Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.221
Filter
1.
Biomed Environ Sci ; 37(4): 341-353, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38727157

ABSTRACT

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.


Subject(s)
Benzene , Hemolytic Agents , Proteome , Proteome/metabolism , Proteomics , Benzene/toxicity , K562 Cells , Humans , Toxicity Tests/methods , Hemolytic Agents/toxicity
2.
Eur Rev Med Pharmacol Sci ; 28(8): 3135-3143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38708472

ABSTRACT

OBJECTIVE: Benzene is one of the major carcinogenic factors that can affect liver, kidneys, and lungs. Chronic inhalation of benzene vapor by petrol stations workers has been shown to have an impact on hematological parameters; thus, the present study aimed to investigate the effect of benzene exposure on petrol station workers. SUBJECTS AND METHODS: The study involved 99 participants, 50 of whom have been exposed to benzene and 49 of whom have not (control). A 5 ml blood sample in an ethylenediaminetetraacetic acid (EDTA) anticoagulant tube was collected from each subject, and a complete blood count test was used to test hematological parameters. RESULTS: The current study showed a significant decrease in red blood cells, packed cell volume, and hemoglobin in the exposed group compared to the control group. However, the amount of white blood cells was significantly increased (p < 0.0001) in the exposed group compared to the control group. Notably, there was no significant difference in platelet counts between the two groups. In terms of exposure time, subjects who have been exposed to benzene for more than a year and fewer than 10 years showed a significant decrease (p < 0.05) in RBCs indices and a significant increase (p < 0.0001) in WBCs compared to those in the control group CONCLUSIONS: Thus, the findings indicated that significant differences in hematological parameters were found in workers who were exposed to benzene compared to those who had not been exposed.


Subject(s)
Benzene , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Benzene/toxicity , Adult , Male , Blood Cell Count , Hemoglobins/analysis , Hemoglobins/metabolism , Middle Aged
3.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691504

ABSTRACT

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Subject(s)
Benzene , Benzene/chemistry , Organic Chemicals/chemistry , Oxidation-Reduction , Aerosols , Volatilization , Air Pollutants , Models, Theoretical
4.
Crit Rev Toxicol ; 54(4): 252-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38753561

ABSTRACT

INTRODUCTION: Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS: We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS: Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION: We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.


Subject(s)
Benzene , Formaldehyde , Leukemia, Myeloid, Acute , Humans , Benzene/toxicity , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/chemically induced , Formaldehyde/toxicity , Causality , Probability , Risk Assessment , Environmental Exposure , Risk Factors
5.
Environ Sci Pollut Res Int ; 31(21): 31443-31454, 2024 May.
Article in English | MEDLINE | ID: mdl-38630400

ABSTRACT

Benzene, toluene, ethylbenzene, and xylene (BTEX) are ubiquitous in the environment, and all of them can cause neurotoxicity. However, the association between BTEX exposure and dyslexia, a disorder with language network-related regions in left hemisphere affected, remains unclear. We aimed to assess the relationship between BTEX exposure and dyslexic odds among school-aged children. A case-control study, including 355 dyslexics and 390 controls from three cities in China, was conducted. Six BTEX metabolites were measured in their urine samples. Logistic regression model was used to explore the association between the BTEX metabolites and the dyslexic odds. Urinary trans,trans-muconic acid (MU: a metabolite of benzene) was significantly associated with an increased dyslexic odds [odds ratio (OR) = 1.23, 95% confidence interval (CI): 1.01, 1.50], and the adjusted OR of the dyslexic odds in the third tertile was 1.72 (95% CI: 1.06, 2.77) compared to that in the lowest tertile regarding urinary MU concentration. Furthermore, the association between urinary MU level and the dyslexic odds was more pronounced among children from low-income families based on stratified analyses. Urinary metabolite levels of toluene, ethylbenzene, and xylene were not found to be associated with the dyslexic odds. In summary, elevated MU concentrations may be associated with an increased dyslexic odds. We should take measures to reduce MU related exposure among children, particularly those with low family income.


Subject(s)
Benzene Derivatives , Benzene , Dyslexia , Toluene , Xylenes , Humans , Child , Xylenes/urine , Toluene/urine , Male , Benzene Derivatives/urine , China , Female , Dyslexia/urine , Case-Control Studies , Environmental Exposure , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism , Odds Ratio
6.
J Occup Environ Hyg ; 21(5): 353-364, 2024 May.
Article in English | MEDLINE | ID: mdl-38560919

ABSTRACT

Structural firefighters are exposed to a complex set of contaminants and combustion byproducts, including volatile organic compounds (VOCs). Additionally, recent studies have found structural firefighters' skin may be exposed to multiple chemical compounds via permeation or penetration of chemical byproducts through or around personal protective equipment (PPE). This mannequin-based study evaluated the effectiveness of four different PPE conditions with varying contamination control measures (incorporating PPE interface design features and particulate blocking materials) to protect against ingress of several VOCs in a smoke exposure chamber. We also investigated the effectiveness of long-sleeve base layer clothing to provide additional protection against skin contamination. Outside gear air concentrations were measured from within the smoke exposure chamber at the breathing zone, abdomen, and thigh heights. Personal air concentrations were collected from mannequins under PPE at the same general heights and under the base layer at abdomen and thigh heights. Sampled contaminants included benzene, toluene, styrene, and naphthalene. Results suggest that VOCs can readily penetrate the ensembles. Workplace protection factors (WPFs) were near one for benzene and toluene and increased with increasing molecular weight of the contaminants. WPFs were generally lower under hoods and jackets compared to under pants. For all PPE conditions, the pants appeared to provide the greatest overall protection against ingress of VOCs, but this may be due in part to the lower air concentrations toward the floor (and cuffs of pants) relative to the thigh-height outside gear concentrations used in calculating the WPFs. Providing added interface control measures and adding particulate-blocking materials appeared to provide a protective benefit against less-volatile chemicals, like naphthalene and styrene.


Subject(s)
Air Pollutants, Occupational , Firefighters , Naphthalenes , Occupational Exposure , Protective Clothing , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Humans , Benzene/analysis , Toluene/analysis , Personal Protective Equipment , Styrene/analysis , Manikins , Smoke/analysis , Workplace
7.
Bioresour Technol ; 400: 130650, 2024 May.
Article in English | MEDLINE | ID: mdl-38570099

ABSTRACT

Illustrating the biodegradation processes of multi-component volatile organic compounds (VOCs) will expedite the implication of biotechnology in purifying industrial exhaust. Here, performance shifts of microbial fuel cell and biotrickling filter combined system (MFC-BTF) are investigated for removing single and dual components of toluene and benzene. Synchronous removal of toluene (95 %) and benzene (97 %) are achieved by MFC-BTF accompanied with the output current of 0.41 mA. Elevated content of extracellular polymeric substance facilitates the mass transfer of benzene with the presence of toluene. Strains of Bacteroidota, Proteobacteria and Chloroflexi contribute to the removal of dual components VOCs. Empty bed reaction time and the VOCs concentration are the important factors influencing their dissolution in the system. The biodegradation of toluene and benzene proceeds with 2-hydroxymuconic semialdehyde and o-hydroxybenzoic acid as the main intermediates. These results provide a comprehensive understanding of multi-component VOCs removal by MFC-BTF and guide the system design, optimization, and scale-up.


Subject(s)
Benzene , Biodegradation, Environmental , Bioelectric Energy Sources , Toluene , Toluene/metabolism , Benzene/metabolism , Filtration/methods , Volatile Organic Compounds/metabolism , Gases/metabolism
8.
Front Public Health ; 12: 1295758, 2024.
Article in English | MEDLINE | ID: mdl-38590813

ABSTRACT

Introduction: In Nigeria, because of increasing population, urbanization, industrialization, and auto-mobilization, petrol is the most everyday non-edible commodity, and it is the leading petroleum product traded at the proliferating Nigeria's petrol stations (NPSs). However, because of inadequate occupational health and safety (OHS) regulatory measures, working at NPSs exposes petrol station workers (PSWs) to a large amount of hazardous benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. Methods: Studies on BTEX exposures among Nigerian PSWs are scarce. Thus, constraints in quantifying the health risks of BTEX limit stakeholders' ability to design practical risk assessment and risk control strategies. This paper reviews studies on the OHS of Nigerian PSWs at the NPSs. Results: Although knowledge, attitude, and practices on OHS in NPSs vary from one Nigeria's study setting to another, generally, safety practices, awareness about hazards and personal protective equipment (PPE), and the use of PPE among PSWs fell below expectations. Additionally, air quality at NPSs was poor, with a high content of BTEX and levels of carbon monoxide, hydrogen sulfide, particulate matter, and formaldehyde higher than the World Health Organization guideline limits. Discussion: Currently, regulatory bodies' effectiveness and accountability in safeguarding OHS at NPSs leave much to be desired. Understanding the OHS of NPSs would inform future initiatives, policies, and regulations that would promote the health and safety of workers at NPSs. However, further studies need to be conducted to describe the vulnerability of PSWs and other Nigerians who are occupationally exposed to BTEX pollution. More importantly, controlling air pollution from hazardous air pollutants like BTEX is an essential component of OHS and integral to attaining the Sustainable Development Goals (SDG) 3, 7, and 11.


Subject(s)
Benzene Derivatives , Benzene , Occupational Exposure , West African People , Humans , Benzene/analysis , Xylenes/analysis , Toluene/analysis , Nigeria , Occupational Exposure/analysis , Environmental Monitoring
9.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597775

ABSTRACT

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Subject(s)
Chromosome Aberrations , DNA Damage , Gasoline , Micronucleus Tests , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Gasoline/toxicity , Adult , Male , Turkey , Chromosome Aberrations/chemically induced , DNA Damage/drug effects , Middle Aged , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Comet Assay , Biomarkers , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Lymphocytes/drug effects , Female , Mutagens/toxicity , Benzene/toxicity , Benzene/analysis
10.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612886

ABSTRACT

Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.


Subject(s)
Cyclodextrins , Stimuli Responsive Polymers , Humans , Benzene , Biocompatible Materials , Electricity , Water
11.
Environ Int ; 186: 108645, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615541

ABSTRACT

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Subject(s)
Acetylcysteine/analogs & derivatives , Benzene , CpG Islands , DNA Methylation , Occupational Exposure , Humans , DNA Methylation/drug effects , Male , Occupational Exposure/adverse effects , Benzene/toxicity , Adult , China , DNA Damage , Middle Aged , Biomarkers/urine , Acetylcysteine/urine , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
12.
J Environ Sci (China) ; 143: 201-212, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644017

ABSTRACT

Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.


Subject(s)
Benzene , Cobalt , Oxidation-Reduction , Oxides , Silver , Benzene/chemistry , Cobalt/chemistry , Silver/chemistry , Catalysis , Oxides/chemistry , Models, Chemical , Air Pollutants/chemistry
13.
Ecotoxicol Environ Saf ; 276: 116302, 2024 May.
Article in English | MEDLINE | ID: mdl-38608381

ABSTRACT

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.


Subject(s)
Adenosine/analogs & derivatives , Benzene , Methyltransferases , Benzene/toxicity , Animals , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Myeloid Cells/drug effects , Myeloid Cells/pathology , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Male
14.
ACS Sens ; 9(4): 1906-1915, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38565844

ABSTRACT

As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.


Subject(s)
Benzene , Copper , Limit of Detection , Metal-Organic Frameworks , Thermodynamics , Benzene/analysis , Benzene/chemistry , Copper/chemistry , Metal-Organic Frameworks/chemistry , Adsorption , Kinetics , Density Functional Theory , Gases/analysis , Gases/chemistry
15.
CNS Neurosci Ther ; 30(4): e14718, 2024 04.
Article in English | MEDLINE | ID: mdl-38615366

ABSTRACT

AIMS: Classification of spinal muscular atrophy (SMA) is associated with the clinical prognosis; however, objective classification markers are scarce. This study aimed to identify metabolic markers in the cerebrospinal fluid (CSF) of children with SMA types II and III. METHODS: CSF samples were collected from 40 patients with SMA (27 with type II and 13 with type III) and analyzed for metabolites. RESULTS: We identified 135 metabolites associated with SMA types II and III. These were associated with lysine degradation and arginine, proline, and tyrosine metabolism. We identified seven metabolites associated with the Hammersmith Functional Motor Scale: 4-chlorophenylacetic acid, adb-chminaca,(+/-)-, dodecyl benzenesulfonic acid, norethindrone acetate, 4-(undecan-5-yl) benzene-1-sulfonic acid, dihydromaleimide beta-d-glucoside, and cinobufagin. Potential typing biomarkers, N-cyclohexylformamide, cinobufagin, cotinine glucuronide, N-myristoyl arginine, 4-chlorophenylacetic acid, geranic acid, 4-(undecan-5-yl) benzene, and 7,8-diamino pelargonate, showed good predictive performance. Among these, N-myristoyl arginine was unaffected by the gene phenotype. CONCLUSION: This study identified metabolic markers are promising candidate prognostic factors for SMA. We also identified the metabolic pathways associated with the severity of SMA. These assessments can help predict the outcomes of screening SMA classification biomarkers.


Subject(s)
Phenylacetates , Spinal Muscular Atrophies of Childhood , Child , Humans , Benzene , Metabolomics , Arginine
16.
Sci Rep ; 14(1): 7219, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538743

ABSTRACT

Petroleum aromatic hydrocarbons are considered one of the most dangerous aquatic pollutants due to their widespread across water bodies, persistence, and extension to the food chain. To our knowledge, there hasn't been any research investigating the hepatorenoprotective effects of Spirulina platensis (SP) against toxicity induced by these environmental toxicants in fish. Thus, we decided to explore its potential safeguarding against benzene and toluene exposure in adult Clarias gariepinus. To achieve this objective, fish were divided into five groups (60 per group; 20 per replicate). The first group served as a control. The second and third groups were intoxicated with benzene and toluene at doses of 0.762 and 26.614 ng/L, respectively for 15 days. The fourth and fifth groups (SP + benzene and SP + toluene, respectively) were challenged with benzene and toluene as previously mentioned following dietary inclusion of SP at a dose of 5 g/kg diet for 30 days. The marked increase in liver metabolizing enzymes, glucose, total protein, albumin, globulin, albumin/globulin ratio, and creatinine confirmed the hepato- and nephrotoxic impacts of benzene and toluene. These outcomes were coupled with cytopathological affections and excessive collagen deposition. The incorporation of SP in ration formulation, on the contrary, restored the previously mentioned toxicological profile due to its antioxidant and cytoprotective attributes. Regardless of SP intervention, the renal tissues still displayed histo-architectural lesions, because of insufficient dose and timeframe. Additional research will be required to identify the ideal SP remediation regimen.


Subject(s)
Catfishes , Globulins , Spirulina , Animals , Benzene/metabolism , Catfishes/metabolism , Globulins/metabolism , Toluene/metabolism , Albumins/metabolism
17.
Ann Agric Environ Med ; 31(1): 13-23, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38549472

ABSTRACT

INTRODUCTION AND OBJECTIVE: Smog, which contains fine dusts, non-metal oxides, metals and organic compounds can have irritating, allergenic and immunomodulatory effects leading to the development of respiratory diseases and their exacerbations. The aim of the study was to search for a relationship between concentrations of air pollutants and the frequency of hospitalizations due to exacerbation of asthma, chronic obstructive pulmonary disease, or abnormalitis in breathing. MATERIAL AND METHODS: Hospital admission data was accessed from the hospital digital in-formation system. From the publicly available database of the Chief Inspectorate for Environmental Protection, data concerning the concentrations of pollutants, such as PM2.5 and PM10, sulphur oxide IV (SO2), nitric oxide IV (NO2), carbon monoxide II (CO), benzene and ozone (O3), measured daily with hourly accuracy was used. The results of the average concentrations of air pollutants were compared with the rates of hospitalization in the corresponding time intervals. RESULTS: A number of statistically significant correlations were shown indicating the role of increased concentrations of each of the tested contaminants in the frequency of hospitalizations. In particular, strongly positive correlations were shown between the frequency of hospitalizations due to COPD and PM2.5 and PM10, asthma with benzene and NO2, and for respiratory disorders in general with benzene, CO and SO2. CONCLUSIONS: The results indicate that air pollution can be a significant modifiable risk factor for exacerbations of respiratory diseases and therefore its avoidance plays an important role in primary prevention.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Pulmonary Disease, Chronic Obstructive , Respiratory Tract Diseases , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Nitrogen Dioxide , Benzene , Air Pollution/adverse effects , Air Pollution/analysis , Hospitalization , Asthma/epidemiology , Asthma/etiology , Particulate Matter/adverse effects , Particulate Matter/analysis
18.
Arch Toxicol ; 98(5): 1457-1467, 2024 May.
Article in English | MEDLINE | ID: mdl-38492097

ABSTRACT

Cytochrome P450 (P450)-mediated bioactivation, which can lead to the hepatotoxicity through the formation of reactive metabolites (RMs), has been regarded as the major problem of drug failures. Herein, we purposed to establish machine learning models to predict the bioactivation of P450. On the basis of the literature-derived bioactivation dataset, models for Benzene ring, Nitrogen heterocycle and Sulfur heterocycle were developed with machine learning methods, i.e., Random Forest, Random Subspace, SVM and Naïve Bayes. The models were assessed by metrics like "Precision", "Recall", "F-Measure", "AUC" (Area Under the Curve), etc. Random Forest algorithms illustrated the best predictability, with nice AUC values of 0.949, 0.973 and 0.958 for the test sets of Benzene ring, Nitrogen heterocycle and Sulfur heterocycle models, respectively. 2D descriptors like topological indices, 2D autocorrelations and Burden eigenvalues, etc. contributed most to the models. Furthermore, the models were applied to predict the occurrence of bioactivation of an external verification set. Drugs like selpercatinib, glafenine, encorafenib, etc. were predicted to undergo bioactivation into toxic RMs. In vitro, IC50 shift experiment was performed to assess the potential of bioactivation to validate the prediction. Encorafenib and tirbanibulin were observed of bioactivation potential with shifts of 3-6 folds or so. Overall, this study provided a reliable and robust strategy to predict the P450-mediated bioactivation, which will be helpful to the assessment of adverse drug reactions (ADRs) in clinic and the design of new candidates with lower toxicities.


Subject(s)
Benzene , Carbamates , Drug-Related Side Effects and Adverse Reactions , Sulfonamides , Humans , Bayes Theorem , Cytochrome P-450 Enzyme System/metabolism , Machine Learning , Sulfur , Nitrogen
20.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527881

ABSTRACT

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Benzene , Environmental Monitoring/methods , China , Vehicle Emissions/analysis , Seasons , Dust/analysis , Coal/analysis , Sulfates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...