Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.965
Filter
1.
Food Chem ; 453: 139632, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754352

ABSTRACT

A new magnetic nano gel (MNG) was prepared from choline chloride/phenol deep eutectic solvent and magnetic amberlite XAD-7 nanocomposite. The dispersive solid phase micro extraction (dSPME) method was developed for seperation and preconcentration of Brilliant Blue FCF (BB) by the prepared MNG. In this study, firstly, the optimum DES type and mole ratio of DES were investigated before response surface methodology optimization. Then, the effect of the MNG-dSPME experimental parameters were optimized by response surface methodology using central composite design. Under the optimum microextraction conditions, limit of detection (LOD), limit of quantification (LOQ), preconcentration factor (PF), enhencament factor (EF) were found to be 1.15 µg L-1,3.80 µg L-1, 70, and 88, respectively. It was seen that the recovery of real samples were obtained from 95.5 to 103.6%. The pesent method was succesfully for extraction of BB in some food, personal care samples, to the best of our knowledge, this is the first study that is presented method on determination of BB by preconcentration with magnetic nano gel. The obtained results showed that the present procedure is effective, sensitive, and has high accuracy for the quantitative detection of BB.


Subject(s)
Deep Eutectic Solvents , Food Contamination , Limit of Detection , Solid Phase Microextraction , Food Contamination/analysis , Solid Phase Microextraction/methods , Solid Phase Microextraction/instrumentation , Deep Eutectic Solvents/chemistry , Spectrophotometry , Benzenesulfonates/chemistry
2.
Food Chem ; 453: 139678, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759439

ABSTRACT

Converting solid iron oxide nanoparticles into a "pseudo-water-soluble" form before applying them to chemiluminescent reactions leads to enhance the chemiluminescence intensity. Using 8-hydroxyquinoline as a colloidal agent, a new, fast, and simple method of synthesizing pseudo-water-soluble Fe2O3 nanoparticles was developed. SEM, VSM, SAED, HRTEM, XRD, FTIR, and EDS techniques were used to characterize the synthesized Fe2O3 nanoparticles. Fe2O3 nanoparticles synthesized in this study have superior peroxidase-like activity (POD-like) and are stable under a wide range of pH and temperature. The chemiluminescence reaction of luminol-H2O2 is intensified and accelerated by a colloidal solution of Fe-nanoparticles/8-hydroxyquinoline. Reverse-flow injection analysis was employed to determine brilliant blue. A chemiluminescent sensing method based on iron oxide nanozymes was utilized for sensitive detection of the brilliant blue synthetic dye, achieving a limit of detection of 0.06 mg/L and a dynamic linear range of 0.1 to 50 mg/L. The recovery and relative standard deviations of real samples were found to be 97.83-99.93% and 0.09-3.07%, respectively. An analysis of a sample, from injection to obtaining the maximum peak, could be performed in less than one minute.


Subject(s)
Benzenesulfonates , Beverages , Ferric Compounds , Gelatin , Luminescent Measurements , Ferric Compounds/chemistry , Catalysis , Luminescent Measurements/methods , Gelatin/chemistry , Beverages/analysis , Benzenesulfonates/chemistry , Luminescence
3.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Article in English | MEDLINE | ID: mdl-38780509

ABSTRACT

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Subject(s)
Aminosalicylic Acids , Fibroblasts , Peritoneal Fibrosis , Phenotype , STAT3 Transcription Factor , Signal Transduction , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/genetics , STAT3 Transcription Factor/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Mice , Aminosalicylic Acids/pharmacology , Signal Transduction/drug effects , Disease Models, Animal , Peritoneum/pathology , Peritoneum/metabolism , Interleukin-6/metabolism , Extracellular Matrix/metabolism , Male , Mice, Inbred C57BL , Humans , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Peritoneal Dialysis/adverse effects , Benzenesulfonates
4.
Int J Biol Macromol ; 270(Pt 1): 132056, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704070

