Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.311
Filter
1.
PLoS One ; 19(6): e0303900, 2024.
Article in English | MEDLINE | ID: mdl-38843120

ABSTRACT

BACKGROUND: Candesartan cilexetil (CC) is a selective angiotensin II receptor antagonist widely used to treat hypertension. CC is a substrate of P-glycoprotein (P-gp), causing its efflux to the intestinal lumen. It is also practically insoluble in water and has low oral bioavailability (14%). Thus, the current study aims to improve the in vitro dissolution of CC by developing solid dispersion systems (SDSs) and corroborating the in vitro results using a simulated pharmacokinetics study. METHODS: The SDSs were prepared using polyvinyl pyrrolidone (PVP) as a water-soluble polymer, Eudragit E100 (EE100) as a pH-dependent soluble carrier, and a combination of these two polymers. The saturation solubility and the dissolution rate studies of the prepared systems in three dissolution media were performed. The optimized system SE-EE5 was selected for further investigations, including DSC, XRD, FTIR, FESEM, DLS, TSEM, IVIVC convolution study, and stability studies. RESULTS: The solubility of CC significantly increased by a factor of 27,037.344 when formulated as a solid dispersion matrix using EE100 at a ratio of 1:5 (w/w) drug to polymer (SE-EE5 SD), compared to the solubility of the pure drug. The mechanism of solubility and dissolution rate enhancement of CC by the optimized SDS was found to be via the conversion of the crystalline CC into the amorphous form as well as nanoparticles formation upon dissolution at a pH below 5. The instrumental analysis tests showed good compatibility between CC and EE100 and there was no chemical interaction between the drug and the polymer. Moreover, the stability tests confirmed that the optimized system was stable after three months of storage at 25°C. CONCLUSION: The utilization of the solid dispersion technique employing EE 100 polymer as a matrix demonstrates significant success in enhancing the solubility, dissolution, and subsequently, the bioavailability of water-insoluble drugs like CC.


Subject(s)
Benzimidazoles , Biphenyl Compounds , Polymers , Solubility , Tetrazoles , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Tetrazoles/chemistry , Tetrazoles/pharmacokinetics , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Polymers/chemistry , Polymers/pharmacokinetics , Povidone/chemistry , Water/chemistry , Hydrogen-Ion Concentration , Biological Availability , Drug Stability , Drug Liberation , Acrylates
2.
Clin Transl Sci ; 17(6): e13818, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807449

ABSTRACT

A study to determine the impact of cyclosporine (Neoral), an inhibitor of P-gp, on the pharmacokinetics of pralsetinib (trade name GAVRETO®) was conducted in 15 healthy adult volunteers. A single 200 mg dose of pralsetinib was administered orally alone and in combination with cyclosporine with a 9-day washout between treatments. Co-administration with cyclosporine resulted in a clinically relevant increase in pralsetinib maximum plasma concentration (Cmax) and area under the plasma concentration-time curve extrapolated to infinity (AUC0-∞) with associated geometric mean ratios (GMRs) and 90% confidence intervals (CIs) of 148% (109, 201) and 181% (136, 241), respectively. These findings provide insight into concomitant dosing of pralsetinib with inhibitors of P-gp given the increases in pralsetinib exposure observed when administered with cyclosporine. Based on these results, co-administration of pralsetinib with P-gp inhibitors is not recommended. In the event that co-administration cannot be avoided, it is recommended that the dose of pralsetinib be reduced.


Subject(s)
Cyclosporine , Drug Interactions , Healthy Volunteers , Humans , Male , Adult , Cyclosporine/administration & dosage , Cyclosporine/pharmacokinetics , Female , Young Adult , Area Under Curve , Middle Aged , Administration, Oral , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Dose-Response Relationship, Drug , Benzimidazoles/pharmacokinetics , Benzimidazoles/administration & dosage
4.
J Assoc Physicians India ; 71(11): 58-61, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38720498

ABSTRACT

Allergic rhinitis (AR) is considered a trivial disease and is often self-treated with over-the-counter drugs and home remedies. However, AR is a contributing risk factor for asthma associated with complications, including chronic cough, eosinophilic esophagitis, and otitis media with effusion. In AR, inflammation is primarily mediated by histamines. Guidelines advise using second-generation oral H1 antihistamines as the primary treatment for AR. Second-generation H1 antihistamines strongly prefer the H1 receptor, limiting their ability to enter the central nervous system. Thus, they have minimal adverse effects. Among these H1 antihistamines, bilastine is highly specific for H1 receptors with a slight affinity for other receptors. It has a rapid and prolonged action, which reduces the need for frequent dosing and has better compliance. In the long term, bilastine is well-tolerated with minimal adverse effects. It is not associated with drug interactions, so dosage adjustment is unnecessary. Bilastine does not penetrate the brain and is nonsedating at 80 mg once daily. The low possibility of drug-drug interactions and pharmacokinetics of bilastine makes it suitable for elderly patients, even with compromised hepatic and renal function, without dose adjustment. This review comprehensively discusses the guidelines and the role of bilastine in treating AR. How to cite this article: Tiwaskar M, Vora A, Tewary K, et al. Role of Bilastine in Allergic Rhinitis: A Narrative Review. J Assoc Physicians India 2023;71(11):58-61.


Subject(s)
Piperidines , Rhinitis, Allergic , Humans , Rhinitis, Allergic/drug therapy , Piperidines/therapeutic use , Piperidines/pharmacokinetics , Benzimidazoles/therapeutic use , Benzimidazoles/pharmacokinetics , Histamine H1 Antagonists/therapeutic use , Histamine H1 Antagonists/pharmacokinetics , Histamine H1 Antagonists/administration & dosage
5.
Drug Res (Stuttg) ; 72(6): 319-326, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35724670

ABSTRACT

BACKGROUND: Coadministration of statins and direct acting antiviral agents is frequently used. This study explored the effects of both atorvastatin and lovastatin on pharmacokinetics of a fixed-dose combination of sofosbuvir/ledipasvir "FDCSL". METHODS: 12 healthy volunteers participated in a randomized, three-phase crossover trial and were administered a single atorvastatin dose 80 mg plus tablet containing 400/90 mg FDCSL, a single lovastatin dose 40 mg plus tablet containing 400/90 mg FDCSL, or tablets containing 400/90 mg FDCSL alone. Liquid chromatography-tandem mass spectrometry was used to analyze plasma samples of sofosbuvir, ledipasvir and sofosbuvir metabolite "GS-331007" and their pharmacokinetic parameters were determined. RESULTS: Atorvastatin caused a significant rise in sofosbuvir bioavailability as explained by increasing in AUC0-∞ and Cmax by 34.36% and 11.97%, respectively. In addition, AUC0-∞ and Cmax of GS-331007 were increased by 73.73% and 67.86%, respectively after atorvastatin intake. Similarly, co-administration of lovastatin with FDCSL increased the bioavailability of sofosbuvir, its metabolite (AUC0-∞ increase by 17.2%, 17.38%, respectively, and Cmax increase by 12.03%, 22.24%, respectively). However, neither atorvastatin nor lovastatin showed a change in ledipasvir bioavailability. Hepatic elimination was not affected after statin intake with FDCSL. Compared to lovastatin, atorvastatin showed significant increase in AUC0-∞ and Cmax of both sofosbuvir and its metabolite. CONCLUSIONS: Both atorvastatin and lovastatin increased AUC of sofosbuvir and its metabolite after concurrent administration with FDCSL. Statins' P-glycoprotein inhibition is the attributed mechanism of interaction. The increase in sofosbuvir bioavailability was more pronounced after atorvastatin intake. Close monitoring is needed after co-administration of atorvastatin and FDCSL.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Benzimidazoles , Fluorenes , Hepatitis C, Chronic , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Sofosbuvir , Humans , Antiviral Agents/pharmacology , Atorvastatin , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Benzimidazoles/pharmacokinetics , Biological Availability , Cross-Over Studies , Drug Combinations , Fluorenes/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Lovastatin , Sofosbuvir/pharmacokinetics
6.
Eur J Clin Pharmacol ; 78(8): 1239-1247, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35527301

ABSTRACT

PURPOSE: Adverse events after the use of the CDK4/6 inhibitor abemaciclib are dose-dependent. However, its pharmacokinetics varies among individuals. Abemaciclib is reportedly transported by P-glycoprotein and breast cancer resistance protein. Therefore, we evaluated whether ABCB1 and ABCG2 polymorphisms are pharmacokinetic predictive factors of abemaciclib. METHODS: A total of 45 patients with breast cancer taking abemaciclib (150 mg twice per day) for 2 weeks were evaluated to determine the associations among abemaciclib concentration; adverse events; and ABCB1 1236 T > C, 2677G > T/A, 3435C > T, and ABCG2 421C > A gene polymorphisms. RESULTS: The trough concentration of abemaciclib was significantly higher in the group with grade 2 or greater neutropenia and thrombocytopenia than in those with grades 0 or 1. For ABCB1 2677G > T/A polymorphisms, the concentration of abemaciclib tended to be higher in the homozygous group (TT + AT) than in the wild-type + heterozygous group (GG + GA + GT) (median [range], 222.8 [80.5-295.8] ng/mL vs. 113.5 [23.6-355.2] ng/mL, P = 0.09), Moreover, the ABCB1 2677G > T/A homozygous group had a higher tendency of abemaciclib withdrawal or dose reduction within 4 weeks than the wild-type + heterozygous group (odds ratio, 4.22; 95% confidence interval, 0.86-20.7; P = 0.08). No significant association was observed among abemaciclib concentration; adverse reactions; and ABCB1 1236 T > C, 3435C > T, and ABCG2 421C > A polymorphisms. CONCLUSION: ABCB1 2677G > T/A polymorphism might be a predictor of the pharmacokinetics and tolerability of abemaciclib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Aminopyridines , Benzimidazoles , Breast Neoplasms , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Aminopyridines/pharmacokinetics , Aminopyridines/therapeutic use , Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Breast Neoplasms/drug therapy , Female , Genotype , Humans , Polymorphism, Single Nucleotide
7.
J Med Chem ; 65(4): 3597-3605, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35148084

ABSTRACT

Internal tandem duplication in the FLT3 receptor tyrosine kinase (FLT3/ITD mutation) occurs in approximately 25% of acute myeloid leukemia (AML) patients. To specifically target this driver mutation in AML, we assessed and compared the cell-based cytotoxicity of a diversity library (10,000 compounds) against the normal cell line BaF3 and the isogenic leukemic cell line BaF3/ITD. A benzoimidazole scaffold-based compound (HP1142) was identified as the most selective compound against a series of murine and human leukemia cells with FLT3/ITD. Novel benzoimidazole compounds were further designed to improve the aqueous solubility of HP1142. The most potent compound, HP1328, demonstrated desirable pharmaceutical and pharmacokinetic properties. Treatment with HP1328 significantly reduced the leukemia burden and prolonged the survival of mice with FLT3/ITD leukemia. Our findings establish the specific activity of the benzoimidazole compound against FLT3/ITD leukemia and warrant further investigation in this subset of leukemia patients with poor prognosis.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Cell Line , Cell Line, Tumor , High-Throughput Screening Assays , Humans , Leukemia/drug therapy , Male , Mice , Mice, Inbred BALB C , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Small Molecule Libraries , Solubility , Xenograft Model Antitumor Assays
8.
J Med Chem ; 65(3): 2522-2531, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34994550

ABSTRACT

New psychoactive substance (NPS) opioids have proliferated within the international drug market. While synthetic opioids are traditionally composed of fentanyl analogues, benzimidazole-derived isotonitazene and its derivatives are the current NPS opioids of concern. Hence, in this study, we implement immunopharmacotherapy wherein antibodies are produced with high titers and nanomolar affinity to multiple benzimidazole-derived NPS opioids (BNO). Notably, these antibodies blunt psychoactive and physiological repercussions from BNO exposure, which was observed through antinociception, whole-body plethysmography, and blood-brain biodistribution studies. Moreover, we detail previously unreported pharmacokinetics of these drugs, which explains the struggle of traditional pharmaceutical opioid antagonists against BNO substances. These findings provide further insight into the in vivo effects of BNO drugs and the development of effective broad-spectrum therapeutics against NPS opioids.


Subject(s)
Analgesics, Opioid/immunology , Benzimidazoles/immunology , Illicit Drugs/immunology , Vaccines, Conjugate/immunology , Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/pharmacokinetics , Animals , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Female , Haptens/chemistry , Haptens/immunology , Hemocyanins/chemistry , Hemocyanins/immunology , Illicit Drugs/chemical synthesis , Illicit Drugs/pharmacokinetics , Mice, Inbred BALB C , Nociception/drug effects , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/prevention & control , Vaccines, Conjugate/chemistry
9.
Cancer Chemother Pharmacol ; 89(1): 49-58, 2022 01.
Article in English | MEDLINE | ID: mdl-34669023

ABSTRACT

PURPOSE: Veliparib (V), an oral poly(ADP-ribose) polymerase (PARP) inhibitor, potentiates effects of alkylating agents and topoisomerase inhibitors in preclinical tumor models. We conducted a phase I trial of V with iv cyclophosphamide (C) and V plus iv doxorubicin (A) and C. METHODS: Objectives were to establish the maximum tolerated dose (MTD) of the combinations, characterize V pharmacokinetics (PK) in the presence and absence of C, measure PAR in peripheral blood mononuclear cells (PBMCs) and γH2AX in circulating tumor cells (CTCs). In Group 1, dose escalations of V from 10 to 50 mg every 12 h Days 1-4 plus C 450 to 750 mg/m2 Day 3 in 21-day cycles were evaluated. In Group 2, V doses ranged from 50 to 150 mg every 12 h Days 1-4 with AC (60/600 mg/m2) Day 3 in 21-day cycles. In Group 3, patients received AC Day 1 plus V Days 1-7, and in Group 4, AC Day 1 plus V Days 1-14 was given in 21-day cycles to evaluate effects on γH2AX foci. RESULTS: Eighty patients were enrolled. MTD was not reached for V and C. MTD for V and AC was V 100 mg every 12 h Days 1-4 with AC (60/600 mg/m2) Day 3 every 21 days. V PK appears to be dose-dependent and has no effect on the PK of C. Overall, neutropenia and anemia were the most common adverse events. Objective response in V and AC treated groups was 22% (11/49). Overall clinical benefit rate was 31% (25/80). PAR decreased in PBMCs. Percentage of γH2AX-positive CTCs increased after treatment with V and AC. CONCLUSION: V and AC can be safely combined. Activity was observed in patients with metastatic breast cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles/pharmacokinetics , Cyclophosphamide/pharmacokinetics , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/administration & dosage , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cyclophosphamide/administration & dosage , Cyclophosphamide/blood , Doxorubicin/administration & dosage , Female , Humans , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/pathology , Poly Adenosine Diphosphate Ribose/blood , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
10.
Antimicrob Agents Chemother ; 66(1): e0143221, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34606333

ABSTRACT

Oxfendazole is a potent veterinary antiparasitic drug undergoing development for human use to treat multiple parasitic infections. Results from two recently completed phase I clinical trials conducted in healthy adults showed that the pharmacokinetics of oxfendazole is nonlinear, affected by food, and, after the administration of repeated doses, appeared to mildly affect hemoglobin concentrations. To facilitate oxfendazole dose optimization for its use in patient populations, the relationship among oxfendazole dose, pharmacokinetics, and hemoglobin concentration was quantitatively characterized using population pharmacokinetic-pharmacodynamic modeling. In fasting subjects, oxfendazole pharmacokinetics was well described by a one-compartment model with first-order absorption and elimination. The change in oxfendazole pharmacokinetics when administered following a fatty meal was captured by an absorption model with one transit compartment and increased bioavailability. The effect of oxfendazole exposure on hemoglobin concentration in healthy adults was characterized by a life span indirect response model in which oxfendazole has positive but minor inhibitory effect on red blood cell synthesis. Further simulation indicated that oxfendazole has a low risk of posing a safety concern regarding hemoglobin concentration, even at a high oxfendazole dose of 60 mg/kg of body weight once daily. The final model was further used to perform comprehensive target attainment simulations for whipworm infection and filariasis at various dose regimens and target attainment criteria. The results of our modeling work, when adopted appropriately, have the potential to greatly facilitate oxfendazole dose regimen optimization in patient populations with different types of parasitic infections.


Subject(s)
Benzimidazoles , Adult , Benzimidazoles/pharmacokinetics , Biological Availability , Body Weight , Computer Simulation , Dose-Response Relationship, Drug , Humans
11.
Bioanalysis ; 14(2): 75-86, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34841894

ABSTRACT

Aim: Because of several prospective benefits, binimetinib (BMT)-venetoclax (VTC) combination can be a better therapeutic strategy to treat cancer. Results: An LC-MS/MS method for simultaneous quantification of BMT and VTC in rat plasma has been developed and validated. Specificity, accuracy, precision and stability results met the acceptance criteria for validation. Accuracy and precisions at all quality control levels were <15%. The study revealed that co-administration of BMT and VTC has no significant effect on their pharmacokinetics. Conclusion: The developed method can provide accurate results for quantification of BMT and VTC over the range of 5-500 ng/ml. The reported pharmacokinetic interaction study results will be useful for future consideration of the combined treatment of BMT and VTC in anticancer chemotherapy regimens.


Subject(s)
Benzimidazoles/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Chromatography, Liquid/methods , Sulfonamides/therapeutic use , Tandem Mass Spectrometry/methods , Animals , Benzimidazoles/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Male , Models, Molecular , Prospective Studies , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacokinetics
12.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615272

ABSTRACT

The combination regimen targeting BRAF and MEK inhibition, for instance, encorafenib (Braftovi™, ENF) plus binimetinib (Mektovi®, BNB), are now recommended as first-line treatment in patients with unresectable or metastatic melanoma with a BRAF V600-activating mutation. Patients treated with combination therapy of ENF and BNB demonstrated a delay in resistance development, increases in antitumor activity, and attenuation of toxicities compared with the activity of either agent alone. However, the pharmacokinetic profile of the FDA-approved ENF and BNB is still unclear. In this study, a rapid and sensitive LC-MS/MS bioanalytical method for simultaneous quantification of ENF and BNB in rat plasma was developed and validated. Chromatography was performed on an Agilent Eclipse plus C18 column (50 mm × 2.1 mm, 1.8 µm), with an isocratic mobile phase composed of 0.1% formic acid in water/acetonitrile (67:33, v/v, pH 3.2) at a flow rate of 0.35 mL/min. A positive multiple reaction monitoring (MRM) mode was chosen for detection and the process of analysis was run for 2 min. Plasma samples were pre-treated using protein precipitation with acetonitrile containing spebrutinib as the internal standard (IS). Method validation was assessed as per the FDA guidelines for the determination of ENF and BNB over concentration ranges of 0.5-3000 ng/mL (r2 ≥ 0.997) for each drug (plasma). The lower limits of detection (LLOD) for both drugs were 0.2 ng/mL. The mean relative standard deviation (RSD) of the results for accuracy and precision was ≤ 7.52%, and the overall recoveries of ENF and BNB from rat plasma were in the range of 92.88-102.28%. The newly developed approach is the first LC-MS/MS bioanalytical method that can perform simultaneous quantification of ENF and BNB in rat plasma and its application to a pharmacokinetic study. The mean result for Cmax for BNB and ENF was found to be 3.43 ± 0.46 and 16.42 ± 1.47 µg/mL achieved at 1.0 h for both drugs, respectively. The AUC0-∞ for BNB and ENF was found to be 18.16 ± 1.31 and 36.52 ± 3.92 µg/mL.h, respectively. On the other hand, the elimination half-life (t1/2kel) parameters for BNB and ENF in the rat plasma were found to be 3.39 ± 0.43 h and 2.48 ± 0.24 h, and these results are consistent with previously reported values.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Carbamates , Melanoma , Sulfonamides , Tandem Mass Spectrometry , Animals , Rats , Chromatography, Liquid/methods , Proto-Oncogene Proteins B-raf/metabolism , Reproducibility of Results , Tandem Mass Spectrometry/methods , Carbamates/blood , Carbamates/pharmacokinetics , Sulfonamides/blood , Sulfonamides/pharmacokinetics , Benzimidazoles/blood , Benzimidazoles/pharmacokinetics , Melanoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/blood , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
13.
Arch Pharm Res ; 44(12): 1109-1119, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34817825

ABSTRACT

Candesartan cilexetil is an angiotensin II receptor blocker and it is widely used to treat hypertension and heart failure. This drug is a prodrug that rapidly converts to candesartan after oral administration. Candesartan is metabolized by cytochrome P450 2C9 (CYP2C9) enzyme or uridine diphosphate glucurinosyltransferase 1A3, or excreted in an unchanged form through urine, biliary tract and feces. We investigated the effect of genetic polymorphism of CYP2C9 enzyme on drug pharmacokinetics using physiologically based pharmacokinetic (PBPK) modeling. In addition, by introducing the age and ethnicity into the model, we developed a model that can propose an appropriate dosage regimen taking into account the individual characteristics of each patient. To evaluate the suitability of the model, the results of a clinical trial on twenty-two healthy Korean subjects and their CYP2C9 genetic polymorphism data was applied. In this study, PK-Sim® was used to develop the PBPK model of candesartan.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Benzimidazoles/pharmacokinetics , Biphenyl Compounds/pharmacokinetics , Cytochrome P-450 CYP2C9/genetics , Models, Biological , Tetrazoles/pharmacokinetics , Adult , Age Factors , Asian People/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Polymorphism, Genetic , Young Adult
14.
Drug Metab Dispos ; 49(11): 1025-1037, 2021 11.
Article in English | MEDLINE | ID: mdl-34462268

ABSTRACT

Maribavir is in phase 3 clinical development for treatment of cytomegalovirus infection/disease in transplant recipients. Previous research conducted using only intact cynomolgus monkeys indicated biliary secretion as the primary elimination pathway for maribavir and that maribavir undergoes enterohepatic recirculation (EHR). To clarify the exact mechanisms of maribavir's EHR behavior, we studied its clearance pathways using intravenously administered 14C-labeled maribavir in intact and bile duct-cannulated (BDC) monkeys and constructed a semi-physiologically based pharmacokinetic (PBPK) model. Total radioactivity metabolite profiles in plasma and excreta were quantitatively determined along with plasma maribavir concentrations. Intact animals showed significantly lower clearance and longer half-lives in both total radioactivity and parent concentration in plasma than BDC monkeys. The primary in vitro and in vivo metabolic pathway for maribavir in monkey is direct glucuronidation; N-dealkylation and renal clearance are minor pathways. In BDC monkeys, 73% of dose was recovered as maribavir glucuronides in bile, and 3% of dose was recovered as parent in bile and feces; in intact animals' feces, 58% of dose was recovered as parent, and no glucuronides were detected. Therefore, EHR of maribavir occurs through biliary secretion of maribavir glucuronides, and this is followed by hydrolysis of glucuronides in the gut lumen and subsequent reabsorption of parent. A semi-PBPK model constructed from physiologic, in vitro, and in vivo BDC monkey data is capable of projecting maribavir's pharmacokinetic and EHR behavior in intact animals after intravenous or oral dosing and could be applied to modeling other xenobiotics that are subject to similar EHR processes. SIGNIFICANCE STATEMENT: Through both mass balance and semi-physiologically based pharmacokinetic (semi-PBPK) modeling approaches, this study mechanistically and quantitatively elucidates maribavir's enterohepatic recirculation (EHR) behavior in monkeys, which occurs via extensive direct glucuronidation, biliary secretion of these glucuronides, luminal hydrolysis of glucuronides to parent, and subsequent reabsorption of the parent. The study also identifies important drug- and animal-specific parameters that determine the EHR kinetics, and the semi-PBPK model is readily applicable to other drugs that undergo similar metabolic and recirculation mechanisms.


Subject(s)
Antiviral Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Ribonucleosides/pharmacokinetics , Animals , Bile/chemistry , Bile/metabolism , Biotransformation , Caco-2 Cells , Dealkylation , Feces/chemistry , Gastrointestinal Transit , Glucuronides/metabolism , Half-Life , Humans , Hydrolysis , Kidney/metabolism , Macaca fascicularis , Male , Models, Biological
15.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Article in English | MEDLINE | ID: mdl-34315764

ABSTRACT

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Subject(s)
Benzimidazoles/pharmacology , Glioblastoma/drug therapy , Leiomyosarcoma/drug therapy , Pyrazines/pharmacology , Tubulin Modulators/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Apoptosis , Benzimidazoles/pharmacokinetics , Cell Proliferation , Female , Glioblastoma/pathology , Humans , Leiomyosarcoma/pathology , Male , Maximum Tolerated Dose , Mice , Mice, Nude , Middle Aged , Prognosis , Pyrazines/pharmacokinetics , Tissue Distribution , Tubulin Modulators/pharmacokinetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
J Clin Pharmacol ; 61(11): 1493-1504, 2021 11.
Article in English | MEDLINE | ID: mdl-34196005

ABSTRACT

Selumetinib (ARRY-142886), an oral, potent and highly selective allosteric mitogen-activated protein kinase kinase 1/2 inhibitor, is approved by the US Food and Drug Administration for the treatment of pediatric patients aged ≥2 years with neurofibromatosis type 1 with symptomatic, inoperable plexiform neurofibromas. A physiologically based pharmacokinetic (PBPK) model was constructed to predict plasma concentration-time profiles of selumetinib, and to evaluate the impact of coadministering moderate cytochrome P450 (CYP) 3A4/2C19 inhibitors/inducers. The model was also used to extrapolate pharmacokinetic exposures from older children with different body surface area to guide dosing in younger children. This model was built based on physiochemical data and clinical in vivo drug-drug interaction (DDI) studies with itraconazole and fluconazole, and verified against data from an in vivo rifampicin DDI study and an absolute bioavailability study. The pediatric model was updated by changing system-specific input parameters using the Simcyp pediatric module. The model captured the observed selumetinib pharmacokinetic profiles and the interactions with CYP inhibitors/inducers. The predictions from the PBPK model showed a DDI effect of 30% to 40% increase or decrease in selumetinib exposure when coadministered with moderate CYP inhibitors or inducers, respectively, which was used to inform dose management and adjustments. The pediatric PBPK model was applied to simulate exposures in specific body surface area brackets that matched those achieved with a 25 mg/m2 dose in SPRINT clinical trials. The pediatric PBPK model was used to guide the dose for younger patients in a planned pediatric clinical study.


Subject(s)
Benzimidazoles/pharmacokinetics , Cytochrome P-450 Enzyme Inducers/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Adolescent , Age Factors , Area Under Curve , Body Surface Area , Child , Child, Preschool , Drug Dosage Calculations , Drug Interactions , Fluconazole/pharmacology , Humans , Itraconazole/pharmacology , Metabolic Clearance Rate , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Rifampin/pharmacology
17.
Drug Deliv ; 28(1): 1301-1311, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34176378

ABSTRACT

Flibanserin (FLB) was approved by FDA for the treatment of pre-menopausal female hypoactive sexual desire disorder (HSDD). FLB suffers from low oral bioavailability (33%) which might be due to hepatic first-pass metabolism in addition to its poor aqueous solubility. The sublingual route could be a promising alternative for FLB due to the avoidance of enterohepatic circulation. However, the drug needs to dissolve in the small volume of saliva in order to be absorbed through the sublingual mucosa. Therefore, FLB nanocrystals were prepared by sono-precipitation technique according to 23 full factorial design. FLB-nanocrystals were formulated using two surfactants (PVP K30 and PL F127) in two different amounts (200 and 400 mg) and the volume of ethanol was either 3 or 5 mL. Nanocrystal formulation was optimized according to the desirability function to have a minimum particle size, zeta potential, polydispersity index, and maximum saturated solubility. The optimized formula had a particle size of 443.12 ± 14.91 nm and a saturated solubility of 23.27 ± 4.62 mg/L which is five times the saturated solubility of FLB. Nanocrystal dispersion of the optimized formula was solidified by freeze-drying and used to prepare rapidly disintegrating sublingual tablets containing Pharmaburst® as superdisintegrant. Sublingual tablet formulation with the shortest disintegration time (36 s) was selected for the in vivo study. FLB nanocrystal-based sublingual tablets exhibited a two-fold increase in bioavailability with a faster onset of action compared to the commercially available oral formulation. These findings prove the potential application of FLB nanocrystal-based sublingual tablets in the treatment of HSDD.


Subject(s)
Benzimidazoles/pharmacokinetics , Nanoparticles/chemistry , Administration, Sublingual , Animals , Benzimidazoles/administration & dosage , Chemistry, Pharmaceutical , Cross-Over Studies , Drug Carriers/chemistry , Libido , Male , Particle Size , Rabbits , Random Allocation , Sexual Dysfunctions, Psychological , Solubility , Surface Properties , Tablets
18.
Bioorg Chem ; 114: 105026, 2021 09.
Article in English | MEDLINE | ID: mdl-34186467

ABSTRACT

In this work, two series of cyclic amine-containing benzimidazole carboxamide derivatives were designed and synthesized as potent anticancer agents. PARP1/2 inhibitory activity assays indicated that most of the compounds showed significant activity. The in vitro antiproliferative activity of these compounds was investigated against four human cancer cell lines (MDA-MB-436, MDA-MB-231, MCF-7 and CAPAN-1), and several compounds exhibited strong cytotoxicity to tumor cells. Among them, 2-(1-(4,4-difluorocyclohexyl)piperidin-4-yl)-1H-benzo[d]imidazole-4-carboxamide (17d) was found to be effective PARP1/2 inhibitors (IC50 = 4.30 and 1.58 nM, respectively). In addition, 17d possessed obvious selective antineoplastic activity and noteworthy microsomal metabolic stability. What's more, further studies revealed that 17d was endowed with an excellent ADME profile. These combined results indicated that 17d could be a promising candidate for the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Benzimidazoles/chemical synthesis , Benzimidazoles/metabolism , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Male , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Poly(ADP-ribose) Polymerases/metabolism , Rats, Sprague-Dawley
19.
J Med Chem ; 64(12): 8775-8797, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34121397

ABSTRACT

Receptor-related orphan receptor γ (RORγ) has emerged as an attractive therapeutic target for the treatment of cancer and inflammatory diseases. Herein, we report our effort on the discovery, optimization, and evaluation of benzothiazole and benzimidazole derivatives as novel inverse agonists of RORγ. The representative compound 27h (designated as XY123) potently inhibited the RORγ transcription activity with a half-maximal inhibitory concentration (IC50) value of 64 nM and showed excellent selectivity against other nuclear receptors. 27h also potently suppressed cell proliferation, colony formation, and the expression of androgen receptor (AR)-regulated genes in AR-positive prostate cancer cell lines. In addition, 27h demonstrated good metabolic stability and a pharmacokinetic property with reasonable oral bioavailability (32.41%) and moderate half-life (t1/2 = 4.98 h). Significantly, oral administration of compound 27h achieved complete and long-lasting tumor regression in the 22Rv1 xenograft tumor model in mice. Compound 27h may serve as a new valuable lead compound for further development of drugs for the treatment of prostate cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzeneacetamides/therapeutic use , Benzimidazoles/therapeutic use , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Benzeneacetamides/chemical synthesis , Benzeneacetamides/pharmacokinetics , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacokinetics , Benzothiazoles/therapeutic use , Cell Proliferation/drug effects , Drug Inverse Agonism , Drug Stability , Male , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
20.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1006-1017, 2021 09.
Article in English | MEDLINE | ID: mdl-34157202

ABSTRACT

The objective of this study was to evaluate bilastine dosing recommendations in older adults and overcome the limitation of insufficient data from phase I studies in this underrepresented population. This was achieved by integrating bilastine physicochemical, in vitro and in vivo data in young adults and the effect of aging in the pharmacology by means of two alternative approaches: a physiologically-based pharmacokinetic (PBPK) model and a semi-mechanistic population pharmacokinetic (Senescence) model. Intestinal apical efflux and basolateral influx transporters were needed in the PBPK model to capture the observations from young adults after single i.v. (10 mg) and p.o. (20 mg) doses, supporting the hypothesis of involvement of gut transporters on secretion. The model was then used to extrapolate the pharmacokinetics (PKs) to elderly subjects considering their specific physiology. Additionally, the Senescence model was develop starting from a published population PK) model, previously applied for pediatrics, and incorporating declining functions on different physiological systems and changes in body composition with aging. Both models were qualified using observed data in a small group of young elderlies (N = 16, mean age = 68.69 years). The PBPK model was further used to evaluate the dose in older subjects (mean age = 80 years) via simulation. The PBPK model supported the hypothesis that basolateral influx and apical efflux transporters are involved in bilastine PK. Both, PBPK and Senescence models indicated that a 20 mg q.d. dose is safe and effective for geriatrics of any age. This approach provides an alternative to generate supplementary data to inform dosing recommendations in under-represented groups in clinical trials.


Subject(s)
Benzimidazoles/administration & dosage , Histamine H1 Antagonists/administration & dosage , Models, Biological , Piperidines/administration & dosage , Administration, Oral , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Benzimidazoles/pharmacokinetics , Clinical Trials, Phase I as Topic , Computer Simulation , Dose-Response Relationship, Drug , Female , Histamine H1 Antagonists/pharmacokinetics , Humans , Male , Middle Aged , Piperidines/pharmacokinetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...