Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Environ Res Public Health ; 5(1): 26-31, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18441402

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA) and 3-methylcholanthene (3-MC) by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA), 3-hydroxy-BA (3-OH-BA), 5-hydroxymethyl-BA (5- CH2OH-BA), 7-hydroxymethyl-BA (7-CH2OH-BA), 12-hydroxymethyl-BA (12-CH2OH-BA), 7-hydroxymethyl-12- methyl-BA (7-CH2OH-12-MBA), 5-formyl-BA (5-CHO-BA), BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol), 1-hydroxy-3- methylcholanthene (1-OH-3-MC), 1-keto-3-methylcholanthene (1-keto-3-MC), and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm) in the presence of 2,2,6,6-tetramethylpiperidine (TEMP), a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS), which induce lipid peroxidation.


Subject(s)
Benz(a)Anthracenes/chemistry , Lipid Peroxidation/radiation effects , Methylcholanthrene/analogs & derivatives , Methylcholanthrene/chemistry , Oxygen/chemistry , Ultraviolet Rays , Benz(a)Anthracenes/radiation effects , Electron Spin Resonance Spectroscopy , Linoleic Acids/chemistry , Linoleic Acids/radiation effects , Methylcholanthrene/radiation effects , Molecular Structure , Singlet Oxygen/chemistry
2.
Toxicol Ind Health ; 22(4): 147-56, 2006 May.
Article in English | MEDLINE | ID: mdl-16786836

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widespread genotoxic environmental pollutants, which require metabolic activation in order to exert biological activities, including mutagenicity and carcinogenicity. Photoactivation is another activation pathway that can lead to PAH genotoxicity. In this paper, we demonstrate that photoirradiation of a series of representative PAHs, with and without bearing a methyl substituent, with UVA light in the presence of methyl linoleate resulted in the formation of methyl linoleate hydroperoxides (a lipid peroxide). The lipid peroxide formation was inhibited by dithiothreitol (DTT) (free radical scavenger), NaN3 (singlet oxygen and free radical scavenger), and superoxide dismutase (SOD) (superoxide scavenger), but was enhanced by the presence of deuterium oxide (D2O) (extends singlet oxygen lifetime). These results suggest that photoirradiation of PAHs by UVA light generates reactive oxygen species (ROS), which induce lipid peroxidation.


Subject(s)
Benz(a)Anthracenes/radiation effects , Dithiothreitol/pharmacology , Light , Lipid Peroxidation/radiation effects , Polycyclic Aromatic Hydrocarbons/radiation effects , Drug Interactions , Fatty Acids/pharmacology , Lipid Peroxidation/drug effects
3.
Photochem Photobiol ; 55(4): 533-9, 1992 Apr.
Article in English | MEDLINE | ID: mdl-1320277

ABSTRACT

The photochemistry of benzanthrone (7H-benz[de]-anthracene-7-one) has been studied using electron paramagnetic resonance (EPR) in conjunction with the spin trapping technique and the direct detection of singlet molecular oxygen luminescence. Irradiation (lambda ex = 394 nm) of benzanthrone (BA) in aerated ethanol, dimethylsulfoxide or benzene resulted in the generation of superoxide (O2-.) which was trapped by 5,5-dimethyl-1-pyrroline-N-oxide. The ethoxy radical was also detected in ethanol. Photolysis of BA in deaerated basic ethanol led to the formation of BA anion radical, BA-., which was detected directly by ESR. This radical anion decayed back to BA with a unimolecular rate constant of 1.5 x 10(-3) s-1. The 1O2 quantum yields (lambda ex greater than 345 nm) for BA in ethanol, 90% ethanol and basic ethanol (0.1N NaOH) were 0.89, 0.88 and 0.28 respectively relative to Rose Bengal. The lower yield of 1O2 in basic ethanol may be attributable to the reaction of oxygen with BA-. (which is generated in higher yield at alkaline pH) to give O2-.. These findings suggest that on exposure to light BA can generate active oxygen species which may be responsible for the photocontact dermatitis caused by BA in industrial workers exposed to this chemical.


Subject(s)
Benz(a)Anthracenes/chemistry , Radiation-Sensitizing Agents/chemistry , Animals , Benz(a)Anthracenes/pharmacology , Benz(a)Anthracenes/radiation effects , Electron Spin Resonance Spectroscopy/methods , Kinetics , Mathematics , Photochemistry , Skin/drug effects , Skin/radiation effects , Ultraviolet Rays
7.
Science ; 161(3848): 1342-3, 1968 Sep 27.
Article in English | MEDLINE | ID: mdl-5673444

ABSTRACT

Using the technique of laser photolysis and spectroscopy, we have observed excited singlet state absorption bands in 1,2-benzanthracene at 560 and 520 nanometers. The bands decay in less than 50 nanoseconds and are replaced by the known absorption spectrum of the lowest triplet state.


Subject(s)
Benz(a)Anthracenes/radiation effects , Energy Transfer , Lasers , Fluorescence , Radiation Effects , Radiochemistry , Spectrum Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL