Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.236
Filter
1.
J Org Chem ; 89(10): 7255-7262, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38718382

ABSTRACT

Juglanaloids A and B are recently isolated natural products characterized by an unprecedented spiro bicyclic isobenzofuranone-tetrahydrobenzazepinone framework and a promising antiamyloid activity. Here reported is a straightforward convergent total synthesis of these natural products, which were obtained in high enantiomeric purity (94% and >99% ee for juglanaloids A and B, respectively) through an eight-step longest linear sequence, based on an efficient and reliable enantioselective phase-transfer-catalyzed alkylation step. Considering the interesting biological activity of juglanaloids, this convenient, highly enantioselective, flexible, and predictable synthetic strategy promises to be a powerful tool for accessing potentially bioactive spiro bicyclic phthalide-tetrahydrobenzazepinone derivatives.


Subject(s)
Alkaloids , Alzheimer Disease , Spiro Compounds , Stereoisomerism , Alzheimer Disease/drug therapy , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Alkaloids/pharmacology , Molecular Structure , Benzofurans/chemistry , Benzofurans/chemical synthesis , Benzofurans/pharmacology
2.
Luminescence ; 39(5): e4752, 2024 May.
Article in English | MEDLINE | ID: mdl-38697778

ABSTRACT

Prucalopride (PCD), is a modern medication approved by the United States in 2018 to alleviate constipation caused by motility issues. PCD demonstrates a strong affinity and selectivity toward the 5-HT4 receptor. The study here introduces a feasible, direct, non-extractive, and affordable pathway for PCD analytical tracking. The fluorimetric study is based on the on-off effect on the emission amplitude of fluorone-based dye (pyrosin B). In a one-pot experiment, the complex between PCD and pyrosin B is formed instantly in an acidic medium. Correlation between decreased pyrosin B emission and PCD concentrations provides a linear calibration plot from 50 to 900 ng/mL. PCD-dye complex system affecting variables were meticulously tuned. The values of the estimated limit of quantitation and limit of detection for the current methodology were 47.5 and 15.7 ng/mL, respectively. Conformity of the strategy validity was achieved by a comprehensive study of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use criteria. The method was convincingly applied for PCD assay in tablets and content uniformity investigation. Furthermore, PCD tracking in the spiked biological fluid was applied. Finally, the method uses distilled water as dispersing medium which rise accommodation with the green chemistry principle.


Subject(s)
Benzofurans , Fluorescent Dyes , Benzofurans/chemistry , Benzofurans/analysis , Fluorescent Dyes/chemistry , Humans , Spectrometry, Fluorescence , Molecular Structure , Limit of Detection
3.
J Agric Food Chem ; 72(18): 10195-10205, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38662962

ABSTRACT

The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 µg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 µg/mL) and allicin (8.40, 28.22, and 88.04 µg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.


Subject(s)
Anti-Bacterial Agents , Benzofurans , Disulfides , Drug Design , Microbial Sensitivity Tests , Xanthomonas , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Xanthomonas/drug effects , Disulfides/chemistry , Disulfides/pharmacology , Plant Diseases/microbiology , Quantitative Structure-Activity Relationship , Molecular Structure , Xanthomonas axonopodis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oryza/microbiology , Oryza/chemistry
4.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675525

ABSTRACT

Traumatic brain injury (TBI) leads to structural damage in the brain, and is one of the major causes of disability and death in the world. Herein, we developed a composite injectable hydrogel (HA/Gel) composed of hyaluronic acid (HA) and gelatin (Gel), loaded with vascular endothelial growth factor (VEGF) and salvianolic acid B (SAB) for treatment of TBI. The HA/Gel hydrogels were formed by the coupling of phenol-rich tyramine-modified HA (HA-TA) and tyramine-modified Gel (Gel-TA) catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). SEM results showed that HA/Gel hydrogel had a porous structure. Rheological test results showed that the hydrogel possessed appropriate rheological properties, and UV spectrophotometry results showed that the hydrogel exhibited excellent SAB release performance. The results of LIVE/DEAD staining, CCK-8 and Phalloidin/DAPI fluorescence staining showed that the HA/Gel hydrogel possessed good cell biocompatibility. Moreover, the hydrogels loaded with SAB and VEGF (HA/Gel/SAB/VEGF) could effectively promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). In addition, the results of H&E staining, CD31 and α-SMA immunofluorescence staining showed that the HA/Gel/SAB/VEGF hydrogel possessed good in vivo biocompatibility and pro-angiogenic ability. Furthermore, immunohistochemical results showed that the injection of HA/Gel/SAB/VEGF hydrogel to the injury site could effectively reduce the volume of defective tissues in traumatic brain injured mice. Our results suggest that the injection of HA/Gel hydrogel loaded with SAB and VEGF might provide a new approach for therapeutic brain tissue repair after traumatic brain injury.


Subject(s)
Benzofurans , Brain Injuries, Traumatic , Depsides , Gelatin , Hyaluronic Acid , Hydrogels , Vascular Endothelial Growth Factor A , Animals , Hydrogels/chemistry , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Gelatin/chemistry , Hyaluronic Acid/chemistry , Mice , Vascular Endothelial Growth Factor A/metabolism , Benzofurans/chemistry , Benzofurans/pharmacology , Benzofurans/administration & dosage , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Disease Models, Animal , Male , Cell Proliferation/drug effects
5.
Bioorg Chem ; 147: 107335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583250

ABSTRACT

Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 µM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 µM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1ß, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.


Subject(s)
Aglaia , Lipopolysaccharides , Nitric Oxide , Animals , Mice , Aglaia/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Cell Line , Plant Leaves/chemistry
6.
J Nat Med ; 78(3): 709-721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575838

ABSTRACT

Methanol extract of the Cnidium officinale Makino rhizome, which is used as a crude drug Cnidium Rhizome (Cnidii Rhizoma; "Senkyu" in Japanese) and is listed in the Japanese Pharmacopoeia XVIII, showed intracellular triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Thirty-five constituents, including two new alkylphthalide glycosides, senkyunosides A (1) and B (2), and a neolignan with a new stereoisomeric structure (3), were isolated in the extract. Their stereostructures were elucidated based on chemical and spectroscopic evidence. Among the isolates, several alkylphthalides, (Z)-3-butylidene-7-methoxyphthalide (9) and senkyunolides G (10), H (14), and I (15), and a polyacetylene falcarindiol (26), were found to show significant activity without any cytotoxicity at 10 µM.


Subject(s)
Benzofurans , Cnidium , Rhizome , Triglycerides , Humans , Rhizome/chemistry , Hep G2 Cells , Cnidium/chemistry , Triglycerides/metabolism , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification
7.
Environ Pollut ; 350: 124011, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641034

ABSTRACT

The clean and efficient utilization of municipal solid waste (MSW) has attracted increasing concerns in recent years. Pyrolysis of MSW is one of the promising options due to the production of high-value intermediates and the inhibition of pollutants at reducing atmosphere. Herein, the formation behavior of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during MSW pyrolysis and incineration was experimentally investigated and compared. The influence of reaction temperature, CaO addition, and redox atmosphere on PCDD/Fs formation were compared and discussed. The results showed as the pyrolysis temperature increased, the mass concentration and international toxicity equivalence quantity of PCDD/Fs initially peaked at ∼750 °C before declining. Most of the generated PCDD/Fs were concentrated in the liquid and gaseous products, accounting for ∼90% of the total. Among liquid products, octachlorodibenzo-p-dioxin (O8CDD), 2,3,4,7,8-pentachlorodibenzofuran and 1,2,3,4,6,7,8-heptachlorodibenzofuran (H7CDF) were the most crucial mass concentration contributors, while in gas products, high-chlorinated PCDD/Fs, such as O8CDD, octachlorodibenzofuran (O8CDF) and 1,2,3,4,6,7,8-H7CDF were predominant. Compared to incineration, the formation of PCDD/Fs was 7-20 times greater than that from pyrolysis. This discrepancy can be attributed to the hydrogen-rich and oxygen-deficient atmosphere during pyrolysis, which effectively inhibited the Deacon reaction and the formation of C-Cl bonds, thereby reducing the active chlorine in the system. The addition of in-situ CaO additives also decreased the active chlorine content in the system, bolstering the inhibiting of PCDD/Fs formation during MSW pyrolysis.


Subject(s)
Calcium Compounds , Incineration , Oxidation-Reduction , Oxides , Polychlorinated Dibenzodioxins , Pyrolysis , Polychlorinated Dibenzodioxins/chemistry , Polychlorinated Dibenzodioxins/analysis , Calcium Compounds/chemistry , Oxides/chemistry , Dibenzofurans, Polychlorinated/chemistry , Temperature , Solid Waste , Air Pollutants/analysis , Air Pollutants/chemistry , Benzofurans/chemistry
8.
Chem Biodivers ; 21(5): e202400409, 2024 May.
Article in English | MEDLINE | ID: mdl-38459792

ABSTRACT

From Garcinia pedunculata Roxb. fruits, two undescribed aromatic compounds including a benzofuran and a depsidone derivative, and a new natural product, together with four known compounds were isolated. Through the analysis of spectroscopic data, high resolution mass spectrum and calculated nuclear magnetic resonance, their structures were determined. The α-glucosidase inhibitory activity of the isolates was evaluated. And compound 3 exhibited a moderate inhibitory effect on α-glucosidase. The molecular docking of compound 3 was performed to elucidate the interaction with α-glucosidase.


Subject(s)
Fruit , Garcinia , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Garcinia/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Fruit/chemistry , alpha-Glucosidases/metabolism , Molecular Structure , Structure-Activity Relationship , Depsides/chemistry , Depsides/isolation & purification , Depsides/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology
9.
J Asian Nat Prod Res ; 26(6): 756-764, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379372

ABSTRACT

Three Diels-Alder type adducts (1-3) along with their precursors, including one 2-arylbenzofuran (4) and one stilbene (5), were isolated from the MeOH extract of M. alba var. shalun root cultures. Among them, 1 is a new Diels-Alder type adduct named morushalunin D. The molecular structures of 1-5 were elucidated based on spectroscopic data and comparison with the literatures. Cytotoxic properties of compounds 1-5 were evaluated against murine leukemia P-388 cells. Morushalunin D (1), mulberrofuran T (2), sorocein A (3), moracin M (4), and oxyresveratrol (5) were active, significantly inhibiting the growth of P-388 cells with IC50 values of 0.5, 1.0, 0.6, 2.0, and 3.3 µg/ml, respectively.


Subject(s)
Morus , Plant Roots , Stilbenes , Morus/chemistry , Plant Roots/chemistry , Molecular Structure , Mice , Animals , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/isolation & purification , Benzofurans/chemistry , Benzofurans/pharmacology , Benzofurans/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Drug Screening Assays, Antitumor
10.
Bioorg Chem ; 143: 107079, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185011

ABSTRACT

Fourteen new 2-benzylbenzofuran O-glycosides (1-13, 15) and one new key precursor, diarylacetone (14) were isolated from the roots of Heterosmilax yunnanensis Gagnep, which all have characteristic 2,3,4-O-trisubstituted benzyl. Their structures were elucidated by 1D and 2D NMR, HRESIMS, UV and IR. The isolated compounds were assessed for their cardioprotective activities and compounds 1, 3 and 6 could significantly improve cardiomyocytes viability. Moreover, the mechanistic study revealed that these three compounds could significantly decrease intracellular ROS levels and maintain mitochondrial homeostasis upon hypoxia inducement. Consequently, 1, 3 and 6 might serve as potential lead compounds to prevent myocardial ischemia.


Subject(s)
Benzofurans , Glycosides , Plant Roots , Glycosides/pharmacology , Glycosides/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Roots/chemistry , Benzofurans/chemistry , Benzofurans/pharmacology
11.
J Med Chem ; 66(22): 15380-15408, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37948640

ABSTRACT

There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 µM) and in vitro ADMET profiles.


Subject(s)
Benzofurans , Mycobacterium tuberculosis , Polyketide Synthases , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/metabolism , Benzofurans/chemistry , Microbial Sensitivity Tests
12.
J Antibiot (Tokyo) ; 76(10): 613-617, 2023 10.
Article in English | MEDLINE | ID: mdl-37402885

ABSTRACT

There are six new phthalide derivatives Verbalide A ~ F (1-6) together with another known derivative (7) isolated from the endophytic fungus Preussia sp. CPCC 400972. Their structures were established by comprehensive spectroscopic analyses, including NMR and HRESIMS. In addition, compounds 1-7 exhibited excellent inhibitory effect against influenza A virus.


Subject(s)
Ascomycota , Benzofurans , Molecular Structure , Ascomycota/chemistry , Benzofurans/pharmacology , Benzofurans/chemistry , Magnetic Resonance Spectroscopy
13.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513292

ABSTRACT

Based on the literature data from 1973 to 2022, this work summarizes reports on spiro-flavonoids with a spiro-carbon at the center of their structure and how this affects their isolation methods, stereochemistry, and biological activity. The review collects 65 unique structures, including spiro-biflavonoids, spiro-triflavonoids, spiro-tetraflavonoids, spiro-flavostilbenoids, and scillascillin-type homoisoflavonoids. Scillascillin-type homoisoflavonoids comprise spiro[bicyclo[4.2.0]octane-7,3'-chromane]-1(6),2,4-trien-4'-one, while the other spiro-flavonoids contain either 2H,2'H-3,3'-spirobi[benzofuran]-2-one or 2'H,3H-2,3'-spirobi[benzofuran]-3-one in the core of their structures. Spiro-flavonoids have been described in more than 40 species of eight families, including Asparagaceae, Cistaceae, Cupressaceae, Fabaceae, Pentaphylacaceae, Pinaceae, Thymelaeaceae, and Vitaceae. The possible biosynthetic pathways for each group of spiro-flavonoids are summarized in detail. Anti-inflammatory and anticancer activities are the most important biological activities of spiro-flavonoids, both in vitro and in vivo. Our work identifies the most promising natural sources, the existing challenges in assigning the stereochemistry of these compounds, and future research perspectives.


Subject(s)
Benzofurans , Biflavonoids , Humans , Flavonoids/pharmacology , Plant Extracts/chemistry , Benzofurans/chemistry , Anti-Inflammatory Agents/pharmacology
14.
Molecules ; 28(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37446668

ABSTRACT

An analytical strategy was applied to investigate polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs) in newborn meconium samples. The methodology includes extraction by selective pressurized liquid extraction (SPLE), followed by a clean-up multicolumn step. The samples were injected by gas chromatography coupled to a high-resolution mass spectrometer (GC-HRMS). The surrogate recoveries ranged from 68% to 95%, and the average of the limit of quantification (LOQ) ranged from 0.03 to 0.08 pg g-1 wet weight (ww) for PCDD/Fs and 0.2 to 0.88 pg g-1 ww for dl-PCBs. The strategy was applied to 10 samples collected in Valencia (Spain) in 2022. In total, 18 out of 29 analysed congeners were detected in at least one sample, whereas 6 of them were detected in all the samples (OCDD, PCB-123, PCB-118, PCB-105, PCB-167, and PCB-156). The levels for the sum of the 17 congeners of PCDD/Fs and 12 congeners of dl-PCBs in the upper-bound (UB), expressed as picograms of toxic equivalency quantity (TEQ) per gram of ww, ranged from 0.19 to 0.31 pg TEQ g-1 ww.


Subject(s)
Benzofurans , Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Humans , Infant, Newborn , Polychlorinated Biphenyls/analysis , Dibenzofurans , Meconium , Gas Chromatography-Mass Spectrometry/methods , Benzofurans/chemistry
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122939, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37285745

ABSTRACT

The present work aims at exploring the high electrophilic character of 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) toward the morpholine group by an SNAr reaction in acetonitrile or water (thereafter referred to as NBD-Morph). The electron-donating ability of the morpholine causes intra-molecular charge transfer (ICT). In this report, we present a comprehensive study on the optical characteristics using UV-Vis, photoluminescence (cw-PL) and its time-resolved (TR-PL) to determine the properties of the emissive intramolecular charge transfer (ICT) in the NBD-Morph donor-acceptor system. An exhaustive theoretical investigation utilizing the density functional theory (DFT) and its extension TD-DFT methods is an essential complement of experiments to rationalize and understand the molecular structure and related properties. The findings from QTAIM, ELF, and RDG analyses establish that the bonding between morpholine and NBD moieties is of the electrostatic or hydrogen bond type. In addition, the Hirshfeld surfaces have been established to explore the types of interactions. Further, the non-linear optical (NLO) responses of the compound have been examined. The structure-property relationships obtained through the combined experimental and theoretical offer valuable insights for designing efficient NLO material.


Subject(s)
Benzofurans , Molecular Structure , Benzofurans/chemistry
16.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373544

ABSTRACT

Benzofuran and 2,3-dihydrobenzofuran scaffolds are heterocycles of high value in medicinal chemistry and drug synthesis. Targeting inflammation in cancer associated with chronic inflammation is a promising therapy. In the present study, we investigated the anti-inflammatory effects of fluorinated benzofuran and dihydrobenzofuran derivatives in macrophages and in the air pouch model of inflammation, as well as their anticancer effects in the human colorectal adenocarcinoma cell line HCT116. Six of the nine compounds suppressed lipopolysaccharide-stimulated inflammation by inhibiting the expression of cyclooxygenase-2 and nitric oxide synthase 2 and decreased the secretion of the tested inflammatory mediators. Their IC50 values ranged from 1.2 to 9.04 µM for interleukin-6; from 1.5 to 19.3 µM for Chemokine (C-C) Ligand 2; from 2.4 to 5.2 µM for nitric oxide; and from 1.1 to 20.5 µM for prostaglandin E2. Three novel synthesized benzofuran compounds significantly inhibited cyclooxygenase activity. Most of these compounds showed anti-inflammatory effects in the zymosan-induced air pouch model. Because inflammation may lead to tumorigenesis, we tested the effects of these compounds on the proliferation and apoptosis of HCT116. Two compounds with difluorine, bromine, and ester or carboxylic acid groups inhibited the proliferation by approximately 70%. Inhibition of the expression of the antiapoptotic protein Bcl-2 and concentration-dependent cleavage of PARP-1, as well as DNA fragmentation by approximately 80%, were described. Analysis of the structure-activity relationship suggested that the biological effects of benzofuran derivatives are enhanced in the presence of fluorine, bromine, hydroxyl, and/or carboxyl groups. In conclusion, the designed fluorinated benzofuran and dihydrobenzofuran derivatives are efficient anti-inflammatory agents, with a promising anticancer effect and a combinatory treatment in inflammation and tumorigenesis in cancer microenvironments.


Subject(s)
Antineoplastic Agents , Benzofurans , Humans , Bromine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Inflammation/drug therapy , Benzofurans/pharmacology , Benzofurans/chemistry , Carcinogenesis , Nitric Oxide/metabolism , Lipopolysaccharides/toxicity , Tumor Microenvironment
17.
Chem Pharm Bull (Tokyo) ; 71(2): 93-100, 2023.
Article in English | MEDLINE | ID: mdl-36724985

ABSTRACT

Migratory cycloisomerization using transition metal catalyst is useful for synthesizing substituted heterocyclic compounds. We achieved palladium-catalyzed migratory cycloisomerization of 3-o-alkynylphenoxy acrylic acid ester derivatives to give 2,3-disubstituted benzofurans. Although there are several reports of benzofuran synthesis with palladium-catalyzed migratory cycloisomerization, migratory groups are limited to allyl and propargyl groups. This report is the first example of benzofuran synthesis with palladium-catalyzed cycloisomerization of C(sp2)-O bond cleavage.


