Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.440
Filter
1.
Food Chem ; 452: 139430, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38713984

ABSTRACT

As emerging contaminants, microplastics threaten food and environmental safety. Dibutyl phthalate (DBP, released from microplastics) and benzo[a]pyrene (BaP, adsorbed on microplastics) coexisted in food and the environment, harming human health, requesting a sensitive and simultaneous testing method to monitor. To address current sensitivity, simultaneousness, and on-site portability challenges during dual targets in complex matrixes, CuCo2S4/Fe3O4 nanoflower was designed to develop a smartphone-assisted photoelectrochemical point-of-care test (PEC POCT). The carrier transfer mechanism in CuCo2S4/Fe3O4 was proven via density functional theory calculation. Under optimal conditions, the PEC POCT showed low detection limits of 0.126, and 0.132 pg/mL, wide linearity of 0.001-500, and 0.0005-50 ng/mL for DBP and BaP, respectively. The smartphone-assisted PEC POCT demonstrated satisfied recoveries (80.00%-119.63%) in real samples. Coherent results were recorded by comparing the PEC POCT to GC-MS (DBP) and HPLC (BaP). This novel method provides a practical platform for simultaneous POCT for food safety and environment monitoring.


Subject(s)
Electrochemical Techniques , Food Contamination , Microplastics , Smartphone , Food Contamination/analysis , Microplastics/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Copper/analysis , Copper/chemistry , Benzo(a)pyrene/analysis , Dibutyl Phthalate/analysis
2.
Chemosphere ; 358: 142242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710409

ABSTRACT

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Subject(s)
Benzo(a)pyrene , Chironomidae , Oxidative Stress , Animals , Benzo(a)pyrene/toxicity , Chironomidae/drug effects , Chironomidae/genetics , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Whole Genome Sequencing , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Mutagenicity Tests
3.
Article in English | MEDLINE | ID: mdl-38821675

ABSTRACT

Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.


Subject(s)
Hepatocytes , Micronucleus Tests , Mutagenicity Tests , Mutagens , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Mutagens/toxicity , Micronucleus Tests/methods , Mutagenicity Tests/methods , Liver/drug effects , Liver/metabolism , Lab-On-A-Chip Devices , DNA Damage/drug effects , Comet Assay/methods , Cyclophosphamide/toxicity , Methyl Methanesulfonate/toxicity , Cell Line , Benzo(a)pyrene/toxicity , Coculture Techniques , Ethyl Methanesulfonate/toxicity , Mutation/drug effects
4.
Ecotoxicol Environ Saf ; 278: 116409, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701656

ABSTRACT

Environmental benzo(a)pyrene (BaP) and itsmetabolite benzo(a)pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE), classic endocrine disrupting chemical and persistent organic pollutant, could cause miscarriage. However, the detailed mechanisms are still largely unclear and should be further explored. In this study, we discovered that exposure of trophoblast cells with BPDE could suppressed cell invasion/migration by inhibiting MEST/VIM (Vimentin) pathway. Moreover, BPDE exposure also increased lnc-HZ01 expression level, which further inhibited MEST/VIM pathway and then suppressed invasion/migration. Knockdown of lnc-HZ01 or overexpression of MEST could efficiently rescue invasion/migration of BPDE-exposed Swan 71 cells. Furthermore, lnc-HZ01 was highly expressed and MEST/VIM were lowly expressed in recurrent miscarriage (RM) villous tissues compared with healthy control (HC) group. Finally, we also found that BaP exposure inhibited murine Mest/Vim pathway in placental tissues and induced miscarriage in BaP-exposed mice. Therefore, the regulatory mechanisms were similar in BPDE-exposed human trophoblast cells, RM villous tissues, and placental tissues of BaP-exposed mice with miscarriage, building a bridge to connect BaP/BPDE exposure, invasion/migration, and miscarriage. This study provided novel insights in the toxicological effects and molecular mechanisms of BaP/BPDE-induced miscarriage, which is helpful for better elucidating the toxicological risks of BaP/BPDE on female reproduction.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide , Benzo(a)pyrene , Cell Movement , Down-Regulation , Trophoblasts , Trophoblasts/drug effects , Female , Animals , Cell Movement/drug effects , Benzo(a)pyrene/toxicity , Humans , Mice , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Pregnancy , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Cell Line , Abortion, Spontaneous/chemically induced
5.
Ecotoxicol Environ Saf ; 278: 116390, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705037

ABSTRACT

Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5µm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.


Subject(s)
Benzo(a)pyrene , Liver , Microplastics , Oxidative Stress , Polystyrenes , Rats, Sprague-Dawley , Animals , Oxidative Stress/drug effects , Benzo(a)pyrene/toxicity , Microplastics/toxicity , Male , Polystyrenes/toxicity , Liver/drug effects , Liver/pathology , Rats , Environmental Pollutants/toxicity , Antioxidants/metabolism , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism
6.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729483

ABSTRACT

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Subject(s)
Charcoal , Lignin , Sesame Oil , Lignin/chemistry , Charcoal/chemistry , Adsorption , Sesame Oil/chemistry , Benzo(a)pyrene/chemistry , Kinetics
7.
Sci Total Environ ; 933: 173088, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735333

ABSTRACT

Sexual dimorphism in immune responses is an essential factor in environmental adaptation. However, the mechanisms involved remain obscure owing to the scarcity of data from sex-role-reversed species in stressed conditions. Benzo[a]pyrene (BaP) is one of the most pervasive and carcinogenic organic pollutants in coastal environments. In this study, we evaluated the potential effects on renal immunotoxicity of the sex-role-reversed lined seahorse (Hippocampus erectus) toward environmental concentrations BaP exposure. Our results discovered the presence of different energy-immunity trade-off strategies adopted by female and male seahorses during BaP exposure. BaP induced more severe renal damage in female seahorses in a concentration-dependent manner. BaP biotransformation and detoxification in seahorses resemble those in mammals. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide (BPDE) and 9-hydroxybenzo[a]pyrene (9-OH-BaP) formed DNA adducts and disrupted Ca2+ homeostasis may together attribute the renal immunotoxicity. Sexual dimorphisms in detoxification of both BPDE and 9-OH-BaP, and in regulation of Ca2+, autophagy and inflammation, mainly determined the extent of renal damage. Moreover, the mechanism of sex hormones regulated sexual dimorphism in immune responses needs to be further elucidated. Collectively, these findings contribute to the understanding of sexual dimorphism in the immunotoxicity induced by BaP exposure in seahorses, which may attribute to the dramatic decline in the biodiversity of the genus.


Subject(s)
Benzo(a)pyrene , Sex Characteristics , Smegmamorpha , Water Pollutants, Chemical , Animals , Benzo(a)pyrene/toxicity , Male , Female , Water Pollutants, Chemical/toxicity , Smegmamorpha/physiology , Inactivation, Metabolic , Kidney/drug effects
8.
Environ Int ; 188: 108748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763096

ABSTRACT

INTRODUCTION: Endocrine disruptors are compounds of manmade origin able to interfere with the endocrine system and constitute an important environmental concern. Indeed, detrimental effects on thyroid physiology and functioning have been described. Differences exist in the susceptibility of human sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. METHODS: To study how different hormonal environments impact the thyroid response to endocrine disruptors, we exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations of sex hormones resembling the serum levels of human females post-ovulation or males of reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 h and analyzed the transcriptome changes via single-cell RNA sequencing with differential gene expression and gene ontology analysis. RESULTS: The sex hormones receptors genes AR, ESR1, ESR2 and PGR were expressed at low levels. Among the thyroid markers, only TG resulted downregulated by benzo[a]pyrene or benzo[a]pyrene with the "male" hormones mix. Both hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in oxidative phosphorylation, while their combination decreased the expression compared to benzo[a]pyrene alone. The "male" mix and benzo[a]pyrene, alone or in combination, upregulated genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, FABP6). The combination of "male" hormones and benzo[a]pyrene induced also genes involved in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 irrespective of the hormonal context. The induction was stronger in the "female" mix. Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive oxygen species and apoptosis. PCB153 had a modest effect in presence of "male" hormones, while we did not observe any changes with the "female" mix. CONCLUSION: This work shows how single cell transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and their interaction with different hormonal contexts.


Subject(s)
Benzo(a)pyrene , Endocrine Disruptors , Gonadal Steroid Hormones , Polychlorinated Biphenyls , Thyroid Gland , Transcriptome , Humans , Benzo(a)pyrene/toxicity , Polychlorinated Biphenyls/toxicity , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Thyroid Gland/drug effects , Female , Male , Single-Cell Analysis , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism
9.
J Environ Sci Health B ; 59(5): 248-262, 2024.
Article in English | MEDLINE | ID: mdl-38605578

ABSTRACT

The ability of Acinetobacter sp. strain HAP1, isolated from petroleum refinery effluent, to eliminate different concentrations (20, 40, 60, 80 and 100 mg/L) of Benzo[a]Pyrene degradation (BaP) was studied. A test to improve this degradation capacity was carried out by culturing the bacterial strain in association with a cyanobacteria. The results show a highly significant effect of the concentration of (BaP) and a very highly significant effect of the symbiosis between the bacterial strain and the cyanobacteria. This combination was able to significantly improve the (BaP) degradation rate by up to 18%. This degradation and especially in association leads to a complete mineralization of (BaP) and there is a difference in yield that can go up to 15%. Through molecular identification based on 16S rRNA gene sequence analysis, strains HAP1 and S66 were recognized as Acinetobacter sp. strain HAP1 and Cyanobacteriota sp. S66, respectively. Comparison of the retrieved sequences with the NCBI GenBank database was done, and the closest matches were found to be Acinetobacter pittii strain JD-10 for bacteria and Pseudochroococcus couteii strain PMC 885.14 for cyanobacteria.


Subject(s)
Acinetobacter , Cyanobacteria , Benzo(a)pyrene , Symbiosis , RNA, Ribosomal, 16S/genetics , Biodegradation, Environmental , Acinetobacter/genetics , Acinetobacter/metabolism
10.
Sci Rep ; 14(1): 9597, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671174

ABSTRACT

Smoking of classic cigarettes has been well-established as a health risk factor, including cardiovascular, neurological, and pulmonary diseases. Adverse effects on human reproduction have also been shown. Smokers are assumed to have a significantly lower chance of pregnancy, however, the impact of smoking on medically assisted reproduction (MAR) treatment outcomes is controversial. Moreover, smoking habits have changed during the last decades since e-cigarettes and hookahs, or water pipes, have become very popular, yet little is known regarding vaping or hookah-smoking patients undergoing MAR treatments. This prospective study aimed to examine the presence of benzo[a]pyrene, nicotine, and its main metabolite, cotinine, in human follicular fluid (FF) in non-smoking, smoking, and vaping/hookah-smoking patients and to evaluate the impact on female fertility. Human FF samples were collected from 320 women subjected to intracytoplasmic sperm injection (ICSI) cycles due to male subfertility. Gas chromatography combined with mass spectrometry was used to analyse the presence of benzo[a]pyrene, nicotine, and cotinine. A questionnaire was provided to assess patient consumption behaviour and to identify (1) non-smoking patients, (2) patients who consumed cigarettes, and (3) patients with exclusive consumption of e-cigarettes or hookahs. Data were analysed using linear and logistic regression, Fisher's exact test, and the Mann-Whitney U Test. Nicotine was present in 22 (6.8%) and cotinine in 65 (20.3%) of the 320 samples. The nicotine and cotinine concentrations per sample ranged from 0 to 26.3 ng/ml and 0-363.0 ng/ml, respectively. Benzo[a]pyrene was not detectable in any of the samples analysed. Nicotine and cotinine were also present in the FF of patients with exclusive consumption of e-cigarettes or hookahs. The clinical pregnancy rate, fertilization and maturation rates, and number of oocytes per oocyte pick-up were not statistically significantly different between non-smoking, smoking, or vaping/hookah-smoking patients. Smoking and the accumulation of smoking toxins in the FF have no impact on the outcome of MAR treatments-neither the clinical pregnancy rate, maturation and fertilization rates, nor the number of retrieved oocytes were affected. For the first time, nicotine and cotinine were quantified in the FF of patients exclusively vaping e-cigarettes or smoking hookahs. Since vaping liquids and hookah tobaccos contain potentially harmful substances, other adverse effects cannot be excluded.Trial registration ClinicalTrials.gov Identifier: NCT03414567.


Subject(s)
Cotinine , Electronic Nicotine Delivery Systems , Nicotine , Reproductive Techniques, Assisted , Humans , Female , Adult , Reproductive Techniques, Assisted/adverse effects , Cotinine/analysis , Nicotine/analysis , Nicotine/adverse effects , Prospective Studies , Pregnancy , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Benzo(a)pyrene/analysis , Male , Vaping/adverse effects , Water Pipe Smoking/adverse effects , Smoking/adverse effects
11.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Article in English | MEDLINE | ID: mdl-38579532

ABSTRACT

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Subject(s)
Apoptosis , Benzo(a)pyrene , Cell Survival , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Receptors, Aryl Hydrocarbon , Trophoblasts , Humans , Benzo(a)pyrene/toxicity , Placenta/drug effects , Placenta/cytology , Cell Line , Female , Pregnancy , Apoptosis/drug effects , Trophoblasts/drug effects , Trophoblasts/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Cell Survival/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Mitochondria/drug effects , Inflammation/chemically induced , Cell Hypoxia/drug effects , Membrane Potential, Mitochondrial/drug effects , Cytochrome P-450 Enzyme System/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
12.
Int Immunopharmacol ; 133: 111958, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608441

ABSTRACT

The composition, quantity, and function of peripheral blood mononuclear cells (PBMCs) are closely correlated with tumorigenesis. However, the mechanisms of PBMCs in lung cancer are not clear. Mitochondria are energy factories of cells, and almost all cellular functions rely on their energy metabolism level. The present study aimed to test whether the mitochondrial function of PBMCs directly determines their tumor immune monitoring function. We recruited 211 subjects, including 105 healthy controls and 106 patients with recently diagnosed with lung cancer. The model of lung carcinogenesis induced by BaP was used in animal experiment, and the Bap carcinogenic metabolite, Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), was used in cell experiment. We found that mitochondrial function of PBMCs decreased significantly in patients with new lung cancer, regardless of age. In vivo, BaP caused PBMC mitochondrial dysfunction in mice before the appearance of visible malignant tissue. Moreover, mitochondrial function decreased significantly in mice with lung cancers induced by BaP compared to those without lung cancer after BaP intervention. In vitro, BPDE also induced mitochondrial dysfunction and reduced the aggressiveness of PBMCs toward cancer cells. Furthermore, the changes in mitochondrial energy metabolism gene expression caused by BPDE are involved in this process. Thus, the mitochondrial function of PBMCs is a potential prognostic biomarker or therapeutic target to improve clinical outcomes in patients with lung cancer.


Subject(s)
Leukocytes, Mononuclear , Lung Neoplasms , Mitochondria , Humans , Lung Neoplasms/pathology , Leukocytes, Mononuclear/metabolism , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Male , Female , Mice , Middle Aged , Carcinogenesis , Benzo(a)pyrene/toxicity , Energy Metabolism , Aged , Mice, Inbred C57BL
13.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636406

ABSTRACT

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Subject(s)
Benzo(a)pyrene , RNA, Small Interfering , Animals , Mice , Benzo(a)pyrene/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mice, Inbred C57BL , Humans , Piwi-Interacting RNA
14.
Reprod Toxicol ; 126: 108596, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641015

ABSTRACT

This study replicated a mouse model of sperm DNA damage induced by benzo(a)pyrene (BaP), and the transcriptomic and proteomic features of the model were examined to clarify the pathways related to BaP-induced damage to sperm DNA. Male mice in the BaP group were subjected to BaP at a dosage of 100 mg/kg/d or an equivalent quantity of saline solution in the control group for 60 days. Subsequently, the DNA fragmentation index (DFI) in sperm was assessed using a sperm chromatin structure assay (SCSA). RNA-seq and data-independent acquisition (DIA) were used to identify the mRNA and protein expression patterns in the testis. The sperm DFI significantly increased in the BaP group. Compared to the control group, the BaP group exhibited differential expression of 240 genes (referred to as DEGs) and 616 proteins (referred to as DEPs). These molecules included Aldh1a1, Cyb5r3, Fads1, Oxsm, Rcn3, and Prss45. Pathways in cancer, the PI3K-Akt signaling pathway, metabolic pathways, and the MAPK signaling pathway were the primary areas where these genes showed enrichment. BaP can damage the DNA of sperm and affect metabolism, the PI3K-Akt pathway, and pathways associated with cancer signaling.


Subject(s)
Benzo(a)pyrene , DNA Damage , Spermatozoa , Transcriptome , Animals , Male , Benzo(a)pyrene/toxicity , Spermatozoa/drug effects , Spermatozoa/metabolism , Transcriptome/drug effects , Mice , Proteome/drug effects , Proteomics , Testis/drug effects , Testis/metabolism , Testis/pathology , DNA Fragmentation/drug effects
15.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668960

ABSTRACT

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Subject(s)
Benzo(a)pyrene , DNA Adducts , Environmental Pollutants , Saccharomyces cerevisiae , DNA Adducts/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Mutagens/toxicity , Mutagens/metabolism , DNA, Fungal/genetics , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism
16.
Environ Pollut ; 351: 124043, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38679129

ABSTRACT

Studies suggested that exposure to air pollutants, with endocrine disrupting (ED) properties, have a key role in breast cancer (BC) development. Although the population is exposed simultaneously to a mixture of multiple pollutants and ED pollutants may act via common biological mechanisms leading to synergic effects, epidemiological studies generally evaluate the effect of each pollutant separately. We aimed to assess the complex effect of exposure to a mixture of four xenoestrogen air pollutants (benzo-[a]-pyrene (BaP), cadmium, dioxin (2,3,7,8-Tétrachlorodibenzo-p-dioxin TCDD)), and polychlorinated biphenyl 153 (PCB153)) on the risk of BC, using three recent statistical methods, namely weighted quantile sum (WQS), quantile g-computation (QGC) and Bayesian kernel machine regression (BKMR). The study was conducted on 5222 cases and 5222 matched controls nested within the French prospective E3N cohort initiated in 1990. Annual average exposure estimates to the pollutants were assessed using a chemistry transport model, at the participants' residence address between 1990 and 2011. We found a positive association between the WQS index of the joint effect and the risk of overall BC (adjusted odds ratio (OR) = 1.10, 95% confidence intervals (CI): 1.03-1.19). Similar results were found for QGC (OR = 1.11, 95%CI: 1.03-1.19). Despite the association did not reach statistical significance in the BKMR model, we observed an increasing trend between the joint effect of the four pollutants and the risk of BC, when fixing other chemicals at their median concentrations. BaP, cadmium and PCB153 also showed positive trends in the multi-pollutant mixture, while dioxin showed a modest inverse trend. Despite we found a clear evidence of a positive association between the joint exposure to pollutants and BC risk only from WQS and QGC regression, we observed a similar suggestive trend using BKMR. This study makes a major contribution to the understanding of the joint effects of air pollution.


Subject(s)
Air Pollutants , Breast Neoplasms , Cadmium , Endocrine Disruptors , Environmental Exposure , Polychlorinated Biphenyls , Humans , Breast Neoplasms/epidemiology , Breast Neoplasms/chemically induced , Female , Air Pollutants/analysis , Environmental Exposure/statistics & numerical data , Middle Aged , Bayes Theorem , Benzo(a)pyrene , Aged , Polychlorinated Dibenzodioxins , France/epidemiology , Adult
17.
Environ Res ; 252(Pt 1): 118865, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583661

ABSTRACT

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.


