complicated by communication delays with Earth. It is important to understand the central nervous system (CNS) effects of deep spaceflight and the associated unavoidable exposure to galactic cosmic radiation (GCR). Rodent studies show single- or simple-particle combination exposure alters CNS endpoints, including hippocampal-dependent behavior. An even better Earth-based simulation of GCR is now available, consisting of a 33-beam (33-GCR) exposure. However, the effect of whole-body 33-GCR exposure on rodent behavior is unknown, and no 33-GCR CNS countermeasures have been tested. Here astronaut-age-equivalent (6mo-old) C57BL/6J male mice were exposed to 33-GCR (75cGy, a Mars mission dose). Pre-/during/post-Sham or 33-GCR exposure, mice received a diet containing a 'vehicle' formulation alone or with the antioxidant/anti-inflammatory compound CDDO-EA as a potential countermeasure. Behavioral testing beginning 4mo post-irradiation suggested radiation and diet did not affect measures of exploration/anxiety-like behaviors (open field, elevated plus maze) or recognition of a novel object. However, in 3-Chamber Social Interaction (3-CSI), CDDO-EA/33-GCR mice failed to spend more time exploring a holder containing a novel mouse vs. a novel object (empty holder), suggesting sociability deficits. Also, Vehicle/33-GCR and CDDO-EA/Sham mice failed to discriminate between a novel stranger vs. familiarized stranger mouse, suggesting blunted preference for social novelty. CDDO-EA given pre-/during/post-irradiation did not attenuate the 33-GCR-induced blunting of preference for social novelty. Future elucidation of the mechanisms underlying 33-GCR-induced blunting of preference for social novelty will improve risk analysis for astronauts which may in-turn improve countermeasures.


Subject(s)
Behavior, Animal , Cognitive Dysfunction , Cosmic Radiation/adverse effects , Oleanolic Acid/analogs & derivatives , Radiation Exposure/adverse effects , Recognition, Psychology , Social Behavior , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Oleanolic Acid/pharmacology , Recognition, Psychology/drug effects , Recognition, Psychology/radiation effects
19.
Toxicology ; 465: 153030, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34774978

ABSTRACT

Over the years, the advancement of radio diagnostic imaging tools and techniques has radically improved the diagnosis of different pathophysiological conditions, accompanied by increased exposure to low-dose ionizing radiation. Though the consequences of high dose radiation exposure on humans are very well comprehended, the more publicly relevant effects of low dose radiation (LDR) (≤100 mGy) exposure on the biological system remain ambiguous. The central nervous system, predominantly the developing brain with more neuronal precursor cells, is exceptionally radiosensitive and thus more liable to neurological insult even at low doses, as shown through several rodent studies. Further molecular studies have unraveled the various inflammatory and signaling mechanisms involved in cellular damage and repair that drive these physiological alterations that lead to functional alterations. Interestingly, few studies also claim that LDR exerts therapeutic effects on the brain by initiating an adaptive response. The present review summarizes the current understanding of the effects of low dose radiation at functional, cellular, and molecular levels and the various risks and benefits associated with it based on the evidence available from in vitro, in vivo, and clinical studies. Although the consensus indicates minimum consequences, the overall evidence suggests that LDR can bring about considerable neurological effects in the exposed individual, and hence a re-evaluation of the LDR usage levels and frequency of exposure is required.


Subject(s)
Behavior, Animal/radiation effects , Brain/radiation effects , Neurotoxicity Syndromes/etiology , Radiation Dosage , Radiation Exposure/adverse effects , Radiation Injuries/etiology , Radiation, Ionizing , Animals , Brain/metabolism , Brain/pathology , Brain/physiopathology , Dose-Response Relationship, Radiation , Gene Expression Regulation/radiation effects , Humans , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Radiation Injuries/metabolism , Radiation Injuries/pathology , Radiation Injuries/physiopathology , Risk Assessment , Risk Factors , Signal Transduction/radiation effects
20.
Radiat Res ; 197(1): 67-77, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34237145

ABSTRACT

We have shown previously that a single radiation event (0.063, 0.125 or 0.5 Gy, 0.063 Gy/min) in adult mice (age 10 weeks) can have delayed dose-dependent effects on locomotor behavior 18 months postirradiation. The highest dose (0.5 Gy) reduced, whereas the lowest dose (0.063 Gy) increased locomotor activity at older age independent of sex or genotype. In the current study we investigated whether higher doses administered at a higher dose rate (0.5, 1 or 2 Gy, 0.3 Gy/min) at the same age (10 weeks) cause stronger or earlier effects on a range of behaviors, including locomotion, anxiety, sensorimotor and cognitive behavior. There were clear dose-dependent effects on spontaneous locomotor and exploratory activity, anxiety-related behavior, body weight and affiliative social behavior independent of sex or genotype of wild-type and Ercc2S737P heterozygous mice on a mixed C57BL/6JG and C3HeB/FeJ background. In addition, smaller genotype- and dose-dependent radiation effects on working memory were evident in males, but not in females. The strongest dose-dependent radiation effects were present 4 months postirradiation, but only effects on affiliative social behaviors persisted until 12 months postirradiation. The observed radiation-induced behavioral changes were not related to alterations in the eye lens, as 4 months postirradiation anterior and posterior parts of the lens were still normal. Overall, we did not find any sensitizing effect of the mutation towards radiation effects in vivo.


Subject(s)
Behavior, Animal/radiation effects , Animals , Cobalt Radioisotopes/chemistry , Dose-Response Relationship, Radiation , Female , Gamma Rays , Genotype , Lens, Crystalline , Male , Memory, Short-Term , Mice , Mice, Inbred Strains , Occupational Exposure , Radiation Dosage , Radiation Exposure , Sex Factors , Social Behavior , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL