Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.395
Filter
1.
J Org Chem ; 89(10): 7255-7262, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38718382

ABSTRACT

Juglanaloids A and B are recently isolated natural products characterized by an unprecedented spiro bicyclic isobenzofuranone-tetrahydrobenzazepinone framework and a promising antiamyloid activity. Here reported is a straightforward convergent total synthesis of these natural products, which were obtained in high enantiomeric purity (94% and >99% ee for juglanaloids A and B, respectively) through an eight-step longest linear sequence, based on an efficient and reliable enantioselective phase-transfer-catalyzed alkylation step. Considering the interesting biological activity of juglanaloids, this convenient, highly enantioselective, flexible, and predictable synthetic strategy promises to be a powerful tool for accessing potentially bioactive spiro bicyclic phthalide-tetrahydrobenzazepinone derivatives.


Subject(s)
Alkaloids , Alzheimer Disease , Spiro Compounds , Stereoisomerism , Alzheimer Disease/drug therapy , Spiro Compounds/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Alkaloids/chemistry , Alkaloids/chemical synthesis , Alkaloids/pharmacology , Molecular Structure , Benzofurans/chemistry , Benzofurans/chemical synthesis , Benzofurans/pharmacology
2.
Brain Res Bull ; 212: 110969, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705540

ABSTRACT

Alzheimer's disease (AD) stands as the most prevalent neurodegenerative condition worldwide, and its correlation with microglial function is notably significant. Dl-3-n-butylphthalide (NBP), derived from the seeds of Apium graveolens L. (Chinese celery), has demonstrated the capacity to diminish Aß levels in the brain tissue of Alzheimer's transgenic mice. Despite this, its connection to neuroinflammation and microglial phagocytosis, along with the specific molecular mechanism involved, remains undefined. In this study, NBP treatment exhibited a substantial improvement in learning deficits observed in AD transgenic mice (APP/PS1 transgenic mice). Furthermore, NBP treatment significantly mitigated the total cerebral Aß plaque deposition. This effect was attributed to the heightened presence of activated microglia surrounding Aß plaques and an increase in microglial phagocytosis of Aß plaques. Transcriptome sequencing analysis unveiled the potential involvement of the AGE (advanced glycation end products) -RAGE (receptor for AGE) signaling pathway in NBP's impact on APP/PS1 mice. Subsequent investigation disclosed a reduction in the secretion of AGEs, RAGE, and proinflammatory factors within the hippocampus and cortex of NBP-treated APP/PS1 mice. In summary, NBP alleviates cognitive impairment by augmenting the number of activated microglia around Aß plaques and ameliorating AGE-RAGE-mediated neuroinflammation. These findings underscore the related mechanism of the crucial neuroprotective roles of microglial phagocytosis and anti-inflammation in NBP treatment for AD, offering a potential therapeutic target for the disease.


Subject(s)
Alzheimer Disease , Benzofurans , Mice, Transgenic , Microglia , Phagocytosis , Receptor for Advanced Glycation End Products , Animals , Microglia/drug effects , Microglia/metabolism , Benzofurans/pharmacology , Mice , Phagocytosis/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Male , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Disease Models, Animal , Presenilin-1/genetics , Presenilin-1/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/drug therapy , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism
3.
J Nat Med ; 78(3): 709-721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575838

ABSTRACT

Methanol extract of the Cnidium officinale Makino rhizome, which is used as a crude drug Cnidium Rhizome (Cnidii Rhizoma; "Senkyu" in Japanese) and is listed in the Japanese Pharmacopoeia XVIII, showed intracellular triglyceride metabolism-promoting activity in high glucose-pretreated HepG2 cells. Thirty-five constituents, including two new alkylphthalide glycosides, senkyunosides A (1) and B (2), and a neolignan with a new stereoisomeric structure (3), were isolated in the extract. Their stereostructures were elucidated based on chemical and spectroscopic evidence. Among the isolates, several alkylphthalides, (Z)-3-butylidene-7-methoxyphthalide (9) and senkyunolides G (10), H (14), and I (15), and a polyacetylene falcarindiol (26), were found to show significant activity without any cytotoxicity at 10 µM.


