Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 565
Filter
1.
Front Public Health ; 12: 1396147, 2024.
Article in English | MEDLINE | ID: mdl-38846618

ABSTRACT

Introduction: Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods: Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results: Our study found that the median level of BPA was significantly higher in adults (9.63 µg/g creatinine) than in minors (6.63 µg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion: Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.


Subject(s)
Benzhydryl Compounds , Environmental Exposure , Phenols , Sulfones , Humans , Phenols/urine , Phenols/analysis , Phenols/toxicity , Benzhydryl Compounds/urine , Benzhydryl Compounds/toxicity , Female , Male , Taiwan , Adult , Risk Assessment , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Child , Middle Aged , Adolescent , Sulfones/analysis , Young Adult , Aged , Child, Preschool , Tandem Mass Spectrometry , Environmental Monitoring , Surveys and Questionnaires , Environmental Pollutants/analysis
2.
Wei Sheng Yan Jiu ; 53(3): 447-454, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38839587

ABSTRACT

OBJECTIVE: To develop and validate a solid phase extraction-ultra-high performance liquid chromatography-tandem mass spectrometry method for the determination of six bisphenols(bisphenol S, bisphenol F, bisphenol A, 2, 2'-methylenediphenol, bisphenol AF, bisphenol AP) in urine. METHODS: After enzymolysis of urine sample, the target substances were quickly purified and extracted by WAX solid phase extraction column. On ACQUITY BEH C_(18) column(2.1 mm×100 mm, 1.7 µm), the mobile phase of water and methanol was used to separate. Finally, multi-reaction detection was carried out under electrospray negative ion scanning, and quantification was carried out by internal standard method. RESULTS: The correlation coefficients(r) of the target compounds were all more than 0.998 in the range of 0.1-50.0 ng/mL, the linearity was good, and the detection limits were all lower than 0.1 ng/mL. The recoveries of the three standard concentrations(0.5, 5.0 and 50.0 ng/mL) were all between 80% and 120%, and the relative standard deviation was less than 20%(n=5). The standard reference material was detected and the concentration was within the reference range. CONCLUSION: This method can be used to detect six bisphenols in urine quickly and accurately, is suitable for the trace analysis of bisphenol compounds in human urine.


Subject(s)
Benzhydryl Compounds , Phenols , Tandem Mass Spectrometry , Humans , Phenols/urine , Phenols/analysis , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Benzhydryl Compounds/urine , Solid Phase Extraction/methods , Sulfones/urine
3.
Environ Int ; 187: 108726, 2024 May.
Article in English | MEDLINE | ID: mdl-38733764

ABSTRACT

BACKGROUND: Exposure to endocrine-disrupting chemicals such as bisphenols and phthalates during pregnancy may disrupt fetal developmental programming and influence early-life growth. We hypothesized that prenatal bisphenol and phthalate exposure was associated with alterations in adiposity through 4 years. This associations might change over time. METHODS: Among 1091 mother-child pairs in a New York City birth cohort study, we measured maternal urinary concentrations of bisphenols and phthalates at three time points in pregnancy and child weight, height, and triceps and subscapular skinfold thickness at ages 1, 2, 3, and 4 years. We used linear mixed models to assess associations of prenatal individual and grouped bisphenols and phthalates with overall and time-point-specific adiposity outcomes from birth to 4 years. RESULTS: We observed associations of higher maternal urinary second trimester total bisphenol and bisphenol A concentrations in pregnancy and overall child weight between birth and 4 years only (Beta 0.10 (95 % confidence interval 0.04, 0.16) and 0.07 (0.02, 0.12) standard deviation score (SDS) change in weight per natural log increase in exposure), We reported an interaction of the exposures with time, and analysis showed associations of higher pregnancy-averaged mono-(2-carboxymethyl) phthalate with higher child weight at 3 years (0.14 (0.06, 0.22)), and of higher high-molecular-weight phthalate, di-2-ethylhexyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-carboxymethyl) phthalate, and mono-(2-ethylhexyl) phthalate with higher child weight at 4 years (0.16 (0.04, 0.28), 0.15 (0.03, 0.27), 0.19 (0.07, 0.31), 0.16 (0.07, 0.24), 0.11 (0.03, 0.19)). Higher pregnancy-averaged high-molecular-weight phthalate, di-2-ethylhexyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-2(ethyl-5-oxohexyl) phthalate concentrations were associated with higher child BMI at 4 years (0.20 (0.05, 0.35), 0.20 (0.05, 0.35), 0.22 (0.06, 0.37), 0.20 (0.05, 0.34), 0.20 (0.05, 0.34)). For skinfold thicknesses, we observed no associations. DISCUSSION: This study contributes to the evidence suggesting associations of prenatal exposure to bisphenols and high-molecular-weight phthalates on childhood weight and BMI.


Subject(s)
Benzhydryl Compounds , Maternal Exposure , Phenols , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Female , Phthalic Acids/urine , Phenols/urine , New York City , Pregnancy , Benzhydryl Compounds/urine , Child, Preschool , Maternal Exposure/statistics & numerical data , Cohort Studies , Infant , Adult , Environmental Pollutants/urine , Male , Infant, Newborn , Endocrine Disruptors/urine , Child Development/drug effects
4.
Ecotoxicol Environ Saf ; 278: 116452, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744066

ABSTRACT

The aim of this research was to examine the correlation between the exposure to bisphenol analogues (BPs), such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and the risk of developing systemic lupus erythematosus (SLE). Ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was utilized to measure the levels of BPA, BPF, and BPS in the urine of 168 female participants diagnosed with SLE and 175 female participants who were deemed healthy controls. Logistic regression models were utilized to assess the connections between levels of bisphenol and the risk of SLE. The findings indicated that levels of BPA and BPF in the urine of individuals with SLE were markedly elevated compared to those in the control group. Higher exposure to BPA and BPF exhibited positive dose-response relationships with increased SLE risk. No significant associations were identified between BPS and the risk of SLE. These findings suggest exposure to BPA and BPF may be implicated as novel environmental triggers in the development of autoimmunity such as SLE. The significantly increased levels of these bisphenol analogues detected in SLE patients versus healthy controls, along with the associations between higher exposures and elevated SLE risk, which offers crucial hints for comprehending how endocrine-disrupting substances contribute to the genesis of autoimmune illnesses. Further research using robust longitudinal assessments of bisphenol analogue exposures is warranted to corroborate these epidemiological findings. Overall, this study highlights potential environmental risk factors for SLE while calling for additional investigation into the impact of bisphenol exposures on autoimmunity development.


Subject(s)
Benzhydryl Compounds , Lupus Erythematosus, Systemic , Phenols , Sulfones , Lupus Erythematosus, Systemic/chemically induced , Phenols/urine , Humans , Benzhydryl Compounds/urine , Female , Adult , Environmental Exposure/statistics & numerical data , Tandem Mass Spectrometry , Environmental Pollutants , Middle Aged , Endocrine Disruptors , Autoimmunity/drug effects , Case-Control Studies , Young Adult
5.
Lipids Health Dis ; 23(1): 126, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685082

ABSTRACT

BACKGROUND: Overweight and obesity are among the leading chronic diseases worldwide. Environmental phenols have been renowned as endocrine disruptors that contribute to weight changes; however, the effects of exposure to mixed phenols on obesity are not well established. METHODS: Using data from adults in National Health and Nutrition Examination Survey, this study examined the individual and combined effects of four phenols on obesity. A combination of traditional logistic regression and two mixed models (weighted quantile sum (WQS) regression and Bayesian kernel-machine regression (BKMR)) were used together to assess the role of phenols in the development of obesity. The potential mediation of cholesterol on these effects was analyzed through a parallel mediation model. RESULTS: The results demonstrated that solitary phenols except triclosan were inversely associated with obesity (P-value < 0.05). The WQS index was also negatively correlated with general obesity (ß: 0.770, 95% CI: 0.644-0.919, P-value = 0.004) and abdominal obesity (ß: 0.781, 95% CI: 0.658-0.928, P-value = 0.004). Consistently, the BKMR model demonstrated the significant joint negative effects of phenols on obesity. The parallel mediation analysis revealed that high-density lipoprotein mediated the effects of all four single phenols on obesity, whereas low-density lipoprotein only mediated the association between benzophenol-3 and obesity. Moreover, Cholesterol acts as a mediator of the association between mixed phenols and obesity. Exposure to single and mixed phenols significantly and negatively correlated with obesity. Cholesterol mediated the association of single and mixed environmental phenols with obesity. CONCLUSIONS: Assessing the potential public health risks of mixed phenols helps to incorporate this information into practical health advice and guidance.


Subject(s)
Isoflavones , Obesity , Phenols , Humans , Phenols/urine , Male , Adult , Female , Middle Aged , Cholesterol/blood , Benzhydryl Compounds/urine , Triclosan/adverse effects , Nutrition Surveys , Bayes Theorem , Endocrine Disruptors/urine , Chlorophenols/urine
6.
Front Public Health ; 12: 1351786, 2024.
Article in English | MEDLINE | ID: mdl-38665245

ABSTRACT

Recent evidence has revealed associations between endocrine-disrupting chemicals (EDCs) and placental insufficiency due to altered placental growth, syncytialization, and trophoblast invasion. However, no epidemiologic study has reported associations between exposure to EDCs and asymmetric fetal growth restriction (FGR) caused by placenta insufficiency. The aim of this study was to evaluate the association between EDC exposure and asymmetric FGR. This was a prospective cohort study including women admitted for delivery to the Maternal Fetal Center at Seoul St. Mary's Hospital between October 2021 and October 2022. Maternal urine and cord blood samples were collected, and the levels of bisphenol-A (BPA), monoethyl phthalates, and perfluorooctanoic acid in each specimen were analyzed. We investigated linear and non-linear associations between the levels of EDCs and fetal growth parameters, including the head circumference (HC)/abdominal circumference (AC) ratio as an asymmetric parameter. The levels of EDCs were compared between fetuses with and without asymmetric FGR. Of the EDCs, only the fetal levels of BPA showed a linear association with the HC/AC ratio after adjusting for confounding variables (ß = 0.003, p < 0.05). When comparing the normal growth and asymmetric FGR groups, the asymmetric FGR group showed significantly higher maternal and fetal BPA levels compared to the normal growth group (maternal urine BPA, 3.99 µg/g creatinine vs. 1.71 µg/g creatinine [p < 0.05]; cord blood BPA, 1.96 µg/L vs. -0.86 µg/L [p < 0.05]). In conclusion, fetal exposure levels of BPA show linear associations with asymmetric fetal growth patterns. High maternal and fetal exposure to BPA might be associated with asymmetric FGR.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Fetal Blood , Fetal Growth Retardation , Maternal Exposure , Phenols , Humans , Female , Endocrine Disruptors/adverse effects , Endocrine Disruptors/blood , Endocrine Disruptors/urine , Prospective Studies , Pregnancy , Fetal Growth Retardation/chemically induced , Adult , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/urine , Benzhydryl Compounds/blood , Phenols/urine , Phenols/adverse effects , Phenols/blood , Maternal Exposure/adverse effects , Fetal Blood/chemistry , Fluorocarbons/blood , Fluorocarbons/adverse effects , Phthalic Acids/urine , Phthalic Acids/adverse effects , Caprylates/blood , Caprylates/adverse effects , Placental Insufficiency , Republic of Korea/epidemiology , Seoul/epidemiology
7.
Int J Hyg Environ Health ; 259: 114383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652942

ABSTRACT

Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 µg/gcrea and 2.5 µg/gcrea in Guangzhou, and 93.7 µg/gcrea and 2.9 µg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.


Subject(s)
Endocrine Disruptors , Environmental Exposure , Environmental Pollutants , Life Style , Phthalic Acids , Humans , Endocrine Disruptors/urine , Child , Child, Preschool , Male , Female , Environmental Exposure/analysis , China , Phthalic Acids/urine , Environmental Pollutants/urine , Phenols/urine , Adult , Hong Kong , Parents , Benzhydryl Compounds/urine , East Asian People
8.
Sci Total Environ ; 927: 171870, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38531444

ABSTRACT

In wastewater-based epidemiology (WBE), the selection of appropriate biomarkers presents a significant challenge. Recently, sulfated bisphenols have garnered attention as potential WBE biomarkers due to their increased stability in wastewater compared to glucuronide conjugates. This study aims to comprehensively assess the feasibility of employing sulfated BPA and BPS as WBE biomarkers by analyzing both WBE and human biomonitoring data. To conduct this research, wastewater samples were collected from six domestic wastewater treatment plants in Guangzhou, China, and urinary concentration of BPA and BPS were obtained from peer-reviewed literature. The results revealed that mean urinary concentrations of BPA and BPS, calculated using Monte Carlo simulations, significantly exceeded those reported in human biomonitoring studies. Furthermore, the per capita mass load ratio of sulfated BPA and BPS in human urine to the mass load in wastewater was found to be below 10 %. This outcome suggests that the excretion of BPA-S and BPS-S in urine does not make a substantial contribution to wastewater, hinting at the existence of other notable sources. Consequently, our study concludes that sulfated BPA-S and BPS-S are not suitable candidates as WBE biomarkers. This work provides a referenceable analytical framework for evaluating the feasibility of WBE biomarkers and emphasizes the necessity for caution when utilizing WBE to assess human exposure to chemicals.


Subject(s)
Benzhydryl Compounds , Biomarkers , Phenols , Sulfones , Wastewater , Water Pollutants, Chemical , Humans , Phenols/urine , Wastewater/chemistry , Benzhydryl Compounds/urine , China , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Biomarkers/urine , Feasibility Studies , Sulfates/urine , Sulfates/analysis , Environmental Monitoring/methods , Wastewater-Based Epidemiological Monitoring
9.
Environ Int ; 185: 108564, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467088

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is known as an obesogenic endocrine disruptor. Bisphenol S (BPS) and F (BPF) are substitutes that have recently replaced BPA. OBJECTIVES: To investigate the relationships of urinary bisphenols (BPA, BPS and BPF) with adiposity measurements (obesity, BMI z-score, and fat mass), serum adipokine levels (adiponectin and leptin), and adiponectin/leptin ratio (A/L ratio) in 6- and 8-year-old children. METHODS: A total of 561 children who participated in the Environment and Development of Children cohort (482 and 516 children visited at age 6 and 8, respectively) at Seoul National University Children's Hospital during 2015-2019 were included. Urinary BPA levels were log-transformed. BPS levels were categorized into three groups (non-detected, lower-half, and higher-half of detected), and BPF levels were classified into two groups (non-detected and detected). RESULTS: The urinary BPS higher-half group had a higher BMI z-score (ß = 0.160, P= 0.044), higher fat mass (ß = 0.104, P< 0.001), lower adiponectin concentration (ß =- 0.069, P< 0.001), higher leptin concentration (ß = 0.360, P< 0.001), and lower A/L ratio (ß =- 0.428, P< 0.001) compared with the non-detected group. The urinary BPF-detected group had a higher fat mass (ß = 0.074, P< 0.001), lower adiponectin concentration (ß =- 0.069, P< 0.001), higher leptin concentration (ß = 0.360, P< 0.001), and lower A/L ratio (ß =- 0.428, P< 0.001) compared with the non-detected group. The BPA levels showed no consistent associations with outcomes, except for isolated associations of BPA at age 6 with a higher BMI z-score at age 6 (P= 0.016) and leptin at age 8 (P= 0.021). CONCLUSIONS: Increased exposure to BPS and BPF is associated with higher fat mass and leptin concentration, lower serum adiponectin, and lower A/L ratio in children. These findings suggest potential adverse effects of BPA substitutes on adiposity and adipokines. No consistent association of BPA exposure with outcomes could be partly explained by the decreasing BPA levels over time.


Subject(s)
Adiponectin , Leptin , Phenols , Child , Humans , Benzhydryl Compounds/urine , Obesity , Adipokines
10.
Front Public Health ; 12: 1196248, 2024.
Article in English | MEDLINE | ID: mdl-38379678

ABSTRACT

Background: Bisphenol A (BPA) is an oil-derived, large-market volume chemical with endocrine disrupting properties and reproductive toxicity. Moreover, BPA is frequently used in food contact materials, has been extensively researched recently, and widespread exposure in the general population has been reported worldwide. However, national information on BPA levels in general Chinese people is lacking. Methods: This study collected and analyzed 145 (104 in urine and 41 in serum) research articles published between 2004 and 2021 to reflect the BPA internal exposure levels in Chinese populations. The Monte Carlo simulation method is employed to analyze and estimate the data in order to rectify the deviation caused by a skewed distribution. Results: Data on BPA concentrations in urine and serum were collected from 2006 to 2019 and 2004 to 2019, respectively. Urinary BPA concentrations did not vary significantly until 2017, with the highest concentration occurring from 2018 to 2019 (2.90 ng/mL). The serum BPA concentration decreased to the nadir of 1.07 ng/mL in 2011 and gradually increased to 2.54 ng/mL. Nationally, 18 provinces were studied, with Guangdong (3.50 ng/mL), Zhejiang (2.57 ng/mL), and Fujian (2.15 ng/mL) having the highest urine BPA levels. Serum BPA was investigated in 15 provinces; Jiangsu (9.14 ng/mL) and Shandong (5.80 ng/mL) were relatively high. The results also indicated that males' urine and serum BPA levels were higher than females, while the BPA levels in children were also higher than in adults (p < 0.001). Furthermore, the volume of garbage disposal (r = 0.39, p < 0.05), household sewage (r = 0.34, p < 0.05), and waste incineration content (r = 0.35, p < 0.05) exhibited a strong positive connection with urine BPA levels in Chinese individuals. Conclusion: Despite using a data consolidation approach, our study found that the Chinese population was exposed to significant amounts of BPA, and males having a higher level than females. Besides, the levels of BPA exposure are influenced by the volume of garbage disposal, household sewage, and waste incineration content.


Subject(s)
Benzhydryl Compounds , East Asian People , Phenols , Sewage , Adult , Child , Female , Humans , Male , Benzhydryl Compounds/blood , Benzhydryl Compounds/urine , China , Phenols/blood , Phenols/urine , Risk Factors
11.
Nutr Metab Cardiovasc Dis ; 34(4): 1088-1096, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403484

ABSTRACT

BACKGROUND AND AIMS: Bisphenol A (BPA), an endocrine disruptor widely used in food contact materials, has been linked to a worse health profile. This study intends to estimate the association between BPA exposure and cardiometabolic patterns at adolescence. METHODS AND RESULTS: Data from the Portuguese population-based birth cohort Generation XXI at the age of 13 were used (n = 2386 providing 3-day food diaries and fasting blood samples). BPA exposure was measured in 24-h urine from a subsample (n = 206) and then predicted in all participants using a random forest method and considering dietary intake from diaries. Three cardiometabolic patterns were identified (normal, modified lipid profile and higher cardiometabolic risk) using a probabilistic Gaussian mixture model. Multinomial regression models were applied to associate BPA exposure (lower, medium, higher) and cardiometabolic patterns, adjusting for confounders. The median BPA exposure was 1532 ng/d, corresponding to 29.4 ng/kg/d. Adolescents higher exposed to BPA (compared to medium and lower levels) had higher BMI z-score (kg/m2) (0.68 vs. 0.39 and 0.52, respectively; p = 0.008), higher levels of body fat (kg) (16.3 vs. 13.8 and 14.6, respectively; p = 0.002), waist circumference (76.2 vs. 73.7 and 74.9, respectively; p = 0.026), insulinemia (ug/mL) (14.1 vs. 12.7 and 13.1, respectively; p = 0.039) and triglyceridemia (mg/dL) (72.7 vs. 66.1 and 66.5, respectively; p = 0.030). After adjustment, a significant association between higher BPA and a higher cardiometabolic risk pattern was observed (OR: 2.55; 95%CI: 1.41, 4.63). CONCLUSION: Higher BPA exposure was associated with a higher cardiometabolic risk pattern in adolescents, evidencing the role of food contaminants in health.


Subject(s)
Cardiovascular Diseases , Endocrine Disruptors , Humans , Adolescent , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/urine , Phenols/adverse effects , Phenols/urine , Endocrine Disruptors/adverse effects , Endocrine Disruptors/urine , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology
12.
Environ Res ; 249: 118433, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38331151

ABSTRACT

BACKGROUND: Experimental studies have suggested exposure to bisphenol A (BPA) and its alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), may exert adverse effects on ovarian reserve, but human evidence is limited. Moreover, the potential predictors of exposure to bisphenols among women seeking infertility treatment have not been reported. OBJECTIVE: To explore whether individual or mixture of BPA, BPF, and BPS were related to antral follicle count (AFC), and further identify the predictors of exposure to bisphenols among women seeking assisted reproductive treatment. METHODS: A total of 111 women from a reproductive center in Shenyang, China were enrolled in this study from September 2020 to February 2021. The concentrations of urinary BPA, BPF, and BPS were measured using ultra-high-performance liquid chromatography-triple quadruple mass spectrometry (UHPLC-MS/MS). AFC was measured by two infertility physicians through transvaginal ultrasonography on the 2-5 days of a natural cycle. Demographic characteristics, dietary habits, and lifestyles were obtained by questionnaires. The associations between individual and mixture of urinary bisphenols concentrations (BPA, BPF, and BPS) and AFC were assessed by the Poisson regression models and the quantile-based g-computation (QGC) model, respectively. The potential predictors of exposure to bisphenols were identified by the multivariate linear regression models. RESULTS: After adjusting for confounders, elevated urinary concentrations of BPA, BPF and BPS were associated with reduced AFC (ß = -0.016; 95%CI: -0.025, -0.006 in BPA; ß = -0.017; 95%CI: -0.029, -0.004 in BPF; ß = -0.128; 95%CI: -0.197, -0.060 in BPS). A quantile increase in the bisphenols mixture was negatively associated with AFC (ß = -0.101; 95%CI: -0.173, -0.030). Intake of fried food had higher urinary concentrations of BPF, BPS, and total bisphenols (∑BPs) than women who did not eat, and age was related to increased urinary BPF concentrations. CONCLUSION: Our findings indicated that exposure to individual BPA, BPF, BPS and bisphenol mixtures were associated with impaired ovarian reserve. Furthermore, the intake of fried food, as identified in this study, could serve as an important bisphenols exposure route for reproductive-aged women.


Subject(s)
Benzhydryl Compounds , Ovarian Follicle , Phenols , Sulfones , Humans , Phenols/urine , Female , Adult , China , Benzhydryl Compounds/urine , Ovarian Follicle/drug effects , Sulfones/urine , Fertility Clinics , Environmental Pollutants/urine , Environmental Exposure/analysis
13.
J Clin Pharmacol ; 64(6): 672-684, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38363006

ABSTRACT

The aim of this study was to use a combination of physiologically based pharmacokinetic (PBPK) modeling and urinary glucose excretion (UGE) modeling to predict the time profiles of pharmacokinetics (PK) and UGE for the sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin (EMP). Additionally, the study aims to explore the compensatory effect of SGLT1 in renal glucose reabsorption (RGR) when SGLT2 is inhibited. The PBPK-UGE model was developed using physicochemical and biochemical properties, renal physiological parameters, binding kinetics, glucose, and Na+ reabsorption kinetics by SGLT1/2. For area under the plasma concentration-time curve, maximum plasma concentration, and cumulative EMP excretion in urine, the predicted values fell within a range of 0.5-2.0 when compared to observed data. Additionally, the simulated UGE data also matched well with the clinical data, further validating the accuracy of the model. According to the simulations, SGLT1 and SGLT2 contributed approximately 13% and 87%, respectively, to RGR in the absence of EMP. However, in the presence of EMP at doses of 2.5 and 10 mg, the contribution of SGLT1 to RGR significantly increased to approximately 76%-82% and 89%-93%, respectively, in patients with type 2 diabetes mellitus. Furthermore, the model supported the understanding that the compensatory effect of SGLT1 is the underlying mechanism behind the moderate inhibition observed in total RGR. The PBPK-UGE model has the capability to accurately predict the PK and UGE time profiles in humans. Furthermore, it provides a comprehensive analysis of the specific contributions of SGLT1 and SGLT2 to RGR in the presence or absence of EMP.


Subject(s)
Benzhydryl Compounds , Glucosides , Models, Biological , Sodium-Glucose Transporter 1 , Sodium-Glucose Transporter 2 Inhibitors , Glucosides/pharmacokinetics , Humans , Benzhydryl Compounds/pharmacokinetics , Benzhydryl Compounds/urine , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacokinetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Glucose/metabolism , Male , Sodium-Glucose Transporter 2/metabolism , Adult , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Renal Reabsorption/drug effects , Kidney/metabolism , Glycosuria , Female , Middle Aged
14.
Pediatr Neonatol ; 65(1): 76-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679260

ABSTRACT

BACKGROUND: Nonylphenol (NP) and bisphenol A (BPA) are produced in large quantities worldwide as multipurpose agents. However, studies on relations between NP and BPA exposure and childhood neurodevelopment are few, and the results are inconsistent. This study aimed to investigate associations between prenatal and early childhood NP and BPA exposure and neurodevelopment in mother-child pairs. METHODS: Pregnant women at 27-38 weeks' gestation were recruited, as were children 2-3 years of age (n = 94) and 4-6 years of age (n = 56) years. Urine was collected to assess NP and BPA exposure. Bayley Scales of Infant and Toddler Development (3rd edition; Bayley-III), Wechsler Preschool and Primary Scale of Intelligence (4th edition), and the Full Scale Intelligence Quotient (WPPSI-IV-FSIQ) were used to assess the neurodevelopment of the children. RESULTS: The detection rate and concentration of NP and BPA in the urine of children 4-6 years old were higher than in those 2-3 years old. Children were divided into a high concentration group (3rd tertile) and a reference group (1st and 2nd tertiles) based on natural log-transformed urine concentration of NP and BPA. Girls' Bayley-III motor scores in the high concentration group were higher than those of the BPA reference group of urine of mothers (ß = 6.85, 95% confidence interval [CI]: 1.58-12.13). Boys' FSIQ in the higher concentration group were significantly lower than those in children 2-3 years old in the NP reference group (ß = -11.29, 95% CI: -18.62 to -3.96) (all, p < 0.05). CONCLUSIONS: Prenatal and childhood exposure to NP and BPA may have different effects on the neurodevelopment of young children, and there are no consistent effects between boys and girls.


Subject(s)
Prenatal Exposure Delayed Effects , Male , Infant , Humans , Child, Preschool , Female , Pregnancy , Middle Aged , Child , Phenols/toxicity , Phenols/urine , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/urine , Vitamins
15.
Environ Int ; 183: 108373, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38088018

ABSTRACT

Humans are exposed to various bisphenols, alkylphenols and nitrophenols through dietary intake, food packaging and container materials, indoor and outdoor air/dust. This study aimed to evaluate exposure of Japanese pregnant women to environmental phenols by measuring target compounds in urine samples. From a cohort of the Japan Environment and Children's Study, 4577 pregnant women were selected. Bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), para-nitrophenol (PNP), 3-methyl-4-nitrophenol (PNMC), branched 4-nonylphenol (4-NP), linear 4-nonylphenol and 4-tert-octylphenol (4-t-OP) were analysed using a high-performance liquid chromatograph coupled to a triple-quadrupole mass spectrometer. The urinary metabolite data were combined with a questionnaire to examine the determinants of phenol exposure by machine learning. The estimated daily intake (EDI) and hazard quotient (HQ) of BPA were calculated. PNP (68.2%) and BPA (71.5%) had the highest detection frequencies, with median concentrations of 0.76 and 0.46 µg/g creatinine, respectively. PNMC, BPS, BPF and 4-NP were determined in 24.9%, 11.9%, 1.3% and 0.4% of samples, respectively, whereas BPAF (0.02%) and 4-t-OP (0.02%) were only determined in a few samples. The PNP concentrations measured in this study were comparable with those reported in previous studies, whereas the BPA concentrations were lower than those reported previously worldwide. The EDI of BPA was 0.014 µg/kg body weight/day. Compared with the tolerable daily intake set by the German Federal Institute for Risk Assessment, the median (95th percentile) HQ was 0.044 (0.2). This indicates that the observed levels of BPA exposure pose a negligible health risk to Japanese pregnant women. Determinants of bisphenol and nitrophenol exposure could not be identified by analysing the questionnaire solely, suggesting that biological measurement is necessary to assess exposure of pregnant women to bisphenols and nitrophenols. This is the first study to report environmental phenol exposure of Japanese pregnant women on a nationwide scale.


Subject(s)
Fluorocarbons , Phenol , Pregnant Women , Sulfones , Female , Humans , Pregnancy , Benzhydryl Compounds/urine , Japan , Nitrophenols , Phenols/urine
16.
J Korean Med Sci ; 38(45): e391, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37987110

ABSTRACT

BACKGROUND: Phthalates and bisphenol A (BPA) are endocrine-disrupting chemicals and may cause immunological disorders in children. Therefore, according to the region, we investigated urinary phthalates and BPA levels and the relationship between urinary phthalate, aeroallergen sensitization, and eosinophil count during the coronavirus disease 2019 pandemic. METHODS: In total, 203 schoolchildren (134 residential and 69 industrial) aged 7-10 years were enrolled between July 2021 and July 2022. The BPA, metabolites of four high-molecular-weight phthalates (Σ4HMWP) and three low-molecular-weight phthalates (Σ3LMWP), were measured in the urine samples. Total eosinophil count and transepidermal water loss (TEWL) were also measured along with the skin prick test. RESULTS: The two groups had no differences in terms of BPA. The industrial group had significantly more plastic container usage, and there was a difference in the Σ3LMWP (P < 0.001) between the two groups but no difference in the Σ4HMWP (P = 0.234). The quartiles of urinary Σ4HMWP and Σ3LMWP (P < were not associated with the total eosinophil count, vitamin D level, or TEWL. After adjusting for cofactors, the quartiles of urinary Σ4HMWP and Σ3LMWP were significantly associated with total eosinophil count (P < 0.001) but not with aeroallergen sensitization or vitamin D. CONCLUSION: Exposure to phthalates was significantly associated with eosinophil count but not with aeroallergen sensitization or vitamin D. Therefore, reducing the use of plastic containers may effectively prevent exposure to phthalates and reduce Th2 cell-mediated inflammation in children.


Subject(s)
Environmental Pollutants , Phthalic Acids , Child , Humans , Eosinophils/metabolism , Phthalic Acids/urine , Vitamin D , Benzhydryl Compounds/urine , Environmental Exposure/adverse effects
17.
Ecotoxicol Environ Saf ; 267: 115629, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37890258

ABSTRACT

Bisphenol A (BPA) is a widespread environmental pollutant linked to detrimental effects on human health and reduced life expectancy following chronic exposure. This prospective cohort study aimed to examine the association between BPA exposure and mortality in American adults and to explore the potential mitigating effects of dietary quality on BPA-related mortality. This study utilized data from 8761 American adults in the 2003-2016 National Health and Nutrition Examination Survey (NHANES). Urinary BPA levels were employed to assess BPA exposure, and dietary quality was evaluated using the Healthy Eating Index-2015 (HEI-2015). All-cause, cardiovascular disease (CVD), and cancer mortality statuses were determined until December 31, 2019, resulting in a cumulative follow-up of 80,564 person-years. The results showed that the highest tertile of urinary BPA levels corresponded to a 36% increase in all-cause mortality and a 62% increase in CVD mortality compared to the lowest tertile. In contrast, the highest tertile of HEI-2015 scores was associated with a 29% reduction in all-cause mortality relative to the lowest tertile. Although no significant interaction was found between HEI-2015 scores and urinary BPA levels concerning mortality, the association between HEI-2015 scores and both all-cause and CVD mortality was statistically significant at low urinary BPA levels. Continuous monitoring of BPA exposure is crucial for evaluating its long-term adverse health effects. Improving dietary quality can lower all-cause mortality and decrease the risk of all-cause and CVD mortality at low BPA exposure levels. However, due to the limited protective effect of dietary quality against BPA exposure, minimizing BPA exposure remains a vital goal.


Subject(s)
Cardiovascular Diseases , Diet , Adult , Humans , United States , Nutrition Surveys , Cohort Studies , Prospective Studies , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/urine , Cardiovascular Diseases/chemically induced
18.
Environ Res ; 238(Pt 2): 117187, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37741568

ABSTRACT

Bisphenol A (BPA) is an endocrine-disrupting chemical commonly used in manufacturing plastic products. Despite ongoing efforts and regulatory measures, BPA exposure among children persists. This study aimed to identify the modifiable factors associated with urinary BPA levels in Korean children and adolescents. We conducted an environment-wide association study (EWAS) using data from the Korean National Environmental Health Survey (KoNEHS) Cycle 4. This study included 578 preschoolers, 736 school-aged children, and 828 adolescents. A total of 117, 103, and 102 modifiable factors were selected from KoNEHS Cycle 4. Each modifiable factor associated with urinary BPA levels was tested using a multivariable linear regression model. Subsequently, multiple testing corrections were performed using false discovery rate (FDR) estimation. For the validation phase, we used the iteration of the least absolute shrinkage and selection operator (LASSO), a machine learning-based regression analysis. After the validation phase of the LASSO regression, two modifiable factors were identified as being significantly related to urinary BPA levels in preschoolers. Urinary cotinine levels and the use of slime or clay toys were positively associated with urinary BPA levels in preschoolers. However, no significant associations were observed between school-aged children and adolescents. Our results suggest novel exposure pathways to BPA in recent lifestyles and contribute to the development of effective prevention strategies. These modifiable factors provide valuable targets for interventions aimed at reducing BPA exposure in children. Further research is needed to explore additional modifiable factors and confirm our results in larger and more diverse populations.


Subject(s)
Environmental Health , Phenols , Humans , Adolescent , Child , Phenols/urine , Benzhydryl Compounds/urine , Republic of Korea , Environmental Exposure
19.
Int J Hyg Environ Health ; 253: 114225, 2023 08.
Article in English | MEDLINE | ID: mdl-37542835

ABSTRACT

BACKGROUND: Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS: We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS: BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 µg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 µg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION: BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.


Subject(s)
Biological Monitoring , Seafood , Pregnancy , Animals , Female , Canada , Benzhydryl Compounds/urine
20.
Nutrients ; 15(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37571359

ABSTRACT

The aim of this research was to study the combined effects of bisphenols and iodine exposure on the thyroid gland during pregnancy. We included 162 pregnant women from a cohort established in Shanghai. Urinary concentrations of bisphenol A, bisphenol B(BPB), bisphenol C(BPC), bisphenol F, bisphenol S, and bisphenol AF(BPAF) were examined. Bayesian kernel machine regression (BKMR) and quantile g-computation models were used. The geometric means of BPA, BPB, BPC, BPF, BPS, BPAF, and ΣBPs levels in urine were 3.03, 0.24, 2.66, 0.36, 0.26, 0.72, and 7.55 µg/g creatinine, respectively. We observed a positive trend in the cumulative effects of BPs and iodine on serum triiodothyronine (FT3) and free thyroxine (FT4), as well as a U-shaped dose-response relationship between BPs and the probability of occurrence of thyroperoxidase autoantibody positivity in women with low urinary iodine concentration. In addition, a synergistic effect on the probability of occurrence of thyroid autoantibody positivity was observed between BPF and BPB, as well as between BPC and BPAF in this study. There were adverse health effects on the thyroid after co-exposure to BPs and iodine. Even if pregnant women were exposed to lower levels of BPs, women with iodine deficiency remained vulnerable to thyroid autoimmune disease.


Subject(s)
Benzhydryl Compounds , Maternal Exposure , Phenols , Thyroid Gland , Humans , Female , Pregnancy , Air Pollutants, Occupational , Benzhydryl Compounds/urine , Phenols/urine , Maternal Exposure/adverse effects , Thyroid Gland/drug effects , China , Triiodothyronine/blood , Triiodothyronine/drug effects , Thyroxine/blood , Thyroxine/drug effects , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...