Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.088
Filter
1.
Plant Physiol Biochem ; 211: 108671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703500

ABSTRACT

Salvia castanea Diels, a close wild relative to the medicinal plant, Salvia miltiorrhiza Bunge, primarily grows in high-altitude regions. While the two species share similar active compounds, their content varies significantly. WRKY transcription factors are key proteins, which regulate plant growth, stress response, and secondary metabolism. We identified 46 ScWRKY genes in S. castanea and found that ScWRKY35 was a highly expressed gene associated with secondary metabolites accumulation. This study aimed to explore the role of ScWRKY35 gene in regulating the accumulation of secondary metabolites and its response to UV and cadmium (Cd) exposure in S. miltiorrhiza. It was found that transgenic S. miltiorrhiza hairy roots overexpressing ScWRKY35 displayed upregulated expression of genes related to phenolic acid synthesis, resulting in increased salvianolic acid B (SAB) and rosmarinic acid (RA) contents. Conversely, tanshinone pathway gene expression decreased, leading to lower tanshinone levels. Further, overexpression of ScWRKY35 upregulated Cd transport protein HMA3 in root tissues inducing Cd sequestration. In contrast, the Cd uptake gene NRAMP1 was downregulated, reducing Cd absorption. In response to UV radiation, ScWRKY35 overexpression led to an increase in the accumulation of phenolic acid and tanshinone contents, including upregulation of genes associated with salicylic acid (SA) and jasmonic acid (JA) synthesis. Altogether, these findings highlight the role of ScWRKY35 in enhancing secondary metabolites accumulation, as well as in Cd and UV stress modulation in S. miltiorrhiza, which offers a novel insight into its phytochemistry and provides a new option for the genetic improvement of the plants.


Subject(s)
Cadmium , Depsides , Gene Expression Regulation, Plant , Plant Proteins , Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cadmium/metabolism , Depsides/metabolism , Secondary Metabolism/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Benzofurans/metabolism , Rosmarinic Acid , Cinnamates/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Ultraviolet Rays , Plant Roots/metabolism , Plant Roots/genetics , Abietanes/metabolism , Abietanes/biosynthesis , Hydroxybenzoates/metabolism
2.
J Hazard Mater ; 471: 134310, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640677

ABSTRACT

Microbial interactions, particularly metabolic cross-feeding, play important roles in removing recalcitrant environmental pollutants; however, the underlying mechanisms involved in this process remain unclear. Thus, this study aimed to elucidate the mechanism by which metabolic cross-feeding occurs during synergistic dibenzofuran degradation between a highly efficient degrader, Rhodococcus sp. strain p52, and a partner incapable of utilizing dibenzofuran. A bottom-up approach combined with pairwise coculturing was used to examine metabolic cross-feeding between strain p52 and Arthrobacter sp. W06 or Achromobacter sp. D10. Pairwise coculture not only promoted bacterial pair growth but also facilitated dibenzofuran degradation. Specifically, strain p52, acting as a donor, released dibenzofuran metabolic intermediates, including salicylic acid and gentisic acid, for utilization and growth, respectively, by the partner strains W06 and D10. Both salicylic acid and gentisic acid exhibited biotoxicity, and their accumulation inhibited dibenzofuran degradation. The transcriptional activity of the genes responsible for the catabolism of dibenzofuran and its metabolic intermediates was coordinately regulated in strain p52 and its cocultivated partners, thus achieving synergistic dibenzofuran degradation. This study provides insights into microbial metabolic cross-feeding during recalcitrant environmental pollutant removal.


Subject(s)
Biodegradation, Environmental , Rhodococcus , Salicylic Acid , Rhodococcus/metabolism , Salicylic Acid/metabolism , Dibenzofurans/metabolism , Benzofurans/metabolism , Gentisates/metabolism , Microbial Interactions
3.
Clin Exp Pharmacol Physiol ; 51(1): 17-29, 2024 01.
Article in English | MEDLINE | ID: mdl-37749921

ABSTRACT

Liver fibrosis is a chronic liver lesion caused by excessive deposition of the extracellular matrix after liver damage, resulting in fibrous scarring of liver tissue. The progression of liver fibrosis is partially influenced by the gut microbiota. Chitosan can play a therapeutic role in liver fibrosis by regulating the gut microbiota based on the 'gut-liver axis' theory. Salvianolic acid B can inhibit the development of liver fibrosis by inhibiting the activation of hepatic stellate cells and reducing the production of extracellular matrix. In this study, the therapeutic effect of chitosan in combination with salvianolic acid B on liver fibrosis was investigated in a mouse liver fibrosis model. The results showed that the combination of chitosan and salvianolic acid B was better than the drug alone, improving AST/ALT levels and reducing the expression of α-SAM, COL I, IL-6 and other related genes. It improved the structure of gut microbiota and increased the abundance of beneficial bacteria such as Lactobacillus. The above results could provide new ideas for the clinical treatment of liver fibrosis.


Subject(s)
Benzofurans , Chitosan , Mice , Animals , Chitosan/pharmacology , Chitosan/metabolism , Chitosan/therapeutic use , Liver Cirrhosis/pathology , Liver/metabolism , Benzofurans/pharmacology , Benzofurans/therapeutic use , Benzofurans/metabolism , Disease Models, Animal
4.
Plant Signal Behav ; 18(1): 2287881, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38014901

ABSTRACT

Mulberry leaves are served not only as fodder for silkworms but also as potential functional food, exhibiting nutritional and medical benefits due to the complex and diverse constituents, including alkaloids, flavonoids, phenolic acids, and benzofurans, which possess a wide range of biological activities, such as anti-diabete, anti-oxidant, anti-inflammatory, and so on. Nevertheless, compared with the well-studied phytochemistry and pharmacology of mulberry leaves, the current understanding of the biosynthesis mechanisms and regulatory mechanisms of active ingredients in mulberry leaves remain unclear. Natural resources of these active ingredients are limited owing to their low contents in mulberry leaves tissues and the long growth cycle of mulberry. Biosynthesis is emerging as an alternative means for accumulation of the desired high-value compounds, which can broaden channels for their large-scale green productions. Therefore, this review summarizes the recent research advance on the correlative key genes, enzyme biocatalytic reactions and biosynthetic pathways of valuable natural ingredients (i.e. alkaloids, flavonoids, phenolic acids, and benzofurans) in mulberry leaves, thereby offering important insights for their further biomanufacturing.


Subject(s)
Alkaloids , Benzofurans , Morus , Morus/genetics , Morus/metabolism , Biosynthetic Pathways/genetics , Alkaloids/analysis , Alkaloids/chemistry , Alkaloids/metabolism , Flavonoids/metabolism , Benzofurans/analysis , Benzofurans/metabolism , Plant Leaves/metabolism
5.
Molecules ; 28(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37175256

ABSTRACT

Herpetin, an active compound derived from the seeds of Herpetospermum caudigerum Wall., is a traditional Tibetan herbal medicine that is used for the treatment of hepatobiliary diseases. The aim of this study was to evaluate the stimulant effect of herpetin on bone marrow mesenchymal stem cells (BMSCs) to improve acute liver injury (ALI). In vitro results showed that herpetin treatment enhanced expression of the liver-specific proteins alpha-fetoprotein, albumin, and cytokeratin 18; increased cytochrome P450 family 3 subfamily a member 4 activity; and increased the glycogen-storage capacity of BMSCs. Mice with ALI induced by carbon tetrachloride (CCl4) were treated with a combination of BMSCs by tail-vein injection and herpetin by intraperitoneal injection. Hematoxylin and eosin staining and serum biochemical index detection showed that the liver function of ALI mice improved after administration of herpetin combined with BMSCs. Western blotting results suggested that the stromal cell-derived factor-1/C-X-C motif chemokine receptor 4 axis and the Wnt/ß-catenin pathway in the liver tissue were activated after treatment with herpetin and BMSCs. Therefore, herpetin is a promising BMSC induction agent, and coadministration of herpetin and BMSCs may affect the treatment of ALI.


Subject(s)
Benzofurans , Mesenchymal Stem Cells , Mice , Animals , Carbon Tetrachloride/toxicity , Liver , Benzofurans/metabolism , Mesenchymal Stem Cells/metabolism , Bone Marrow Cells
6.
Eur J Med Chem ; 251: 115256, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36944273

ABSTRACT

Up to date, there are still significantly unmet clinical needs for treatment of the fatal visceral leishmaniasis; a neglected tropical disease. Herein, a recently reported antileishmanial hit sulfuretin analog suffering from a low potency and a problematic aqueous solubility that hindered further development was used as a starting point. A mitigation rational via incorporation of O6-aminoalkyl moiety suggest structures analogous to literature-known compounds as cholinesterase inhibitors. Consequently, preparation and repurposing of a library of these compounds unveiled their potential activity against the parasite Leishmania donovani promastigotes. Further evaluation against intracellular form of the parasite and host cells suggested compounds 2a, 2c, and 2o derived from sulfuretin analogs bearing 2'-methoxy or 2',5'-dimethoxy substituents at ring-B as promising lead compounds with potential activity and acceptable safety window relative to the standard edelfosine. In silico simulation predicted plausible binding modes of these compounds to L. donovani fumarate reductase. Together this work presents compound 2o as a potential lead compound for further development.


Subject(s)
Antiprotozoal Agents , Benzofurans , Leishmania donovani , Leishmaniasis, Visceral , Humans , Antiprotozoal Agents/chemistry , Benzofurans/metabolism , Flavonoids/therapeutic use , Leishmaniasis, Visceral/drug therapy , Alkanes/chemistry
7.
Aesthetic Plast Surg ; 47(4): 1587-1597, 2023 08.
Article in English | MEDLINE | ID: mdl-36810832

ABSTRACT

BACKGROUND: Hypertrophic scars (HTSs) are a fibroproliferative disorder that occur following skin injuries. Salvianolic acid B (Sal-B) is an extractant from Salvia miltiorrhiza that has been reported to ameliorate fibrosis in multiple organs. However, the antifibrotic effect on HTSs remains unclear. This study aimed to determine the antifibrotic effect of Sal-B in vitro and in vivo. METHODS: In vitro, hypertrophic scar-derived fibroblasts (HSFs) were isolated from human HTSs and cultured. HSFs were treated with (0, 10, 50, 100 µmol/L) Sal-B. Cell proliferation and migration were evaluated by EdU, wound healing, and transwell assays. The protein and mRNA levels of TGFßI, Smad2, Smad3, α-SMA, COL1, and COL3 were detected by Western blots and real-time PCR. In vivo, tension stretching devices were fixed on incisions for HTS formation. The induced scars were treated with 100 µL of Sal-B/PBS per day according to the concentration of the group and followed up for 7 or 14 days. The scar condition, collagen deposition, and α-SMA expression were analyzed by gross visual examination, H&E, Masson, picrosirius red staining, and immunofluorescence. RESULTS: In vitro, Sal-B inhibited HSF proliferation, migration, and downregulated the expression of TGFßI, Smad2, Smad3, α-SMA, COL1, and COL3 in HSFs. In vivo, 50 and 100 µmol/L Sal-B significantly reduced scar size in gross and cross-sectional observations, with decreased α-SMA expression and collagen deposition in the tension-induced HTS model. CONCLUSIONS: Our study demonstrated that Sal-B inhibits HSFs proliferation, migration, fibrotic marker expression and attenuates HTS formation in a tension-induced HTS model in vivo. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Benzofurans , Cicatrix, Hypertrophic , Animals , Humans , Cicatrix, Hypertrophic/drug therapy , Cicatrix, Hypertrophic/prevention & control , Cross-Sectional Studies , Benzofurans/pharmacology , Benzofurans/metabolism , Fibrosis , Fibroblasts/pathology
8.
Bioorg Med Chem ; 79: 117157, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36652792

ABSTRACT

Natural products continue to be an inspiration for new drugs to treat debilitating diseases such as cancer. Usnic acid is a secondary metabolite isolated predominately from lichen species and has been shown to exhibit antiproliferative properties, however its application is limited by poor drug-like properties and low specificity. We report our work on investigating the reactivity of usnic acid for incorporating heterocyclic rings and the divergent reactivity that can be obtained by simply altering the reaction solvent and temperature. The synthesised derivatives were then tested against HeLa cancer cells for their antiproliferative properties. A number of promising compounds were obtained including 4, 5 and 9 that showed an IC50 of 878, 311 and 116 nM, respectively, against HeLa cancer cells after 48 h of treatment.


Subject(s)
Benzofurans , Lichens , Neoplasms , Humans , HeLa Cells , Benzofurans/pharmacology , Benzofurans/metabolism
9.
Nutr Res Rev ; 36(2): 484-497, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36345910

ABSTRACT

Understanding the transfer of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) as well as polychlorinated biphenyls (PCBs) from oral exposure into cow's milk is not purely an experimental endeavour, as it has produced a large corpus of theoretical work. This work consists of a variety of predictive toxicokinetic models in the realms of health and environmental risk assessment and risk management. Their purpose is to provide mathematical predictive tools to organise and integrate knowledge on the absorption, distribution, metabolism and excretion processes. Toxicokinetic models are based on more than 50 years of transfer studies summarised in part I of this review series. Here in part II, several of these models are described and systematically classified with a focus on their applicability to risk analysis as well as their limitations. This part of the review highlights the opportunities and challenges along the way towards accurate, congener-specific predictive models applicable to changing animal breeds and husbandry conditions.


Subject(s)
Benzofurans , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Female , Animals , Cattle , Humans , Polychlorinated Dibenzodioxins/toxicity , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/metabolism , Milk/chemistry , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Dibenzofurans , Toxicokinetics , Dibenzofurans, Polychlorinated , Benzofurans/analysis , Benzofurans/metabolism , Risk Assessment
10.
Fungal Biol ; 126(11-12): 697-706, 2022.
Article in English | MEDLINE | ID: mdl-36517138

ABSTRACT

Lichenized fungi are known for their production of a diversity of secondary metabolites, many of which have broad biological and pharmacological applications. By far the most well-studied of these metabolites is usnic acid. While this metabolite has been well-known and researched for decades, the gene cluster responsible for its production was only recently identified from the species Cladonia uncialis. Usnic acid production varies considerably in the genus Cladonia, even among closely related taxa, and many species, such as C. rangiferina, have been inferred to be incapable of producing the metabolite based on analysis by thin-layer chromatography (TLC). We sequenced and examined the usnic acid biosynthetic gene clusters, or lack thereof, from four closely related Cladonia species (C. oricola, C. rangiferina, C. stygia, and C. subtenuis), and compare them against those of C. uncialis. We complement this comparison with tiered chemical profile analyses to confirm the presence or absence of usnic acid in select samples, using both HPLC and LC-MS. Despite long-standing reporting that C. rangiferina lacks the ability to produce usnic acid, we observed functional gene clusters from the species and detected usnic acid when extracts were examined by LC-MS. By contrast, C. stygia and C. oricola, have been previously described as lacking the ability to produce usnic acid, lacked the gene cluster entirely, and no usnic acid could be detected in C. oricola extracts via HPLC or LC-MS. This work suggests that chemical profiles attained through inexpensive and low-sensitivity methods like TLC may fail to detect low abundance metabolites that can be taxonomically informative. This study also bolsters understanding of the usnic acid gene cluster in lichens, revealing differences among domains of the polyketide synthase which may explain observed differences in expression. These results reinforce the need for comprehensive characterization of lichen secondary metabolite profiles with sensitive LC-MS methods.


Subject(s)
Ascomycota , Benzofurans , Lichens , Chromatography, Liquid , Lichens/microbiology , Multigene Family , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Benzofurans/metabolism
11.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362335

ABSTRACT

The SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor play vital roles in plant growth and development. Although 15 SPL family genes have been recognized in the model medical plant Salvia miltiorrhiza Bunge, most of them have not been functionally characterized to date. Here, we performed a careful characterization of SmSPL2, which was expressed in almost all tissues of S. miltiorrhiza and had the highest transcriptional level in the calyx. Meanwhile, SmSPL2 has strong transcriptional activation activity and resides in the nucleus. We obtained overexpression lines of SmSPL2 and rSmSPL2 (miR156-resistant SmSPL2). Morphological changes in roots, including longer length, fewer adventitious roots, decreased lateral root density, and increased fresh weight, were observed in all of these transgenic lines. Two rSmSPL2-overexpressed lines were subjected to transcriptome analysis. Overexpression of rSmSPL2 changed root architectures by inhibiting biosynthesis and signal transduction of auxin, while triggering that of cytokinin. The salvianolic acid B (SalB) concentration was significantly decreased in rSmSPL2-overexpressed lines. Further analysis revealed that SmSPL2 binds directly to the promoters of Sm4CL9, SmTAT1, and SmPAL1 and inhibits their expression. In conclusion, SmSPL2 is a potential gene that efficiently manipulate both root architecture and SalB concentration in S. miltiorrhiza.


Subject(s)
Benzofurans , Salvia miltiorrhiza , Transcription Factors/metabolism , Plant Roots , Salvia miltiorrhiza/metabolism , Benzofurans/pharmacology , Benzofurans/metabolism , Gene Expression Regulation, Plant
12.
Molecules ; 27(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35889425

ABSTRACT

Several fluorine-18-labeled PET ß-amyloid (Aß) plaque radiotracers for Alzheimer's disease (AD) are in clinical use. However, no radioiodinated imaging agent for Aß plaques has been successfully moved forward for either single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Radioiodinated pyridyl benzofuran derivatives for the SPECT imaging of Aß plaques using iodine-123 and iodine-125 are being pursued. In this study, we assess the iodine-124 radioiodinated pyridyl benzofuran derivative 5-(5-[124I]iodobenzofuran-2-yl)-N,N-dimethylpyridin-2-amine ([124I]IBETA) (Ki = 2.36 nM) for utilization in PET imaging for Aß plaques. We report our findings on the radioiododestannylation reaction used to prepare [124/125I]IBETA and evaluate its binding to Aß plaques in a 5 × FAD mouse model and postmortem human AD brain. Both [125I]IBETA and [124I]IBETA are produced in >25% radiochemical yield and >85% radiochemical purity. The in vitro binding of [125I]IBETA and [124I]IBETA in transgenic 5 × FAD mouse model for Aß plaques was high in the frontal cortex, anterior cingulate, thalamus, and hippocampus, which are regions of high Aß accumulation, with very little binding in the cerebellum (ratio of brain regions to cerebellum was >5). The in vitro binding of [125I]IBETA and [124I]IBETA in postmortem human AD brains was higher in gray matter containing Aß plaques compared to white matter (ratio of gray to white matter was >5). Anti-Aß immunostaining strongly correlated with [124/125I]IBETA regional binding in both the 5 × FAD mouse and postmortem AD human brains. The binding of [124/125I]IBETA in 5 × FAD mouse and postmortem human AD brains was displaced by the known Aß plaque imaging agent, Flotaza. Preliminary PET/CT studies of [124I]IBETA in the 5 × FAD mouse model suggested [124I]IBETA was relatively stable in vivo with a greater localization of [124I]IBETA in the brain regions with a high concentration of Aß plaques. Some deiodination was observed at later time points. Therefore, [124I]IBETA may potentially be a useful PET radioligand for Aß plaques in brain studies.


Subject(s)
Alzheimer Disease , Benzofurans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Benzofurans/metabolism , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Humans , Iodine Radioisotopes , Mice , Mice, Transgenic , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/metabolism , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism
13.
Rapid Commun Mass Spectrom ; 36(19): e9362, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35881078

ABSTRACT

RATIONALE: Ligusticum chuanxiong Hort is a well-known herb medicine that has been widely prescribed to treat cardiovascular diseases in China for hundreds of years. Senkyunolide H (SNH) is one of the major bioactive ingredients extracted from L. chuanxiong, and it displayed neuroprotective effects. To fully understand its mechanism of action, the metabolism needs to be investigated. METHODS: In vitro studies were conducted by incubating SNH with rat and human hepatocytes, and the metabolites were identified and characterized using liquid chromatography in combination with hybrid quadrupole Orbitrap mass spectrometry (LC-Orbitrap-MS). The structures of the metabolites were proposed by accurate mass analysis of respective precursor ions, indicative product ions, and elemental compositions. RESULTS: Under the current conditions, a total of 10 metabolites were identified, and among these metabolites, M3 and M4 were the most abundant metabolites both in rat and human hepatocytes. Our results demonstrated that hydroxylation, hydration, glucuronidation, and GSH conjugation were the primary metabolic pathways of SNH. CONCLUSIONS: The present study provides new information on the metabolism of SNH, which would help prospects of the disposition of SNH.


Subject(s)
Benzofurans , Ligusticum , Animals , Benzofurans/metabolism , Chromatography, High Pressure Liquid/methods , Humans , Rats , Tandem Mass Spectrometry/methods
14.
Mol Biotechnol ; 64(1): 90-99, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34546548

ABSTRACT

Lovastatin is an anti-cholesterol medicine that is commonly prescribed to manage cholesterol levels, and minimise the risk of suffering from heart-related diseases. Aspergillus terreus (ATCC 20542) supplied with carbohydrates or sugar alcohols can produce lovastatin. The present work explored the application of metabolic engineering in A. terreus to re-route the precursor flow towards the lovastatin biosynthetic pathway by simultaneously overexpressing the gene for acetyl-CoA carboxylase (acc) to increase the precursor flux, and eliminate ( +)-geodin biosynthesis (a competing secondary metabolite) by removing the gene for emodin anthrone polyketide synthase (gedC). Alterations to metabolic flux in the double mutant (gedCΔ*accox) strain and the effects of using two different substrate formulations were examined. The gedCΔ*accox strain, when cultivated with a mixture of glycerol and lactose, significantly (p < 0.05) increased the levels of metabolic precursors malonyl-CoA (48%) and acetyl-CoA (420%), completely inhibited the (+)-geodin biosynthesis, and increased the level of lovastatin [152 mg/L; 143% higher than the wild-type (WT) strain]. The present work demonstrated how the manipulation of A. terreus metabolic pathways could increase the efficiency of carbon flux towards lovastatin, thus elevating its overall production and enabling the use of glycerol as a substrate source. As such, the present work also provides a framework model for other medically or industrially important fungi to synthesise valuable compounds using sustainable carbon sources.


Subject(s)
Aspergillus/metabolism , Lovastatin/metabolism , Metabolic Engineering , Acetyl Coenzyme A/metabolism , Aspergillus/genetics , Benzofurans/metabolism , Biosynthetic Pathways , Fermentation , Glycerol/metabolism , Kinetics , Lactose/metabolism , Malonyl Coenzyme A/metabolism
15.
Int J Pharm ; 611: 121330, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34864120

ABSTRACT

The oral bioavailability of many phenolic acid drugs is severely limited due to the high hydrophilicity and extensive first-pass effect induced by catechol-O-methyltransferase (COMT) metabolism. The present study investigated the inhibitory activity of the pharmaceutical excipients of extra virgin olive oil (EVOO) against COMT and evaluated the potential of a self-microemulsion loaded with a phospholipid complex containing EVOO for oral absorption enhancement of salvianolic acid B (SAB), a model phenolic acid. In vitro COMT assay showed that EVOO could effectively inhibit enzyme activity in the rat liver cytosol. Next, the SAB phospholipid complex/self-microemulsion containing EVOO (named SP-SME1) was prepared and characterized (particle size, 243.60 ± 6.96 nm and zeta potential, -23.67 ± -1.36 mV). The phospholipid complex/self-microemulsion containing ethyl oleate (EO) (named SP-SME2) was taken as the control group. Compared with free SAB, the apparent permeability coefficient (Papp value) of the two SP-SMEs significantly increased (12.0-fold and 10.90-fold). Pharmacokinetic study demonstrated that the AUC0-∞ value of SAB for the SP-SME1 group significantly increased by 4.72 and 2.82 times compared to those for free SAB (p < 0.001) and SP-SME2 (p < 0.01), respectively. Moreover, the AUC0-∞ value of monomethyl-SAB (metabolite of SAB, MMS) for the SP-SME1 group decreased by 0.83 times compared to that for SP-SME2. In conclusion, the EVOO-based phospholipid complex/self-microemulsion greatly enhanced the oral absorption of SAB, which was mainly attributed to the inhibition of COMT activity induced by EVOO.


Subject(s)
Benzofurans/metabolism , Catechol O-Methyltransferase , Olive Oil/chemistry , Phospholipids/chemistry , Animals , Catechol O-Methyltransferase/metabolism , Rats
16.
Clin Transl Med ; 11(12): e634, 2021 12.
Article in English | MEDLINE | ID: mdl-34965016

ABSTRACT

BACKGROUND: Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. METHODS: We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. RESULTS: L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. CONCLUSIONS: NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.


Subject(s)
Cellular Reprogramming/immunology , Gastrointestinal Microbiome/immunology , Lactobacillus/metabolism , Metabolome/immunology , Non-alcoholic Fatty Liver Disease/drug therapy , Pediococcus pentosaceus/metabolism , Animals , Benzofurans/metabolism , Cellular Reprogramming/physiology , Diet, Western/adverse effects , Disease Models, Animal , Feces/microbiology , Gastrointestinal Microbiome/physiology , Lactobacillus/pathogenicity , Metabolome/physiology , Mice , Non-alcoholic Fatty Liver Disease/physiopathology , Pediococcus pentosaceus/pathogenicity , Quinolines/metabolism
17.
Life Sci ; 287: 120125, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34762904

ABSTRACT

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Subject(s)
Acetylcysteine/metabolism , Benzofurans/metabolism , Benzofurans/toxicity , Glutathione/metabolism , Hepatocytes/metabolism , Animals , Binding Sites/physiology , Cells, Cultured , Cytochrome P-450 CYP3A Inducers/metabolism , Cytochrome P-450 CYP3A Inducers/toxicity , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Humans , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley
18.
Life Sci ; 286: 120039, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34637797

ABSTRACT

AIM: This study investigated the roles of bone morphogenetic protein-4 (BMP4) and ROS in diabetic endothelial dysfunction and explored whether Salvianolic acid B (Sal B) improved endothelial function by affecting BMP4-ROS in diabetic mice. MAIN METHODS: db/db mice were orally administrated with Sal B (10 mg/kg/day) for one week while db/m + mice were injected with adenoviral vectors delivering BMP4 (3 × 108 pfu) and then received one week-Sal B treatment. ROS levels were assayed by DHE staining. Protein expression and phosphorylation were evaluated by Western blot. Aortic rings were suspended in myograph for force measurement. Flow-mediated dilatations in the second-order mesenteric arteries were determined by pressure myograph. KEY FINDINGS: We first revealed the existence of a BMP4-ROS cycle in db/db mice, which stimulated p38 MAPK/JNK/caspase 3 and thus participated in endothelial dysfunction. One week-treatment or 24 h-incubation with Sal B disrupted the cycle, suppressed p38 MAPK/JNK/caspase 3 cascade, and improved endothelium-dependent relaxations (EDRs) in db/db mouse aortas. Importantly, in vivo Sal B treatment also improved flow-mediated dilatation in db/db mouse second order mesenteric arteries. Furthermore, in vivo BMP4 overexpression induced oxidative stress, stimulated p38 MAPK/JNK/caspase 3, and impaired EDRs in db/m + mouse aortas, which were all reversed by Sal B. SIGNIFICANCE: The present study demonstrates that Sal B ameliorates endothelial dysfunction through breaking the BMP4-ROS cycle and subsequently inhibiting p38 MAPK/JNK/caspase 3 in diabetic mice and provides evidence for the additional new mechanism underlying the benefit of Sal B against diabetic vasculopathy.


Subject(s)
Benzofurans/pharmacology , Bone Morphogenetic Protein 4/metabolism , Reactive Oxygen Species/metabolism , Animals , Aorta/metabolism , Benzofurans/metabolism , Bone Morphogenetic Protein 4/physiology , Bone Morphogenetic Proteins/metabolism , Caspase 3/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Diabetes Mellitus, Experimental/metabolism , Diabetic Angiopathies/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , MAP Kinase Signaling System , Male , Mesenteric Arteries/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress/physiology , Vascular Diseases/metabolism , Vasodilation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34502445

ABSTRACT

The dried root of Salvia miltiorrhiza is a renowned traditional Chinese medicine that was used for over 1000 years in China. Salvianolic acid B (SalB) is the main natural bioactive product of S. miltiorrhiza. Although many publications described the regulation mechanism of SalB biosynthesis, few reports simultaneously focused on S. miltiorrhiza root development. For this study, an R2R3-MYB transcription factor gene (SmMYB52) was overexpressed and silenced, respectively, in S. miltiorrhiza sterile seedlings. We found that SmMYB52 significantly inhibited root growth and indole-3-acetic acid (IAA) accumulation, whereas it activated phenolic acid biosynthesis and the jasmonate acid (JA) signaling pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed that SmMYB52 suppressed the transcription levels of key enzyme-encoding genes involved in the IAA biosynthetic pathway and activated key enzyme-encoding genes involved in the JA and phenolic acid biosynthesis pathways. In addition, yeast one-hybrid (Y1H) and dual-luciferase assay showed that SmMYB52 directly binds to and activates the promoters of several key enzyme genes for SalB biosynthesis, including SmTAT1, Sm4CL9, SmC4H1, and SmHPPR1, to promote the accumulation of SalB. This is the first report of a regulator that simultaneously affects root growth and the production of phenolic acids in S. miltiorrhiza.


Subject(s)
Benzofurans/metabolism , Gene Expression Regulation, Plant , Salvia miltiorrhiza/metabolism , Transcription Factors/metabolism , Cyclopentanes/metabolism , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Roots/growth & development , Salvia miltiorrhiza/growth & development
20.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299156

ABSTRACT

MicroRNAs (miRNAs) are important regulators of gene expression involved in plant development and abiotic stress responses. Recently, miRNAs have also been reported to be engaged in the regulation of secondary plant metabolism. However, there are few functional studies of miRNAs in medicinal plants. For this study, we obtained Sm-miR408 interference lines to investigate the function of Sm-miR408 in a medicinal model plant (Salvia miltiorrhiza). It was found that inhibiting the expression of Sm-miR408 could increase the content of salvianolic acid B and rosmarinic acid in the roots. The SmLAC3 and Sm-miR408 expression patterns were analyzed by qRT-PCR. A 5' RLM-RACE assay confirmed that Sm-miR408 targets and negatively regulates SmLAC3. Moreover, the overexpression of SmLAC3 in S. miltiorrhiza promoted the accumulation of salvianolic acids in the roots. Furthermore, the lignin content of the roots in overexpressed SmLAC3 lines was decreased. Taken together, these findings indicated that Sm-miR408 modulates the accumulation of phenolic acids in S. miltiorrhiza by targeting SmLAC3 expression levels.


Subject(s)
Benzofurans/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Salvia miltiorrhiza/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...