ABSTRACT

Since the potential carcinogenic, toxic and non-degradable dyes trigger serious environmental contamination by improper treatment, developing novel adsorbents remains a major challenge. A novel high efficiency and biopolymer-based environmental-friendly adsorbent, chitosan­sodium tripolyphosphate-melamine sponge (CTS-STPP-MS) composite, was prepared for Orange II removing with chitosan as raw material, sodium tripolyphosphate as cross-linking agent. The composite was carefully characterized by SEM, EDS, FT-IR and XPS. The influence of crosslinking conditions, dosage, pH, initial concentration, contacting time and temperature on adsorption were tested through batch adsorption experiments. CTS-STPP-MS adsorption process was exothermic, spontaneous and agreed with Sips isotherm model accompanying the maximum adsorption capacity as 948 mg∙g-1 (pH = 3). Notably, the adsorption performance was outstanding for high concentration solutions, with a removal rate of 97 % in up to 2000 mg∙L-1 OII solution (100 mg sorbent dosage, 50 mL OII solution, pH = 3, 289.15 K). In addition, the adsorption efficiency yet remained 97.85 % after 5 repeated adsorption-desorption cycles. The driving force of adsorption was attributed to electrostatic attraction and hydrogen bonds which was proved by adsorption results coupled with XPS. Owing to the excellent properties of high-effective, environmental-friendly, easy to separate and regenerable, CTS-STPP-MS composite turned out to be a promising adsorbent in contamination treatment.


Subject(s)
Azo Compounds , Chitosan , Triazines , Water Pollutants, Chemical , Chitosan/chemistry , Chitosan/analogs & derivatives , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Triazines/chemistry , Azo Compounds/chemistry , Azo Compounds/isolation & purification , Hydrogen-Ion Concentration , Water Purification/methods , Benzenesulfonates/chemistry , Kinetics , Polyphosphates/chemistry , Anions/chemistry , Temperature , Coloring Agents/chemistry , Coloring Agents/isolation & purification
5.
Bioresour Technol ; 403: 130883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788807

ABSTRACT

Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2-15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.


Subject(s)
Bioelectric Energy Sources , Boron , Electrodes , Graphite , Graphite/chemistry , Boron/chemistry , Benzenesulfonates/chemistry , Oxidation-Reduction , Oxides/chemistry
6.
J Chromatogr A ; 1728: 465029, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38810572

ABSTRACT

Sulfonate esters, one class of genotoxic impurities (GTIs), have gained significant attention in recent years due to their potential to cause genetic mutations and cancer. In the current study, we employed the dummy template molecular imprinting technology with a dummy template molecule replacing the target molecule to establish a pretreatment method for samples containing p-toluene sulfonate esters. Through computer simulation and ultraviolet-visible spectroscopy analysis, the optimal functional monomer acrylamide and polymerization solvent chloroform were selected. Subsequently, a dummy template molecularly imprinted polymer (DMIP) was prepared by the precipitation polymerization method, and the polymer was characterized in morphology, particle size, and composition. The results of the adsorption and enrichment study demonstrated that the DMIP has high adsorption capability (Q = 7.88 mg/g) and favorable imprinting effects (IF = 1.37); Further, it could simultaneously adsorb three p-toluene sulfonate esters. The optimal adsorption conditions were obtained by conditional optimization of solid-phase extraction (SPE). A pH 7 solution was selected as the loading condition, the methanol/1 % phosphoric acid solution (20:80, v/v) was selected as the washing solution, and acetonitrile containing 10 % acetic acid in 6 mL was selected as the elution solvent. Finally, we determined methyl p-toluene sulfonate alkyl esters, ethyl p-toluene sulfonate alkyl esters, and isopropyl p-toluene sulfonate alkyl esters in tosufloxacin toluene sulfonate and capecitabine at the 10 ppm level (relative to 1 mg/mL active pharmaceutical ingredient (API) samples) by using DMIP-based SPE coupled with HPLC. This approach facilitated the selective enrichment of p-toluene sulfonate esters GTIs from complex API samples.