Subject(s)
Apoptosis , Benzo(a)pyrene , Granulosa Cells , NF-kappa B , TNF Receptor-Associated Factor 2 , Female , Animals , Apoptosis/drug effects , Mice , Granulosa Cells/drug effects , Granulosa Cells/metabolism , NF-kappa B/metabolism , Pregnancy , Benzo(a)pyrene/toxicity , TNF Receptor-Associated Factor 2/metabolism , Caspase 1/metabolism , Endocrine Disruptors/toxicity , Signal Transduction/drug effects , Humans
18.
Immunol Lett ; 267: 106858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631465

ABSTRACT

The function of CD5 protein in T cells is well documented, but regulation of its surface-level expression has yet to be fully understood. However, variation in its surface expression is associated with various immunopathological conditions and haematological malignancies. Briefly, expression of an alternate exon E1B of a human endogenous retroviruses (HERV) origin directly downregulates the conventional transcript variant (E1A), as its expression leads to the retention of the resultant protein at the intracellular level (cCD5). A separate promoter governs the expression of E1B and may be influenced by different transcription factors. Hence, we performed in silico transcription factor binding site (TFBS) analysis of the 3 kb upstream region from TSS of exon E1B and found five putative DREs (Dioxin Response elements) with good similarity scores. Further, we observed the upregulation in E1B expression after the exposure of BaP (a dioxin) and the reduction of E1A expression and their respective protein, i.e. sCD5 and cCD5. The binding of AHR at the predicted DRE sites was confirmed by ChIP qPCR and AHR specific inhibitor and gene silencing studies suggested the involvement of AHR in exonal switch. This study indicates that the polycyclic aromatic hydrocarbon decreases the sCD5 expression by upregulating alternative exon expression, which may adversely affect the overall T cell functions.


Subject(s)
Benzo(a)pyrene , CD5 Antigens , Exons , Gene Expression Regulation , Receptors, Aryl Hydrocarbon , Humans , CD5 Antigens/metabolism , CD5 Antigens/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Exons/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Promoter Regions, Genetic/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Protein Binding , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Binding Sites , Jurkat Cells
20.
Mutat Res ; 828: 111855, 2024.
Article in English | MEDLINE | ID: mdl-38569440

ABSTRACT

Environmental and occupational exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health effects in humans. Uncertainty exists regarding the causation of urinary bladder cancer by benzo[a]pyrene (B[a]P) due to a lack of sufficient data. In this work, we focused on in-vitro DNA damage and the formation of micronuclei and chromosomal aberrations as predictors of cancer risk, applying a wide range of dosages and time periods to quantify the onset, intensity, and duration of the response. We chose two urothelial cell types to compare susceptibility and the ability to increase the malignity of a pre-existing bladder cancer: a cancer cell line (T24) and a pooled sample of primary urinary bladder epithelia cells (PUBEC) from pigs. The highest level of DNA damage assessed by comet assay was observed following 24-h treatment in both cell types, whereas PUBEC cells were clearly more susceptible. Even 4-h treatment induced DNA damage in PUBEC cells with benchmark doses of 0.0027 µM B[a]P and 0.00023 µM after 4-h and 24-h exposure, respectively. Nearly no effect was observed for periods of 48 h. The frequency of micronucleus formation increased more markedly in T24 cells, particularly with 24-h treatment. In PUBEC cells, 48-h exposure notably induced the formation of nucleoplasmic bridges and nuclear buds. Even though only one biological replicate was studied due to the sophisticated study design, our results give a strong indication of the potential of B[a]P to induce and increase malignity in human-relevant cell types.


Subject(s)
Benzo(a)pyrene , Chromosomal Instability , DNA Damage , Urothelium , Benzo(a)pyrene/toxicity , DNA Damage/drug effects , Pilot Projects , Animals , Urothelium/drug effects , Urothelium/pathology , Chromosomal Instability/drug effects , Humans , Swine , Micronucleus Tests , Dose-Response Relationship, Drug , Chromosome Aberrations , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Time Factors , Comet Assay , Cell Line, Tumor , Urinary Bladder/drug effects , Urinary Bladder/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...