Subject(s)
Benzofurans , Heterocyclic Compounds , Palladium/chemistry , Benzofurans/chemistry , Catalysis
18.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834992

ABSTRACT

NF-κB and MAPK are classic inflammation signaling pathways which regulate inflammation signal transmission and induce the expression of many inflammatory factors. Based on the potent anti-inflammatory activity of benzofuran and its derivatives, several new heterocyclic/benzofuran hybrids were first designed and synthesized by molecular hybridization. Their structure was confirmed by 1H NMR, 13C NMR, HRMS or X-single crystal diffraction. The anti-inflammatory activity of these new compounds was screened by compounds; compound 5d exhibited an excellent inhibitory effect on the generation of NO (IC50 = 52.23 ± 0.97 µM), and low cytotoxicity (IC50 > 80 µM) against the RAW-264.7 cell lines. To further elucidate the possible anti-inflammatory mechanisms of compound 5d, the hallmark protein expressions of the NF-κB and MAPK pathways were studied in LPS-stimulated RAW264.7 cells. The results indicate that compound 5d not only significantly inhibits the phosphorylation levels of IKKα/IKKß, IKßα, P65, ERK, JNK and P38 in the classic MAPK/NF-κB signaling pathway in a dose-dependent manner, but also down-regulates the secretion of pro-inflammatory factors such as NO, COX-2, TNF-α and IL-6. Further, the in vivo anti-inflammatory activity of compound 5d indicated that it could regulate the involvement of neutrophils, leukocytes and lymphocytes in inflammation processes, and reduce the expression of IL-1ß, TNF-α and IL-6 in serum and tissues. These results strongly suggest that the piperazine/benzofuran hybrid 5d has a good potential for developing an anti-inflammatory lead compound, and the anti-inflammatory mechanism might be related to the NF-κB and MAPK signaling pathways.


Subject(s)
Anti-Inflammatory Agents , Benzofurans , MAP Kinase Signaling System , NF-kappa B , Animals , Mice , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Benzofurans/chemistry , Benzofurans/pharmacology , Inflammation/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , NF-kappa B/drug effects , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology
19.
J Med Chem ; 66(3): 1742-1760, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36662031

ABSTRACT

Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats. In this study, aged C57 and SAMP-6 mice models were used to investigate the therapeutic and preventive effects of compound 125 on SOP. scRNA-seq analysis showed that BMP-2 upregulation is the mechanism through which 125 accelerates bone turnover and increases the proportion of osteoblasts. We evaluated the structure-activity relationship of the candidate drugs and found that the derivative I-9 showed significantly higher efficacy than 125 and teriparatide in the zebrafish osteoporosis model. This study provides a foundation for the development of SOP drugs.


Subject(s)
Benzofurans , Osteoporosis , Rats , Mice , Animals , Zebrafish , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteogenesis , Osteoblasts , Benzofurans/pharmacology , Benzofurans/therapeutic use , Benzofurans/chemistry , Structure-Activity Relationship
20.
Bioorg Chem ; 132: 106346, 2023 03.
Article in English | MEDLINE | ID: mdl-36638655

ABSTRACT

There are no highly effective and safe medicines for clinical treatment of ischemic stroke, although the natural product 3-n-butylphthalide (NBP) has been approved in China for mild and moderate ischemic stroke. To discover more potent anti-cerebral ischemic agents and overcome the low stability by phthalide derivatives, benzofuran-3-one was selected as a core moiety and two types of nitric oxide (NO)-donating groups were incorporated into the structure. In this work, a series of 2,6-disubstituted benzofuran-3-one derivatives were designed and synthesised as NBP analogues, and tested as neuroprotective and antioxidative agents. Compounds 5 (without an NO donor) and 16 (with an NO donor) displayed more potent neuroprotective effects than the established clinical drugs Edaravone and NBP. More importantly, 5 and 16 also exhibited good antioxidative activity without cytotoxicity in rat primary neuronal and PC12 cells. Most active compounds showed good blood-brain barrier permeability in a parallel artificial membrane permeability assay. Furthermore, compound 5 reduced the ischemic infarct area significantly in rats subjected to ischemia/reperfusion injury, downregulated ionised calcium-binding adaptor molecule 1 and glial fibrillary acidic protein in inflammatory cells, and upregulated nerve growth factor.


Subject(s)
Benzofurans , Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Antioxidants/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemistry , Reperfusion Injury/drug therapy , Brain Ischemia/drug therapy , Ischemic Stroke/drug therapy , Benzofurans/pharmacology , Benzofurans/therapeutic use , Benzofurans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...