Subject(s)
Mutagens , Solid Phase Extraction , Solid Phase Extraction/methods , Adsorption , Mutagens/analysis , Mutagens/chemistry , Mutagens/isolation & purification , Molecularly Imprinted Polymers/chemistry , Esters/chemistry , Molecular Imprinting/methods , Chromatography, High Pressure Liquid/methods , Toluene/chemistry , Toluene/analogs & derivatives , Drug Contamination , Benzenesulfonates
7.
J Chromatogr A ; 1722: 464856, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38579610

ABSTRACT

Complex mixture analysis requires high-efficiency chromatography columns. Although reversed phase liquid chromatography (RPLC) is the dominant approach for such mixtures, hydrophilic interaction liquid chromatography (HILIC) is an important complement to RPLC by enabling the separation of polar compounds. Chromatography theory predicts that small particles and long columns will yield high efficiency; however, little work has been done to prepare HILIC columns longer than 25 cm packed with sub-2 µm particles. In this work, we tested the slurry packing of 75 cm long HILIC columns with 1.7 µm bridged-ethyl-hybrid amide HILIC particles at 2,100 bar (30,000 PSI). Acetonitrile, methanol, acetone, and water were tested as slurry solvents, with acetonitrile providing the best columns. Slurry concentrations of 50-200 mg/mL were assessed, and while 50-150 mg/mL provided comparable results, the 150 mg/mL columns provided the shortest packing times (9 min). Columns prepared using 150 mg/mL slurries in acetonitrile yielded a reduced minimum plate height (hmin) of 3.3 and an efficiency of 120,000 theoretical plates for acenaphthene, an unretained solute. Para-toluenesulfonic acid produced the lowest hmin of 1.9 and the highest efficiency of 210,000 theoretical plates. These results identify conditions for producing high-efficiency HILIC columns with potential applications to complex mixture analysis.


Subject(s)
Acetonitriles , Benzenesulfonates , Hydrophobic and Hydrophilic Interactions , Acetonitriles/chemistry , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Chromatography, Reverse-Phase/instrumentation , Methanol/chemistry , Solvents/chemistry , Acetone/chemistry , Particle Size , Pressure , Water/chemistry
8.
J Hazard Mater ; 470: 134154, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38581871

ABSTRACT

In this work, a multiplexed colorimetric strategy was initiated for simultaneous and fast visualization of dyes using low-cost and easy-to-prepare indicator papers as sorbents. Response surface methodology (RSM) was employed to model statistically and optimize the process variables for dyes extraction and colorimetric assays. Multiplexed colorimetry was realized by virtue of synchronous color alignments from different dimensions of multiple dyes co-stained colorimetric cards under RSM-optimized conditions, and smartphone-based image analysis was subsequently performed from different modes to double-check the credibility of colorimetric assays. As concept-to-proof trials, simultaneous visualization of dyes in both beverages and simulated dye effluents was experimentally proved with results highly matched to HPLC or spiked amounts at RSM-predicted staining time as short as 50 s ∼3 min, giving LODs as low as 0.97 ± 0.22/0.18 ± 0.08 µg/mL (tartrazine/brilliant blue) for multiplexed colorimetry, which much lower than those obtained by single colorimetry. Since this is the first case to propose such a RSM-guided multiplexed colorimetric concept, it will provide a reference for engineering of other all-in-one devices which can realize synchronous visualization applications within limited experimental steps.


Subject(s)
Colorimetry , Coloring Agents , Smartphone , Colorimetry/methods , Coloring Agents/chemistry , Coloring Agents/analysis , Food Contamination/analysis , Tartrazine/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Image Processing, Computer-Assisted/methods , Benzenesulfonates/chemistry , Beverages/analysis
9.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614151

ABSTRACT

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Subject(s)
Antimitotic Agents , Cell Proliferation , Colchicine , Drug Screening Assays, Antitumor , Humans , Colchicine/chemistry , Colchicine/metabolism , Colchicine/pharmacology , Binding Sites , Antimitotic Agents/pharmacology , Antimitotic Agents/chemistry , Antimitotic Agents/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Cell Line, Tumor , Benzenesulfonates/chemistry , Benzenesulfonates/pharmacology , Benzenesulfonates/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tubulin/metabolism , Molecular Structure , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Pyridines/chemical synthesis , Dose-Response Relationship, Drug
10.
Environ Sci Pollut Res Int ; 31(19): 28525-28537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558348

ABSTRACT

Herein, novel catalysts of Fe-containing zeolite-A (Fe/zeolite-A) were synthesized by exchanging iron ions into zeolite-A framework, and short-chain organic acids (SCOAs) were employed as chelating agents. Reactive Brilliant Blue KN-R (KN-R) was used as a model pollutant to evaluate the performance of these catalysts based on the heterogeneous Fenton reaction. The results showed that Fe-OA/3A, which applied zeolite-3A as the supporter and oxalic as the chelating agent, presented the most prominent KN-R decolorization efficiency. Under the initial pH of 2.5, 0.4 mM KN-R could be totally decolorized within 20 min. However, the mineralization efficiency of KN-R was only 58.2%. Therefore, anthraquinone dyes were introduced to modify zeolite-3A. As a result, the mineralization efficiency of KN-R was elevated to 92.7% when using Alizarin Violet (AV) as the modifier. Moreover, the modified catalysts exhibited excellent stability, the KN-R decolorization efficiency could be maintained above 95.0% within 20 min after operating for nine cycles. The mechanism revealed that the Fe(II)/Fe(III) cycle was accelerated by AV-modified catalyst thus prompting the KN-R decolorization in Fenton-like system. These findings provide new insights for preparing catalysts with excellent activity and stability for dye wastewater treatment.


Subject(s)
Iron , Zeolites , Zeolites/chemistry , Iron/chemistry , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Anthraquinones/chemistry , Benzenesulfonates/chemistry , Hydrogen Peroxide/chemistry
11.
Environ Res ; 252(Pt 1): 118834, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38565414

ABSTRACT

Iron-doped biochar has been widely used as an adsorbent to remove contaminants due to the high adsorption performance, but it still suffers from complicated preparation methods, unstable iron loading, unsatisfactory specific surface area, and uneven distribution of active sites. Here, a novel magnetic porous biochar (FeCS800) with nanostructure on surface was synthesized by one-pot pyrolysis method of corn straw with K2FeO4, and used in orange G (OG) and tetracycline (TC) adsorption. FeCS800 exhibited outstanding adsorption capacities for OG and TC after K2FeO4 activation and the adsorption data were fitted satisfactorily to Langmuir isotherm and Pseudo-second-order kinetic model. The maximum adsorption capacities of FeCS800 for OG and TC were around 303.03 mg/g and 322.58 mg/g, respectively, at 25 °C and pH 7.0, which were 16.27 and 24.61 times higher than that before modification. Thermodynamic studies showed that the adsorption of OG/TC by FeCS800 were thermodynamically favorable and highly spontaneous. And the adsorption capacity of OG and TC by FeCS800 remained 77% and 81% after 5 cycles, respectively, indicating that FeCS800 had good stability. The outstanding adsorption properties and remarkable reusability of FeCS800 show its great potential to be an economic and environmental adsorbent in contaminants removal.


Subject(s)
Charcoal , Tetracycline , Water Pollutants, Chemical , Adsorption , Tetracycline/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Porosity , Azo Compounds/chemistry , Benzenesulfonates/chemistry , Kinetics , Thermodynamics
12.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612737

ABSTRACT

Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.


Subject(s)
Benzenesulfonates , Lipid A , Lipopolysaccharides , Humans , Bacteria , Endotoxins , Glycolipids
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124118, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38461562

ABSTRACT

As the most universally used anionic surfactant, ubiquitous existence and accumulation of sodium dodecyl benzene sulfonate (SDBS) in the environment has inevitably imposed the associated harmful impacts to plants due to producing excessive reactive oxygen species. However, the underlying hazardous mechanism of the SDBS-induced oxidative stress to plants at molecular level has never been reported. Here, the molecular interaction of AtPrxQ with SDBS was explored for the first time. The intrinsic fluorescence of AtPrxQ was quenched based on static quenching, and a single binding site of AtPrxQ towards SDBS and the potential interaction forces driven by hydrophobic interactions were predicted from thermodynamic parameters and molecular docking results. Besides, the interaction pattern of AtPrxQ and SDBS was also confirmed by the bio-layer interferometry with moderate binding affinity. Moreover, the structural changes of AtPrxQ along with the destructions of the protein framework and the hydrophobic enhancement around aromatic amino acids were observed upon binding with SDBS. At last, the toxic effects produced by SDBS on peroxidase activities and Arabidopsis seedlings growth were also characterized. Thus this work may provide insights on the molecular interactions of AtPrxQ with SDBS and assessments on the biological hazards of SDBS to plants even for the agriculture.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Molecular Docking Simulation , Surface-Active Agents/chemistry , Oxidative Stress , Antioxidants/pharmacology , Benzenesulfonates/chemistry
14.
Mar Pollut Bull ; 201: 116204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430678

ABSTRACT

Protozoan ciliates represent a common biological contaminant during microalgae cultivation, which will lead to a decline in microalgae productivity. This study investigated the effectiveness of sodium dodecyl benzene sulfonate (SDBS) in controlling ciliate populations within microalgae cultures. SDBS concentrations of 160 mg/L and 100 mg/L were found to effectively manage the representative species of ciliates contamination by Euplotes vannus and Uronema marinum during the cultivation of Synechococcus and Chlorella, and the growth vitality of microalgae has been restored. Additionally, SDBS at these concentrations reduced oxidative stress resistance and induced membrane damage to remove biological pollutants by modulating enzyme activity, affecting lipid, energy, amino acid metabolism pathways, and processes such as translation and protein folding. This research provides insights into the mechanisms through which SDBS effectively combats protozoan ciliates during the microalgal cultivation. This contributes to reduce biological pollution, ensure the overall productivity and healthy and sustainable management of microalgae ecosystems.


Subject(s)
Benzenesulfonates , Chlorella , Ciliophora , Microalgae , Pesticides , Ecosystem , Biomass
15.
Environ Sci Pollut Res Int ; 31(19): 27817-27828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38517631

ABSTRACT

Water and several chemicals, including dyestuffs, surfactants, acids, and salts, are required during textile dyeing processes. Surfactants are harmful to the aquatic environment and induce several negative biological effects in exposed biota. In this context, the present study aimed to assess acute effects of five surfactants, comprising anionic and nonionic classes, and other auxiliary products used in fiber dyeing processes to aquatic organisms Vibrio fischeri (bacteria) and Daphnia similis (cladocerans). The toxicities of binary surfactant mixtures containing the anionic surfactant dodecylbenzene sulfonate + nonionic fatty alcohol ethoxylate and dodecylbenzene sulfonate + nonionic alkylene oxide were also evaluated. Nonionic surfactants were more toxic than anionic compounds for both organisms. Acute nonionic toxicity ranged from 1.3 mg/L (fatty alcohol ethoxylate surfactant) to 2.6 mg/L (ethoxylate surfactant) for V. fischeri and from 1.9 mg/L (alkylene oxide surfactant) to 12.5 mg/L (alkyl aryl ethoxylated and aromatic sulfonate surfactant) for D. similis, while the anionic dodecylbenzene sulfonate EC50s were determined as 66.2 mg/L and 19.7 mg/L, respectively. Both mixtures were very toxic for the exposed organisms: the EC50 average in the anionic + fatty alcohol ethoxylate mixture was of 1.0 mg/L ± 0.11 for V. fischeri and 4.09 mg/L ± 0.69 for D. similis. While the anionic + alkylene oxide mixture, EC50 of 3.34 mg/L for D. similis and 3.60 mg/L for V. fischeri. These toxicity data suggested that the concentration addition was the best model to explain the action that is more likely to occur for mixture for the dodecylbenzene sulfonate and alkylene oxide mixtures in both organisms. Our findings also suggest that textile wastewater surfactants may interact and produce different responses in aquatic organisms, such as synergism and antagonism. Ecotoxicological assays provide relevant information concerning hazardous pollutants, which may then be adequately treated and suitably managed to reduce toxic loads, associated to suitable management plans.