Subject(s)
Benzofurans , Cnidium , Rhizome , Triglycerides , Humans , Rhizome/chemistry , Hep G2 Cells , Cnidium/chemistry , Triglycerides/metabolism , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification
4.
Nutrients ; 16(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38674860

ABSTRACT

Silymarin, salvianolic acids B, and puerarin were considered healthy food agents with tremendous potential to ameliorate non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which they interact with gut microbiota to exert benefits are largely unknown. After 8 weeks of NAFLD modeling, C57BL/6J mice were randomly divided into five groups and fed a normal diet, high-fat diet (HFD), or HFD supplemented with a medium or high dose of Silybum marianum extract contained silymarin or polyherbal extract contained silymarin, salvianolic acids B, and puerarin for 16 weeks, respectively. The untargeted metabolomics and 16S rRNA sequencing were used for molecular mechanisms exploration. The intervention of silymarin and polyherbal extract significantly improved liver steatosis and recovered liver function in the mice, accompanied by an increase in probiotics like Akkermansia and Blautia, and suppressed Clostridium, which related to changes in the bile acids profile in feces and serum. Fecal microbiome transplantation confirmed that this alteration of microbiota and its metabolites were responsible for the improvement in NAFLD. The present study substantiated that alterations of the gut microbiota upon silymarin and polyherbal extract intervention have beneficial effects on HFD-induced hepatic steatosis and suggested the pivotal role of gut microbiota and its metabolites in the amelioration of NAFLD.


Subject(s)
Depsides , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Isoflavones , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Silymarin , Animals , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/drug therapy , Diet, High-Fat/adverse effects , Isoflavones/pharmacology , Male , Mice , Silymarin/pharmacology , Benzofurans/pharmacology , Liver/metabolism , Liver/drug effects , Disease Models, Animal , Bile Acids and Salts/metabolism , Plant Extracts/pharmacology
5.
J Agric Food Chem ; 72(18): 10195-10205, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38662962

ABSTRACT

The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 µg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 µg/mL) and allicin (8.40, 28.22, and 88.04 µg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.


Subject(s)
Anti-Bacterial Agents , Benzofurans , Disulfides , Drug Design , Microbial Sensitivity Tests , Xanthomonas , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Xanthomonas/drug effects , Disulfides/chemistry , Disulfides/pharmacology , Plant Diseases/microbiology , Quantitative Structure-Activity Relationship , Molecular Structure , Xanthomonas axonopodis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oryza/microbiology , Oryza/chemistry
6.
Eur J Pharmacol ; 974: 176593, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38636800

ABSTRACT

Recent studies have highlighted the involvement of pyroptosis-mediated cell death and neuroinflammation in ischemic stroke (IS) pathogenesis. DL-3-n-butylphthalide (NBP), a synthesized compound based on an extract from seeds of Apium graveolens, possesses a broad range of biological effects. However, the efficacy and the underlying mechanisms of NBP in IS remain contentious. Herein, we investigated the therapeutic effects of NBP and elucidated its potential mechanisms in neuronal cell pyroptosis and microglia inflammatory responses. Adult male mice underwent permanent distal middle cerebral artery occlusion (dMCAO), followed by daily oral gavage of NBP (80 mg/kg) for 1, 7, or 21 consecutive days. Gene Expression Omnibus (GEO) dataset of IS patients peripheral blood RNA sequencing was analyzed to identify differentially expressed pyroptosis-related genes (PRGs) during the ischemic process. Our results suggested that NBP treatment effectively alleviated brain ischemic damage, resulting in decreased neurological deficit scores, reduced infarct volume, and improved neurological and behavioral functions. RNA sequence data from human unveiled upregulated PRGs in IS. Subsequently, we observed that NBP downregulated pyroptosis-associated markers at days 7 and 21 post-modeling, at both the protein and mRNA levels. Additionally, NBP suppressed the co-localization of pyroptosis markers with neuronal cells to variable degrees and simultaneously mitigated the accumulation of activated microglia. Overall, our data provide novel evidence that NBP treatment significantly attenuates ischemic brain damage and promotes recovery of neurological function in the early and recovery phases after IS, probably by negatively regulating the pyroptosis cell death of neuronal cells and inhibiting toxic neuroinflammation in the central nervous system.


Subject(s)
Benzofurans , Disease Models, Animal , Ischemic Stroke , Pyroptosis , Animals , Pyroptosis/drug effects , Benzofurans/pharmacology , Benzofurans/therapeutic use , Male , Mice , Ischemic Stroke/drug therapy , Ischemic Stroke/pathology , Neuroinflammatory Diseases/drug therapy , Humans , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications
7.
Bioorg Chem ; 147: 107335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583250

ABSTRACT

Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 µM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 µM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1ß, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.


Subject(s)
Aglaia , Lipopolysaccharides , Nitric Oxide , Animals , Mice , Aglaia/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Male , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Cell Line , Plant Leaves/chemistry
8.
ACS Chem Neurosci ; 15(10): 2042-2057, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38656184

ABSTRACT

Based on the neuroprotection of butylphthalide and donepezil, a series of indanone/benzofuranone and piperidine hybrids were designed and synthesized for assessment of their neuroprotective activities, aiming to enhance the bioavailability and therapeutic efficacy of natural phthalide analogues. Within this study, it was observed that most indanone derivatives bearing 1-methylpiperidine in the tail segment demonstrated superior neuroprotective effects on the oxygen glucose deprivation/reperfusion (OGD/R)-induced rat primary neuronal cell injury model in vitro compared to benzofuranone compounds. Among the synthesized compounds, 11 (4, 14, 15, 22, 26, 35, 36, 37, 48, 49, and 52) displayed robust cell viabilities in the OGD/R model, along with favorable blood-brain barrier permeability as confirmed by the parallel artificial membrane permeability assay. Notably, compound 4 showed significant neuronal cell viabilities within the concentration range of 3.125 to 100 µM, without inducing cytotoxicity. Further results from in vivo middle cerebral artery occlusion/R experiments revealed that 4 effectively ameliorated ischemia-reperfusion injury, reducing the infarct volume to 18.45% at a dose of 40 mg/kg. This outcome suggested a superior neuroprotective effect compared to edaravone at 20 mg/kg, further highlighting the potential therapeutic efficacy of compound 4 in addressing neurological disorders.


Subject(s)
Benzofurans , Indans , Neuroprotective Agents , Piperidines , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Indans/pharmacology , Indans/chemical synthesis , Indans/chemistry , Benzofurans/pharmacology , Benzofurans/chemical synthesis , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Neurons/drug effects , Neurons/metabolism , Male , Cell Survival/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/drug therapy
9.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675525

ABSTRACT

Traumatic brain injury (TBI) leads to structural damage in the brain, and is one of the major causes of disability and death in the world. Herein, we developed a composite injectable hydrogel (HA/Gel) composed of hyaluronic acid (HA) and gelatin (Gel), loaded with vascular endothelial growth factor (VEGF) and salvianolic acid B (SAB) for treatment of TBI. The HA/Gel hydrogels were formed by the coupling of phenol-rich tyramine-modified HA (HA-TA) and tyramine-modified Gel (Gel-TA) catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). SEM results showed that HA/Gel hydrogel had a porous structure. Rheological test results showed that the hydrogel possessed appropriate rheological properties, and UV spectrophotometry results showed that the hydrogel exhibited excellent SAB release performance. The results of LIVE/DEAD staining, CCK-8 and Phalloidin/DAPI fluorescence staining showed that the HA/Gel hydrogel possessed good cell biocompatibility. Moreover, the hydrogels loaded with SAB and VEGF (HA/Gel/SAB/VEGF) could effectively promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). In addition, the results of H&E staining, CD31 and α-SMA immunofluorescence staining showed that the HA/Gel/SAB/VEGF hydrogel possessed good in vivo biocompatibility and pro-angiogenic ability. Furthermore, immunohistochemical results showed that the injection of HA/Gel/SAB/VEGF hydrogel to the injury site could effectively reduce the volume of defective tissues in traumatic brain injured mice. Our results suggest that the injection of HA/Gel hydrogel loaded with SAB and VEGF might provide a new approach for therapeutic brain tissue repair after traumatic brain injury.


Subject(s)
Benzofurans , Brain Injuries, Traumatic , Depsides , Gelatin , Hyaluronic Acid , Hydrogels , Vascular Endothelial Growth Factor A , Animals , Hydrogels/chemistry , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Gelatin/chemistry , Hyaluronic Acid/chemistry , Mice , Vascular Endothelial Growth Factor A/metabolism , Benzofurans/chemistry , Benzofurans/pharmacology , Benzofurans/administration & dosage , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Disease Models, Animal , Male , Cell Proliferation/drug effects
10.
Int Immunopharmacol ; 133: 112128, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652966

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with growing incidence worldwide. Our group reported the compound 5-choro-1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01007) as H4R antagonist (pKi 6.2) and therefore the effects and pharmacological efficacy on a DSS-induced mice model of UC were assessed in this work. Experimental acute colitis was induced in male BALB/c mice (n = 5-10) by administering 3 % DSS in the drinking water for six days. The test compound LINS01007 was administered daily i.p. (5 mg/kg) and compared to control group without treatment. Body weight, water and food consumption, and the presence of fecal blood were monitored during 7-day treatment period. The levels of inflammatory markers (PGE2, COX-2, IL-6, NF-κB and STAT3) were also analyzed. Animals subjected to the acute colitis protocol showed a reduction in water and food intake from the fourth day (p < 0.05) and these events were prevented by LINS01007. Histological signs of edema, hyperplasia and disorganized intestinal crypts, as well as neutrophilic infiltrations, were found in control mice while these findings were significantly reduced in animals treated with LINS01007. Significant reductions in the levels of PGE2, COX-2, IL-6, NF-κB and STAT3 were observed in the serum and tissue of treated animals. The results demonstrated the significant effects of LINS01007 against DSS-induced colitis, highlighting the potential of H4R antagonism as promising treatment for this condition.


Subject(s)
Benzofurans , Dextran Sulfate , Mice, Inbred BALB C , Piperazines , Receptors, Histamine H4 , Animals , Male , Piperazines/pharmacology , Piperazines/therapeutic use , Receptors, Histamine H4/antagonists & inhibitors , Mice , Benzofurans/therapeutic use , Benzofurans/pharmacology , Disease Models, Animal , NF-kappa B/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Cyclooxygenase 2/metabolism , Colon/pathology , Colon/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Interleukin-6/metabolism , Interleukin-6/blood , Dinoprostone/metabolism , Dinoprostone/blood
11.
Expert Opin Pharmacother ; 25(4): 371-382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568032

ABSTRACT

INTRODUCTION: Available treatments for colorectal cancer are limited. However, in the last few years several advances and new treatment options became available and expanded the continuum of care in metastatic colorectal cancer (mCRC). AREAS COVERED: Fruquintinib, a tyrosine kinase inhibitor, has been shown to be effective in heavily pretreated mCRC progressing to trifluridine-tipiracil (FTD/TPI) or regorafenib or both. Preclinical studies have shown that fruquintinib inhibits with high selectivity VEGFR 1-2-3, leading to a blockade in angiogenesis process, but also acts, with weak inhibition, on RET, FGFR-1, and c-kit kinases. Fruquintinib demonstrated good efficacy and tolerance in chemorefractory mCRC in two phase III trial: FRESCO and FRESCO 2. These results led to FDA approval of fruquintinib for pretreated mCRC patients who received prior fluoropyrimidine-, oxaliplatin-, and irinotecan-based chemotherapy. EXPERT OPINION: Fruquintinib is a valid therapeutic option for heavily pretreated mCRC patients. However, an optimal sequence of treatments is yet to be defined. In this review, we propose an algorithm for later lines of treatment to integrate fruquintinib as a standard of care together with the new therapeutic combinations that recently showed clinical benefit for chemorefractory mCRC, in both molecularly selected (e.g. KRASG12C or HER2 amplification) and in non-oncogenic driven patients.


Subject(s)
Benzofurans , Colorectal Neoplasms , Neoplasm Metastasis , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Benzofurans/therapeutic use , Benzofurans/pharmacology , Quinazolines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Agents/therapeutic use , Animals
12.
Chem Biodivers ; 21(5): e202400409, 2024 May.
Article in English | MEDLINE | ID: mdl-38459792

ABSTRACT

From Garcinia pedunculata Roxb. fruits, two undescribed aromatic compounds including a benzofuran and a depsidone derivative, and a new natural product, together with four known compounds were isolated. Through the analysis of spectroscopic data, high resolution mass spectrum and calculated nuclear magnetic resonance, their structures were determined. The α-glucosidase inhibitory activity of the isolates was evaluated. And compound 3 exhibited a moderate inhibitory effect on α-glucosidase. The molecular docking of compound 3 was performed to elucidate the interaction with α-glucosidase.


Subject(s)
Fruit , Garcinia , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Garcinia/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Fruit/chemistry , alpha-Glucosidases/metabolism , Molecular Structure , Structure-Activity Relationship , Depsides/chemistry , Depsides/isolation & purification , Depsides/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology
13.
Expert Opin Drug Metab Toxicol ; 20(4): 197-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38497279

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is the third most diagnosed cancer globally and despite therapeutic strides, the prognosis for patients with metastatic disease (mCRC) remains poor. Fruquintinib is an oral vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) targeting VEGFR -1, -2, and -3, and has recently received approval by the U.S. Food and Drug Administration for treatment of mCRC refractory to standard chemotherapy, anti-VEGF therapy, and anti-epidermal growth factor receptor (EGFR) therapy. AREAS COVERED: This article provides an overview of the pre-clinical data, pharmacokinetics, clinical efficacy, and safety profile of fruquintinib, as well as the management of clinical toxicities associated with fruquintinib. EXPERT OPINION: Fruquintinib is a valuable additional treatment option for patients with refractory mCRC. The pivotal role of vigilant toxicity management cannot be understated. While fruquintinib offers a convenient and overall, well-tolerated treatment option, ongoing research is essential to determine its efficacy in different patient subsets, evaluate it in combination with chemotherapy and immunotherapy, and determine its role in earlier lines of therapy.


Subject(s)
Antineoplastic Agents , Benzofurans , Colorectal Neoplasms , Neoplasm Metastasis , Protein Kinase Inhibitors , Quinazolines , Receptors, Vascular Endothelial Growth Factor , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Benzofurans/administration & dosage , Benzofurans/adverse effects , Benzofurans/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Animals , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Quinazolines/adverse effects , Quinazolines/administration & dosage , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Prognosis
14.
J Antibiot (Tokyo) ; 77(6): 338-344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519550

ABSTRACT

Three new phthalide derivatives (1‒3) together with two known compounds, erinaceolactone B (4) and hericerin III (5), were isolated from the culture broth of Dentipellis fragilis. The chemical structures of 1‒5 were determined by analyses of their 1D-, 2D-NMR, and MS. The absolute configuration of 1 was determined by CD analysis. The isolated compounds were assessed for their cytotoxic activities against A549, DU145, HCT116, and HT1080 cancer cell lines. Compounds 1‒5 showed strong cytotoxic activities against DU145, with IC50 values ranging from 14.3 to 16.1 µM. Additionally, all compounds showed moderate or weak cytotoxic activities against all cell lines except for compounds 4 and 1 which showed no cytotoxic activities against A549 and HCT116 cancer cell lines, respectively. Against HT1080 cancer cell line, only compound 2 displayed moderate cytotoxic activity.


Subject(s)
Antineoplastic Agents , Benzofurans , Humans , Cell Line, Tumor , Benzofurans/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Inhibitory Concentration 50 , Drug Screening Assays, Antitumor , Culture Media
15.
Fitoterapia ; 175: 105882, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452906

ABSTRACT

Falonolide A (1) and B (2), two novel polyyne hybrid phthalides resulting from unprecedented carbon skeleton polymerized by Z-ligustilide and falcarindiol, along with six new related phthalides (3-8), were isolated from Ligusticum chuanxiong Hort. Their structures were elucidated by spectroscopic analysis, computer-assisted structure elucidation (CASE) analysis, DP4+ probability analysis and electronic circular dichroism (ECD) calculations. A plausible biosynthetic pathway for 1-8 was proposed, and the production mechanism of 2 was revealed by density functional theory (DFT) method. Compounds 4 and 6 exhibited significant vasodilatory activity with EC50 of 8.00 ± 0.86 and 6.92 ± 1.02 µM, respectively. Compound 4 also displayed significant inhibitory effect of NO production with EC50 value of 8.82 ± 0.30 µM. Based on the established compounds library, structure-activity relationship analysis of phthalides was explored to provide insights into the drug development of vasodilators and anti-flammatory.


Subject(s)
Benzofurans , Ligusticum , Phytochemicals , Plant Roots , Ligusticum/chemistry , Plant Roots/chemistry , Molecular Structure , Benzofurans/pharmacology , Benzofurans/isolation & purification , Benzofurans/chemistry , Animals , Structure-Activity Relationship , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Vasodilator Agents/pharmacology , Vasodilator Agents/isolation & purification , Vasodilator Agents/chemistry , Mice , Nitric Oxide/metabolism , Rats , China , Male , RAW 264.7 Cells , Rats, Sprague-Dawley
16.
Phytomedicine ; 128: 155527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489888

ABSTRACT

BACKGROUND: Pancreatic cancer, a tumor with a high metastasis rate and poor prognosis, is among the deadliest human malignancies. Investigating effective drugs for their treatment is imperative. Moracin D, a natural benzofuran compound isolated from Morus alba L., shows anti-inflammation and anti-breast cancer properties and is effective against Alzheimer's disease. However, the effect and mechanism of Moracin D action in pancreatic cancer remain obscure. PURPOSE: To investigate the function and molecular mechanism of Moracin D action in repressing the malignant progression of pancreatic cancer. METHODS: Pancreatic cancer cells were treated with Moracin D, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) and immunofluorescence assays. The clonogenicity of pancreatic cancer cells was assessed based on plate colony formation and soft agar assay. Flow cytometry was used to detect cell apoptosis. The expression of proteins related to the apoptosis pathway was determined by Western blot analysis. Moracin D and XIAP were subjected to docking by auto-dock molecular docking analysis. Ubiquitination levels of XIAP and the interaction of XIAP and PARP1 were assessed by co-immunoprecipitation analysis. Moracin D's effects on tumorigenicity were assessed by a tumor xenograft assay. RESULTS: Moracin D inhibited cell proliferation, induced cell apoptosis, and regulated the protein expression of molecules involved in caspase-dependent apoptosis pathways. Moracin D suppressed clonogenicity and tumorigenesis of pancreatic cancer cells. Mechanistically, XIAP could interact with PARP1 and stabilize PARP1 by controlling its ubiquitination levels. Moracin D diminished the stability of XIAP and decreased the expression of XIAP by promoting proteasome-dependent XIAP degradation, further blocking the XIAP/PARP1 axis and repressing the progression of pancreatic cancer. Moracin D could dramatically improve the chemosensitivity of gemcitabine in pancreatic cancer cells. CONCLUSION: Moracin D repressed cell growth and tumorigenesis, induced cell apoptosis, and enhanced the chemosensitivity of gemcitabine through the XIAP/PARP1 axis in pancreatic cancer. Moracin D is a potential therapeutic agent or adjuvant for pancreatic cancer.


Subject(s)
Apoptosis , Benzofurans , Benzopyrans , Cell Proliferation , Pancreatic Neoplasms , Poly (ADP-Ribose) Polymerase-1 , X-Linked Inhibitor of Apoptosis Protein , Pancreatic Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Animals , Benzofurans/pharmacology , Mice, Nude , Morus/chemistry , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Molecular Docking Simulation , Mice, Inbred BALB C , Gemcitabine , Xenograft Model Antitumor Assays
17.
Sci Rep ; 14(1): 3178, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326371

ABSTRACT

MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.


