Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.158
Filter
1.
J Environ Manage ; 362: 121342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830282

ABSTRACT

In this study, Ag/Bi2O3/Bi5O7I with s-scheme heterostructures were successfully synthesized in situ by nano-silver modification of CUA-17 and halogenated hydrolysis.The growth rate of Bi2O3 crystals was effectively controlled by adjusting the doping amount of Ag, resulting in the formation of a facet-coupling heterojunctions. Through the investigation of the microstructure and compositional of catalysts, it has been confirmed that an intimate facet coupling between the Bi2O3 (120) facet and the Bi5O7I (312) facet, which provides robust support for charge transfer. Under visible light irradiation, the AgBOI.3 heterojunction photocatalyst exhibited an outstanding degradation rate of 98.2% for Bisphenol A (BPA) with excellent stability. Further characterization using optical, electrochemical, impedance spectroscopy, and electron spin resonance techniques revealed significantly enhanced efficiency in photogenerated charge separation and transfer, and confirming the s-scheme structure of the photocatalyst. Density functional theory calculations was employed to elucidate the mechanism of BPA degradation and the degradation pathway of BPA was investigated by LC-MS. Finally, the toxicity of the degradation intermediates was evaluated using T.E.S.T software.


Subject(s)
Benzhydryl Compounds , Bismuth , Phenols , Silver , Phenols/chemistry , Benzhydryl Compounds/chemistry , Bismuth/chemistry , Catalysis , Silver/chemistry
2.
Sci Rep ; 14(1): 12824, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834728

ABSTRACT

This study examines the presence of bisphenol A (BPA), S (BPS), F (BPF), and M (BPM) in various recycled plastics readily available on the market (LDPE, HDPE, PET, and PP), in light of European Food Safety Authority (EFSA) limits. Twenty samples of different origin are analyzed, cleaning treatments are applied, and the migration potential of these bisphenols into food is studied. BPM is absent in all samples, but a post-consumer recycled LDPE sample reveals high bisphenol concentrations, raising concerns, reaching 8540 ng/g, 370 ng/g, and 29 ng/g of BPA, BPS, and BPF, respectively. Migration tests show substantial migration of these contaminants into food simulants. Using a cleaning treatment with polyethylene glycol (PEG 400) reduces BPA in LDPE, HDPE, PP, and PET samples by 95%, 99%, 97% and 28%, respectively, highlighting the importance of cleaning treatments across various polymers in plastic recycling. These findings not only protect food safety but addressing environmental challenges associated with plastic recycling.


Subject(s)
Benzhydryl Compounds , Phenols , Plastics , Polyethylene Glycols , Recycling , Phenols/analysis , Phenols/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Plastics/chemistry , Polyethylene Glycols/chemistry , Food Contamination/analysis , Sulfones
3.
Chemosphere ; 358: 142204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704044

ABSTRACT

Bisphenol A (BPA) is a typical endocrine disruptor, which can be used as an industrial raw material for the synthesis of polycarbonate and epoxy resins, etc. Recently, BPA has appeared on the list of priority new pollutants for control in various countries and regions. In this study, phenolic resin waste was utilized as a multi-carbon precursor for the electrocatalytic cathode and loaded with cobalt/nitrogen (Co/N) on its surface to form qualitative two-dimensional carbon nano-flakes (Co/NC). The onset potentials, half-wave potentials, and limiting current densities of the nitrogen-doped composite carbon material Co/NC in oxygen saturated 0.5 mol H2SO4 were -0.08 V, -0.61 V, and -0.41 mA cm-2; and those of alkaline conditions were -0.65 V, -2.51 V, and -0.38 mA cm-2, and the corresponding indexes were improved compared with those of blank titanium electrodes, which indicated that the constructed nitrogen-doped composite carbon material Co/NC was superior in oxygen reduction ability. The catalysis by metallic cobalt as well as the N-hybridized active sites significantly improved the efficiency of electrocatalytic degradation of BPA. In the electro-Fenton system, the yield of hydrogen peroxide generated by cathodic reduction of oxygen was 4.012 mg L-1, which effectively promoted the activation of hydroxyl radicals. The removal rate of BPA was above 95% within 180 min. This work provides a new insight for the design and development of novel catalyst to degrade organic pollutants.


Subject(s)
Benzhydryl Compounds , Cobalt , Nitrogen , Phenols , Benzhydryl Compounds/chemistry , Phenols/chemistry , Cobalt/chemistry , Catalysis , Nitrogen/chemistry , Water Pollutants, Chemical/chemistry , Electrodes , Carbon/chemistry , Hydrogen Peroxide/chemistry , Electrochemical Techniques/methods , Endocrine Disruptors/chemistry
4.
Environ Sci Pollut Res Int ; 31(24): 35992-36012, 2024 May.
Article in English | MEDLINE | ID: mdl-38744765

ABSTRACT

Contaminations by pharmaceuticals, personal care products, and other emerging pollutants in water resources have become a seriously burgeoning issue of global concern in the first third of the twenty-first century. As societal reliance on pharmaceuticals continues to escalate, the inadvertent introduction of these substances into water reservoirs poses a consequential environmental threat. Therefore, the aim of this study was to investigate reductive degradation, particularly, catalytic hydrogenation regarding model pollutants such as diclofenac (DCF), ibuprofen (IBP), 17α-ethinylestradiol (EE2), or bisphenol-A (BPA), respectively,  in aqueous solutions at lab scale. Iron bimetals (zero valent iron, ZVI, and copper, Cu, or nickel, Ni) as well as zero valent magnesium (Mg, ZVM) in combination with  rhodium, Rh, or palladium, Pd, as hydrogenation catalysts (HK), were investigated. Studies were executed through various short-term batch experiments, with multiple sample collections, over a total range of 120 min. The results indicated that DCF was attenuated at over 90 % when exposed to Fe-Cu or a Fe-Ni bimetal (applied as a single model pollutant). However, when DCF was part of a mixture alongside with IBP, EE2, and BPA, the attenuation efficacy decreased to 79 % with Fe-Cu and 23 % with Fe-Ni. Conversely, both IBP and BPA exhibit notably low attenuation levels with both bimetals, less than 50 %, both deployed as single substances or in mixtures. No reaction (degradation) products could be identified employing LC-MS, but sometimes a release of the parent pollutant when applying an acetic acid buffer could be noted to a certain extent, suggesting adsorption processes on corrosion products such as iron hydroxide and/or oxides. Surprisingly, Mg in combination with Rh (Rh-HK) or Pd (Pd-HK) showed a significantly rapid decrease in the concentrations of DCF, EE2, and BPA, in part up to approximately 100 %, that is, within a few minutes only in part due to hydrogenation degradation reactions (related reaction products could actually be identified by LC-MS; adsorption processes were not observed here). Moreover, kinetic modeling of the DCF degradation with Mg-Rh-HK was conducted at different temperatures (15 °C, 20 °C, 25 °C, 35 °C) and varied initial concentrations (2.5 mg/L, 5.0 mg/L, 7.5 mg/L, 10.0 mg/L). The outcomes prove that the degradation of DCF at the Rh-HK's surface followed a modified first-order kinetics, most probably by catalytic hydrodehalogenation and subsequent hydrogenation of the aromatic moieties (molecular hydrogen was provided by the corrosion of Mg). From the determined reaction rate constants at four different temperatures, the activation energy was estimated to be 59.6 kJ/mol by means of the Arrhenius equation what is in good agreement with similar results reported in the literature. This coupled hydrodehalogenation and hydrogenation approach may be upscaled into a new promising technical process for comprehensively removing such pharmaceuticals and similar pollutants in sewage plants in a single step, furthermore, even in combination with adsorption by activated carbon and/or ozonation which have already been established at some sewage plants in Switzerland and Germany recently.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Catalysis , Pharmaceutical Preparations/chemistry , Magnesium/chemistry , Hydrogen/chemistry , Benzhydryl Compounds/chemistry , Metals/chemistry , Phenols
5.
Food Chem ; 453: 139631, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759444

ABSTRACT

To ensure food safety and environmental protection, it is crucial to rapidly identify and remove bisphenol A (BPA), a plasticizer commonly used in the inner lining of food containers and beverage packaging. Here, a photocatalytic fuel cell (PFC)-integrated self-powered photoelectrochemical (PEC) sensor is constructed. Unlike conventional single PEC or PFC sensors, this PFC-integrated PEC sensor relies on not only the difference in Fermi energy levels between photoanode and photocathode but also charge accumulation resulted from the oxidation of BPA by photogenerated holes. Consequently, this sensor achieved a remarkable maximum output power (Pmax) of 8.58 µW cm-2, as well as a high sensitivity, wide linear detection range (0.1-200 µM), low detection limit (0.05 µM), great stability, reproducibility, and real sample detection capability. This work integrates PFC and PEC technologies successfully for the rapid identification and efficient removal of BPA.


Subject(s)
Benzhydryl Compounds , Electrochemical Techniques , Phenols , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Phenols/chemistry , Electrochemical Techniques/instrumentation , Catalysis , Limit of Detection , Food Packaging/instrumentation , Food Contamination/analysis , Photochemical Processes , Oxidation-Reduction , Photolysis
6.
Talanta ; 275: 126174, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705021

ABSTRACT

To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.


Subject(s)
Biological Assay , Biological Assay/methods , Humans , Endocrine Disruptors/analysis , Endocrine Disruptors/pharmacology , False Positive Reactions , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Benzhydryl Compounds/analysis , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/chemistry , Androgens/analysis , Androgens/metabolism , Androgen Antagonists/analysis , Androgen Antagonists/pharmacology
7.
J Chromatogr A ; 1727: 465000, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38763086

ABSTRACT

Design and preparation of fiber coatings with excellent electrochemical performance and high polarity is significant for efficient extraction of polar targets in electro-enhanced solid-phase microextraction (EE-SPME). In this work, a combination strategy for structure regulation of covalent organic framework (COF) was proposed to fabricate a nitrogen-rich thiocarbamide linked COF coating (Thiocarbamide-TZ-DHTP) via molecular design and post-synthetic thiocarbamide conversion. The prepared COF coating possesses a large number of O, N, and S functional groups, which not only endow the coating with higher polarity but also significantly enhance its electrochemical performance. The COF coating was used for EE-SPME of polar bisphenols (BPs), demonstrating excellent enrichment efficiency and durability. Subsequently, coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS), a sensitive method was developed for determination of trace BPs. The established method possess wide linear ranges (2.0-800.0 ng L-1), good correlation coefficients (0.9985-0.9994) and low detection limits (0.1-2.0 ng L-1). Moreover, the established method had been successfully applied to detection of trace BPs in tea beverage with satisfactory recoveries (81.6 % to 118.6 %). This research provides a feasible pathway for preparing COF coating with excellent electrochemical performance and high polarity for EE-SPME.


Subject(s)
Gas Chromatography-Mass Spectrometry , Limit of Detection , Metal-Organic Frameworks , Nitrogen , Phenols , Solid Phase Microextraction , Tandem Mass Spectrometry , Solid Phase Microextraction/methods , Phenols/analysis , Phenols/isolation & purification , Phenols/chemistry , Gas Chromatography-Mass Spectrometry/methods , Metal-Organic Frameworks/chemistry , Tandem Mass Spectrometry/methods , Nitrogen/chemistry , Benzhydryl Compounds/analysis , Benzhydryl Compounds/isolation & purification , Benzhydryl Compounds/chemistry , Electrochemical Techniques/methods , Reproducibility of Results , Tea/chemistry
8.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691228

ABSTRACT

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Subject(s)
Benzhydryl Compounds , Charcoal , Phenols , Wastewater , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Wastewater/chemistry , Waste Disposal, Fluid/methods
9.
Environ Res ; 252(Pt 3): 119015, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692423

ABSTRACT

Carbon material modification and defect engineering are indispensable for bolstering the photocatalytic effectiveness of bismuth halide oxide (BiOX). In this study, a novel porous and defect-rich Ar-CB-2 photocatalyst was synthesized for emerging pollutants degradation. Leveraging the interfacial coupling effect of multi-walled carbon nanotubes (MWCNTs), we expanded the absorption spectrum of BiOI nanosheets and significantly suppressed the recombination of charge carriers. Introducing defects via Argon (Ar) plasma-etching further bolstered the adsorption efficacy and electron transfer properties of photocatalyst. In comparison to the pristine BiOI and CB-2, the Ar-CB-2 photocatalyst demonstrated superior photodegradation efficiency, with the first-order reaction rates for the photodegradation of tetracycline (TC) and bisphenol A (BPA) increasing by 2.83 and 4.53 times, respectively. Further probe experiments revealed that the steady-state concentrations of ·O2- and 1O2 in the Ar-CB-2/light system were enhanced by a factor of 1.67 and 1.28 compared to CB-2/light system. This result confirmed that the porous and defect-rich structure of Ar-CB-2 inhibited electron-hole recombination and boosted photocatalyst-oxygen interaction, swiftly transforming O2 into active oxygen species, thus accelerating their production. Furthermore, the possible degradation pathways for TC and BPA in the Ar-CB-2/light system were predicted. Overall, these findings offered a groundbreaking approach to the development of highly effective photocatalysts, capable of swiftly breaking down emerging pollutants.


Subject(s)
Argon , Benzhydryl Compounds , Bismuth , Nanotubes, Carbon , Phenols , Photolysis , Bismuth/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Porosity , Phenols/chemistry , Benzhydryl Compounds/chemistry , Argon/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Environmental Pollutants/chemistry , Photochemical Processes , Plasma Gases/chemistry
10.
Toxicol In Vitro ; 98: 105838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710238

ABSTRACT

Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Molecular Docking Simulation , Phenols , Receptors, Androgen , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Humans , Computer Simulation , Sulfones/toxicity , Sulfones/chemistry , Androgens/chemistry
11.
Chemosphere ; 359: 142318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735495

ABSTRACT

The effective removal of micropollutants by water treatment technologies remains a significant challenge. Herein, we develop a CoFe layered double hydroxide (CoFeLDH) catalytic membrane for peroxymonosulfate (PMS) activation to achieve efficient micropollutant removal with improved mass transfer rate and reaction kinetics. This study found that the CoFeLDH membrane/PMS system achieved an impressive above 98% degradation of the probe chemical ranitidine at 0.1 mM of PMS including five more micropollutants (Sulfamethoxazole, Ciprofloxacin, Carbamazepine, Acetaminophen and Bisphenol A) at satisfactory level (above 80%). Moreover, significant improvements in water flux and antifouling properties were observed, marking the membrane as a specific advancement in the removal of membrane fouling in water purification technology. The membrane demonstrated consistent degradation efficiency for several micropollutants and across a range of pH (4-9) as well as different anionic environments, thereby showing it suitability for scale-up application. The key role of reactive species such as SO4•-, and O2• - radicals in the degradation process was elucidated. This is followed by the confirmation of the occurrence of redox cycling between Co and Fe, and the presence of CoOH+ that promotes PMS activation. Over the ten cycles, the membrane could be operated with a flux recovery of up to 99.8% and maintained efficient performance over 24 h continuous operation. Finally, the efficiency in degrading micropollutants, coupled with reduced metal leaching, makes the CoFeLDH membrane as a promising technology for application in water treatment.


Subject(s)
Hydroxides , Membranes, Artificial , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Water Pollutants, Chemical/chemistry , Hydroxides/chemistry , Phenols/chemistry , Peroxides/chemistry , Benzhydryl Compounds/chemistry , Carbamazepine/chemistry , Ranitidine/chemistry , Acetaminophen/chemistry , Sulfamethoxazole/chemistry , Ciprofloxacin/chemistry , Catalysis , Cobalt/chemistry , Oxidation-Reduction
12.
Environ Res ; 255: 119192, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38777299

ABSTRACT

The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.


Subject(s)
Alginates , Benzhydryl Compounds , Phenols , Adsorption , Phenols/chemistry , Alginates/chemistry , Benzhydryl Compounds/chemistry , Graphite/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Hypocrea/chemistry , Coal Ash/chemistry
13.
ACS Biomater Sci Eng ; 10(6): 3727-3738, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38804015

ABSTRACT

The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.


Subject(s)
Molecular Dynamics Simulation , Polyurethanes , Ligands , Polyurethanes/chemistry , Stereoisomerism , Benzhydryl Compounds/chemistry , Phenols/chemistry
14.
J Chromatogr A ; 1728: 465032, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38815479

ABSTRACT

Molecularly imprinted polymer with water-compatibility for effective separation and enrichment of targeted trace pollutants from complicated matrix has captured extensive attention in terms of their high selectivity and matrix compatibility. This study focuses on modified ß-cyclodextrin is used as a hydrophilic functional monomer to develop magnetic molecularly imprinted polymers (MMIPs). MMIPs were prepared using Fe3O4 nanoparticles as carriers and bisphenol A (BPA) as templates using a two-step fixation strategy and surface imprinting technology. The structural characteristic and binding properties of the prepared MMIPs were thoroughly studied. The MMIPs exhibited high crystallinity, high adsorption capacity, fast rebinding rate, remarkable selectivity and distinguish reusability. In addition, through magnetic solid-phase extraction separation technology and high-performance liquid chromatography ultraviolet quantitative detection technology, MMIPs are used for selective enrichment and detection of BPA in complex media such as environmental water and milk. This work provides a new route to construct the hydrophilic molecularly imprinted materials and a new sight on developing more effective sample pretreatment strategies for monitoring targeted pollution in complicated aqueous media.


Subject(s)
Benzhydryl Compounds , Hydrophobic and Hydrophilic Interactions , Molecularly Imprinted Polymers , Phenols , Solid Phase Extraction , Water Pollutants, Chemical , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Phenols/analysis , Phenols/chemistry , Molecularly Imprinted Polymers/chemistry , Solid Phase Extraction/methods , Adsorption , Chromatography, High Pressure Liquid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Molecular Imprinting , Milk/chemistry , Magnetite Nanoparticles/chemistry , Animals , beta-Cyclodextrins/chemistry , Limit of Detection
15.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702036

ABSTRACT

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Subject(s)
Apoptosis , Benzhydryl Compounds , Granulosa Cells , Mitochondria , Phenols , Reactive Oxygen Species , Humans , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Cell Survival/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Sulfones/toxicity , Sulfones/chemistry , Cell Line , Calcium/metabolism , Fluorocarbons
16.
J Environ Sci (China) ; 143: 1-11, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644008

ABSTRACT

Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO2/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO2/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca. 100% within 60 min under visible irradiation) in a wide pH range of 3.0-7.8, which is significantly higher than that of the pristine schwertmannite (ca. 74.5%) or N-TiO2 (ca. 10.8%). In this photo-Fenton system, the efficient degradation of BPA is mainly attributed to the oxidation by hydroxyl radical (•OH) and singlet oxygen (1O2). Moreover, the possible catalytic mechanisms and reaction pathway of BPA degradation are systematically investigated based on analytical and photoelectrochemical analyses. This work not only provides a feasible means for the development of novel heterogeneous photo-Fenton catalysts, but also lays a theoretical foundation for the potential application of mineral-based materials in wastewater treatment.


Subject(s)
Benzhydryl Compounds , Iron Compounds , Nanocomposites , Nitrogen , Phenols , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Benzhydryl Compounds/chemistry , Phenols/chemistry , Nanocomposites/chemistry , Water Pollutants, Chemical/chemistry , Nitrogen/chemistry , Catalysis , Iron/chemistry , Hydrogen Peroxide/chemistry , Endocrine Disruptors/chemistry , Water Purification/methods
17.
Chemosphere ; 357: 142063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636912

ABSTRACT

Rapid and sensitive analysis of bisphenol A (BPA) is essential for preventing health risks to humans and animals. Hence, a signal-amplified electrochemical aptasensor without repetitive polishing and modification of working electrode was developed for BPA using Au-decorated magnetic reduced graphene oxide (Au/MrGO)-based recognition probe (RP) and DNA nanospheres (DNS)-based signal probe (SP) cooperative signal amplification. The DNS served as a signal molecule carrier and signal amplifier, while Au/MrGO acted as a signal amplifier and excellent medium for magnetic adsorption and separation. Moreover, utilizing the excellent magnetic properties of Au/MrGO eliminates the need for repetitive polishing and multi-step direct modification of the working electrode while ensuring that all detection processes take place in solution and that used Au/MrGO can be easily recycled. The proposed aptasensor exhibited not only good stability and selectivity, but also excellent sensitivity with a limit of detection (LOD) of 8.13 fg/mL (S/N = 3). The aptasensor's practicality was proven by spiking recovery tests on actual water samples and comparing the results with those detected by HPLC. The excellent sensitivity and selectivity make this aptasensor an alternative and promising avenue for rapid detection of BPA in environmental monitoring.


Subject(s)
Aptamers, Nucleotide , Benzhydryl Compounds , Biosensing Techniques , Electrochemical Techniques , Electrodes , Gold , Graphite , Limit of Detection , Nanospheres , Phenols , Graphite/chemistry , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Phenols/analysis , Phenols/chemistry , Gold/chemistry , Nanospheres/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Water Pollutants, Chemical/analysis , DNA/chemistry
18.
Water Res ; 256: 121574, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593606

ABSTRACT

The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 µm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.


Subject(s)
Plastics , Plastics/chemistry , Protein Corona/chemistry , Microplastics/chemistry , Water Pollutants, Chemical/chemistry , Phenols/chemistry , Serum Albumin, Bovine/chemistry , Benzhydryl Compounds/chemistry , Nanoparticles/chemistry
19.
Chemosphere ; 356: 141941, 2024 May.
Article in English | MEDLINE | ID: mdl-38588897

ABSTRACT

Bisphenol A (BPA), a widely recognized endocrine disrupting compound, has been discovered in drinking water sources/finished water and domestic wastewater influent/effluent. Numerous studies have shown photocatalytic and electrocatalytic oxidation to be very effective for the removal of BPA, particularly in the addition of graphene/graphene oxide (GO)-based nanocatalysts. Nevertheless, the photocatalytic and electrocatalytic degradation of BPA in aqueous solutions has not been reviewed. Therefore, this review gives a comprehensive understanding of BPA degradation during photo-/electro-catalytic activity in the presence of graphene/GO-based nanocatalysts. Herein, this review evaluated the main photo-/electro-catalytic degradation mechanisms and pathways for BPA removal under various water quality/chemistry conditions (pH, background ions, natural organic matter, promotors, and scavengers), the physicochemical characteristics of various graphene/GO-based nanocatalysts, and various operating conditions (voltage and current). Additionally, the reusability/stability of graphene/GO-based nanocatalysts, hybrid systems combined with ozone/ultrasonic/Fenton oxidation, and prospective research areas are briefly described.


Subject(s)
Benzhydryl Compounds , Graphite , Phenols , Water Pollutants, Chemical , Graphite/chemistry , Benzhydryl Compounds/chemistry , Catalysis , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Water Purification/methods , Endocrine Disruptors/chemistry , Photochemical Processes , Electrochemical Techniques/methods
20.
Environ Sci Pollut Res Int ; 31(21): 31259-31272, 2024 May.
Article in English | MEDLINE | ID: mdl-38630405

ABSTRACT

A facile solvent-free solid-state method was adapted to synthesize the spherical-shaped Bi2WO6 engraved on phenyl-doped g-C3N4 nanosheet, i.e., Bi2WO6/Ph-gC3N4 (or BPCN) composites with varying weights of Bi2WO6. Several spectral analyses were used to characterize all the synthesized nanomaterials. The synthesized photocatalyst showed good absorption under visible light as confirmed by UV-visible DRS analysis. Morphological analyses like SEM and TEM determine the successful fabrication of binary heterocomposite. Further, the elements available in the fabricated binary nanocomposite were confirmed by XPS. The photocatalyst was used for the aerobic photocatalytic degradation of a few colorless pollutants like bisphenol A (BPA, 30 mg L-1), a microplastic constituent, and tetracycline (TC, 40 mg L-1), an antibiotic derivative to achieve the impressive results. The less intense PL signal obtained for the 20BPCN heterocomposite reveals the remarkable enhancement in e--h+ pair separation and recombination rate. The quenching study, alkaline terephthalic acid photoluminescence test (TA-PL), and NBT phototransformation study explain the formation of reactive species involved in the decomposition process. An oral cancer cell line (A-254) was tested for the anticancer activity analysis of the 20BPCN photocatalyst. Based on the obtained results, a Z-scheme electron transfer mechanism has been proposed for the photodegradation of model compounds.


Subject(s)
Bismuth , Bismuth/chemistry , Nanostructures/chemistry , Catalysis , Benzhydryl Compounds/chemistry , Phenols/chemistry , Humans , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...