Subject(s)
Aliivibrio fischeri , Benzenesulfonates , Daphnia , Surface-Active Agents , Wastewater , Water Pollutants, Chemical , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Wastewater/chemistry , Aliivibrio fischeri/drug effects , Animals , Daphnia/drug effects , Ecotoxicology , Textiles
16.
Chemosphere ; 356: 141747, 2024 May.
Article in English | MEDLINE | ID: mdl-38556178

ABSTRACT

The present study aims to establish NaOCl as a potential oxidant in the COD removal of Acid Orange 8 using UVC light (λ = 254 nm) and Fe2+ as catalysts. The different systems used in this study are NaOCl, Fe2+/NaOCl, UV/NaOCl, and Fe2+/NaOCl/UV. All these process were found to be operative in acidic, neutral and basic medium. The initial decolorisation and COD removal efficiency (CODeff) for different systems follow the order: Fe2+/NaOCl/UV > UV/NaOCl > Fe2+/NaOCl > NaOCl. Nevertheless, NaOCl can alone be used in the treatment process considering its CODeff to the extent of 95% in 90 min. The change in pH of the solutions after treatment is an important observation - for non-UV systems it remained around 11.0 and 7.0 in other systems. Thus, UV systems are environmental benign. The effect of various anions on CODeff was tested in Fe2+ systems. Presence of F- ions were found to accelerate CODeff in both the systems. However, the effect is more pronounced in Fe2+/ NaOCl/UV, where complete CODeff was observed in the presence of 9.0 gl-1 of F-. The COD removal kinetics for all systems was studied using zero-order, first-order, second-order, and BMG kinetic models. BMG model was found to be more suitable among all and is in good agreement with CODeff of all systems. It is, therefore, established that NaOCl can serve as a powerful oxidant in the advanced oxidation process.


Subject(s)
Azo Compounds , Iron , Oxidants , Sodium Hypochlorite , Ultraviolet Rays , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Catalysis , Oxidants/chemistry , Sodium Hypochlorite/chemistry , Iron/chemistry , Azo Compounds/chemistry , Kinetics , Biological Oxygen Demand Analysis , Benzenesulfonates/chemistry , Hydrogen-Ion Concentration , Waste Disposal, Fluid/methods , Oxidation-Reduction
17.
J Oleo Sci ; 73(4): 593-601, 2024.
Article in English | MEDLINE | ID: mdl-38556292