Subject(s)
Benzofurans , Naphthoquinones , Neoplasms , Humans , STAT3 Transcription Factor/metabolism , Neoplasms/metabolism , Benzofurans/pharmacology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Cell Line, Tumor , Mucin-1/genetics , Mucin-1/metabolism
18.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396771

ABSTRACT

To date, many potent compounds have been found which are derived from plants and herbs and possess anticancer properties due to their antioxidant effects. 9″-Lithospermic acid methyl ester is an effective natural compound derived from the Thymus thracicus Velen. It has been proven that this compound has substantial properties in different diseases, but its effects in cancer have not been thoroughly evaluated. The aim of this work was to study the effects of 9″-Lithospermic acid methyl ester (9″-methyl lithospermate) in U87 and T98 glioblastoma cell lines. Its effects on cellular viability were assessed via Trypan Blue and Crystal Violet stains, the cell cycle analysis through flow cytometry, and cell migration by employing the scratch wound healing assay. The results demonstrated that 9″-methyl lithospermate was able to inhibit cellular proliferation, induce cellular death, and inhibit cell migration. Furthermore, these results were intensified by the addition of temozolomide, the most prominent chemotherapeutic drug in glioblastoma tumors. Further studies are needed to reproduce these findings in animal models and investigate if 9″-lithospermic acid methyl ester represents a potential new therapeutic addition for gliomas.


Subject(s)
Antineoplastic Agents , Benzofurans , Brain Neoplasms , Depsides , Glioblastoma , Animals , Glioblastoma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Temozolomide/pharmacology , Benzofurans/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
19.
Sleep Med ; 116: 41-42, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422783

ABSTRACT

Non-24-hour sleep-wake rhythm disorder (N24SWD) typically presents in patients with visual impairments that disrupt the ability to entrain to the 24 hour solar cycle. We discuss a 43 year old sighted man who presented with periodic daytime hypersomnia and nighttime insomnia, occasionally leading to <3 hours of sleep per day. Previous polysomnography showed an apnea hypopnea index of 6.2 events per hour. A sleep log of 3 months showed irregular time of sleep onset, and an average of 3 hours of sleep per day. Wrist actigraphy confirmed N24SWD. A trial of tasimelteon 20 mg/day resulting in improved daytime hypersomnia (pre-Epworth Sleepiness Scale (ESS) = 21/24, post-ESS = 5/24; a score of > 10/24 is considered sleepy). Follow-up actigraphy showed marked resolution of phase delay with an average of five hours of sleep. The case demonstrates that tasimelteon is a possible treatment for N24SWD in sighted individuals.


Subject(s)
Benzofurans , Cyclopropanes , Kleine-Levin Syndrome , Melatonin , Sleep Disorders, Circadian Rhythm , Sleep Wake Disorders , Male , Humans , Adult , Receptors, Melatonin , Sleep , Benzofurans/pharmacology , Sleep Disorders, Circadian Rhythm/drug therapy , Sleep Wake Disorders/therapy , Melatonin/therapeutic use , Melatonin/pharmacology , Circadian Rhythm
20.
Sci Rep ; 14(1): 4940, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418706

ABSTRACT

Chemical exploration of the total extract derived from Epicoccum nigrum Ann-B-2, an endophyte associated with Annona squamosa fruits, afforded two new metabolites, epicoccofuran A (1) and flavimycin C (2), along with four known compounds namely, epicocconigrone A (3), epicoccolide B (4), epicoccone (5) and 4,5,6-trihydroxy-7-methyl-1,3-dihydroisobenzofuran (6). Structures of the isolated compounds were elucidated using extensive 1D and 2D NMR along with HR-ESI-MS. Flavimycin C (2) was isolated as an epimeric mixture of its two diastereomers 2a and 2b. The new compounds 1 and 2 displayed moderate activity against B. subtilis, whereas compounds (2, 3, 5, and 6) showed significant antiproliferative effects against a panel of seven different cancer cell lines with IC50 values ranging from 1.3 to 12 µM.


Subject(s)
Annona , Antineoplastic Agents , Ascomycota , Benzofurans , Annona/chemistry , Fruit , Benzofurans/pharmacology , Ascomycota/chemistry , Antineoplastic Agents/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...