ABSTRACT

Infiltration of binary solution of hexane and ethanol into chromatography paper associated with their evaporation was found to generate unexpected initial rapid advancement of wicking front followed by its receding and readvancing in our previous research. In the present study, paper chromatography development of hydrophobic dye, Sudan III, and hydrophilic dye, Acid Blue 9, was carried out using binary solutions of hexane and ethanol in open environment, allowing the developing solvent been evaporated. Sudan III was developed with initial rapid advancing wicking front, while Acid Blue 9 was scarcely developed. On the other hand, Acid Blue 9 was developed with the readvancing second wicking front, while the spot of Sudan III scarcely migrated. Thus, the unexpected illusional phenomenon, overtaking the spot of Sudan III by the spot of Acid Blue 9, was observed. The readvancement of the second wicking front was found to be enhanced as increasing the relative humidity in the environment. Surface temperature of the chromatography paper was measured during the chromatographic development in open environment to show that it became lower than the dew point when the experiments were carried out in relatively high humidity. Solubility of Sudan III in a binary solution of ethanol and water remarkably decreased as increasing the content of water. It was thus suggested that the water vapor condensation to induce water mixing into the mobile phase to decrease the solubility of Sudan III to inhibit its chromatographic development to realize the illusional spot overtaking of dyes of their chromatographic development associated with solvent evaporation.


Subject(s)
Azo Compounds , Benzenesulfonates , Coloring Agents , Hexanes , Coloring Agents/analysis , Solvents , Chromatography, High Pressure Liquid/methods , Ethanol
18.
Water Environ Res ; 96(3): e11011, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477462

ABSTRACT

The current study focuses on the degradation of Procion brilliant yellow H-E6G, an azo dye, using ultrasonic and hydrodynamic cavitation (HC), evaluating the impact of various parameters on the extent of degradation. The use of only ultrasound showed less oxidation capacity as indicated by only 19.1% degradation at an optimized power of 140 W, pH of 2.5, temperature of 40°C, and initial dye concentration of 15 ppm. The effectiveness of hybrid approaches involving US + H2 O2 , US + Fenton, and US + H2 O2 + potassium persulfate (KPS) was subsequently evaluated under optimized conditions. A notable enhancement in decolorization extent was observed for combined operations, including US + H2 O2 , US + Fenton, and US + H2 O2 + KPS (dual oxidant scheme) with the actual decolorization extents as 80.6%, 85%, and 92.2% respectively. An optimized scheme of US + H2 O2 + KPS was also utilized to decolorize the dye at a pilot scale using a US flow cell and also an HC reactor that yielded 91.8% and 88% reductions in initial concentration. The dye decolorization was elucidated to follow first-order kinetics for all the individual and combination approaches. The obtained values of the rate constants were also utilized for the evaluation of the synergistic index. A toxicity analysis was also performed on the dye, both before and following treatment, utilizing two bacterial strains. A comparative analysis of various treatment approaches has been presented focusing on factors such as cavitational yield, operational expenses, and energy requirements. The study elucidated that the combination of US + H2 O2 + KPS effectively removes Procion brilliant yellow H-E6G giving 92.2% as the maximum degradation at an operating cost of 0.1862 $/L. PRACTITIONER POINTS: First depiction of cavitative degradation of Procion brilliant yellow H-E6G Optimizing the equipment operating parameters and chemical oxidants Demonstration of optimized treatment scheme at pilot scale Evaluation of various approaches based on synergy and costs of treatment US + H2 O2  + KPS is the best approach for dye degradation.


Subject(s)
Azo Compounds , Benzenesulfonates , Hydrogen Peroxide , Oxidants , Hydrodynamics , Ultrasonics
19.
Bioorg Chem ; 146: 107299, 2024 May.
Article in English | MEDLINE | ID: mdl-38547722

ABSTRACT

We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.


Subject(s)
Antineoplastic Agents , Neoplasms , Chick Embryo , Humans , Rats , Mice , Animals , Benzenesulfonates , Colchicine/metabolism , Cell Proliferation , Binding Sites , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Tubulin/metabolism , Cell Line, Tumor , Tubulin Modulators/pharmacology
20.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542183

ABSTRACT

Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1ß) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.


Subject(s)
Benzenesulfonates , Colitis , Dinitrofluorobenzene/analogs & derivatives , Inflammatory Bowel Diseases , Humans , Mice , Animals , Dinitrobenzenes , Polyphenols/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammatory Bowel Diseases/pathology , Antioxidants/adverse effects , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...