Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 465
Filter
1.
Bioorg Chem ; 148: 107426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733750

ABSTRACT

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.


Subject(s)
Enzyme Inhibitors , Heme , Indoleamine-Pyrrole 2,3,-Dioxygenase , Animals , Humans , Mice , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Heme/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Benzoxazoles/pharmacology
2.
Chem Biodivers ; 21(5): e202400031, 2024 May.
Article in English | MEDLINE | ID: mdl-38448389

ABSTRACT

Ulcerative colitis has been widely concerned for its persistent upward trend, and the sustained overproduction of pro-inflammatory cytokines such as IL-6 remains a crucial factor in the development of UC. Therefore, the identification of new effective drugs to block inflammatory responses is an urgent and viable therapeutic strategy for UC. In our research, twenty-three 6-acylamino/sulfonamido benzoxazolone derivatives were synthesized, characterized, and evaluated for anti-inflammatory activity against NO and IL-6 production in LPS-induced RAW264.7 cells. The results demonstrated that most of the target compounds were capable of reducing the overexpression of NO and IL-6 to a certain degree. For the most active compounds 3i, 3j and 3 l, the inhibitory activities were superior or equivalent to those of the positive drug celecoxib with a dose-dependent relationship. Furthermore, animal experiments revealed that active derivatives 3i, 3j and 3 l exhibited definitive therapeutical effect on DSS induced ulcerative colitis in mice by mitigating weight loss and DAI score while decreasing levels of pro-inflammatory cytokines such as IL-6 and IFN-γ, simultaneously increasing production of anti-inflammatory cytokines IL-10. In addition, compounds 3i, 3j and 3 l could also inhibit the oxidative stress to alleviate ulcerative colitis by decreasing MDA and MPO levels. These finding demonstrated that compounds 3i, 3j and 3 l hold significant potential as novel therapeutic agents for ulcerative colitis.


Subject(s)
Benzoxazoles , Colitis, Ulcerative , Interleukin-6 , Animals , Colitis, Ulcerative/drug therapy , Mice , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Benzoxazoles/chemical synthesis , RAW 264.7 Cells , Structure-Activity Relationship , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate , Drug Discovery , Molecular Structure , Dose-Response Relationship, Drug
3.
J Enzyme Inhib Med Chem ; 37(1): 397-410, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34961427

ABSTRACT

A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoxazoles/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Eur J Med Chem ; 227: 113933, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34689072

ABSTRACT

The P2Y14 nucleotide receptor, a subtype of P2Y receptors, is implicated in many human inflammatory diseases. Based on the identification of favorable residues of two screening hits in the almost symmetrical P2Y14 binding domain, we describe the structural optimization of previously identified virtual screening hits 6 and 7 that result in the development of P2Y14R antagonists with a novel 2-phenyl-benzoxazole acetamide chemical scaffold. Notably, compound 52 showed potent P2Y14R antagonistic activity (IC50 = 2 nM), and a stronger inhibitory effect on MSU-induced inflammatory in vitro, better than a previously described P2Y14R antagonist PPTN. In vivo evaluation demonstrated that compound 52 also had satisfactory inhibitory activity on the inflammatory response of gout flares in mice. Moreover, P2Y14R antagonist 52 decreased paw swelling and inflammatory cell infiltration through cAMP/NLRP3/GSDMD signaling pathways in MSU-induced acute gouty arthritis mice. The discussions on the binding mechanism that employ MM/GBSA free energy calculations/decompositions also provide some useful clues for further structural designing of compound 52. Taken together, 2-phenyl-benzoxazole acetamide derivative 52 with potent P2Y14R antagonistic activity and in vivo potency could be a promising strategy for gout therapy and deserves further optimization.


Subject(s)
Acetamides/pharmacology , Benzoxazoles/pharmacology , Drug Discovery , Gout/drug therapy , Purinergic P2 Receptor Antagonists/pharmacology , Receptors, Purinergic P2Y/metabolism , Acetamides/chemical synthesis , Acetamides/chemistry , Animals , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Gout/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Molecular Docking Simulation , Molecular Structure , Purinergic P2 Receptor Antagonists/chemical synthesis , Purinergic P2 Receptor Antagonists/chemistry , Structure-Activity Relationship
5.
J Enzyme Inhib Med Chem ; 37(1): 168-177, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894971

ABSTRACT

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Coumarins/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
6.
Eur J Med Chem ; 225: 113824, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34509167

ABSTRACT

Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid molecules targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type molecular hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61 µM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13 µM and SAHA, IC50 = 2.26 µM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by molecular docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Carcinoma, Hepatocellular/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Liver Neoplasms/drug therapy , Protein Kinases/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Hep G2 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Kinases/chemical synthesis , Protein Kinases/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
7.
Top Curr Chem (Cham) ; 379(5): 32, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34342718

ABSTRACT

Molecules that exhibit solid-state luminescence enhancement, i.e. the rare property to be more strongly emissive in the solid state than in solution, find an increasing number of applications in the fields of optoelectronic and nanophotonic devices, sensors, security papers, imaging, and theranostics. Benzazole (BZ) heterocycles are of particular value in this context. The simple enlargement of their π-electron system using a -C=C-Ar or -N=C-Ar moiety is enough for intrinsic solid-state luminescence enhancement (SLE) properties to appear. Their association with a variety of polyaromatic motifs leads to SLE-active molecules that frequently display attractive electroluminescent properties and are sensitive to mechanical stimuli. The excited-state intramolecular proton transfer (ESIPT) process that takes place in some hydroxy derivatives reinforces the SLE effect and enables the development of new sensors based on a protection/deprotection strategy. BZ may also be incorporated into frameworks that are prototypical aggregation-induced enhancement (AIE) luminogens, such as the popular tetraphenylethene (TPE), leading to materials with excellent optical and electroluminescent performance. This review encompasses the various ways to use BZ units in SLE systems. It underlines the significant progresses recently made in the understanding of the photophysical mechanisms involved. A brief overview of the synthesis shows that BZ units are robust building blocks, easily incorporated into a variety of structures. Generally speaking, we try to show how these small heterocycles may offer advantages for the design of increasingly efficient luminescent materials.


Subject(s)
Azoles/chemistry , Luminescent Measurements , Azoles/chemical synthesis , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Phenothiazines/chemistry , Schiff Bases/chemistry , Stilbenes/chemistry
8.
ChemMedChem ; 16(21): 3237-3262, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34289258

ABSTRACT

The benzoxazole moiety is widely found in various natural compounds, which are often found to be biologically active. Due to its versatile biological properties, benzoxazole has been incorporated as an essential pharmacophore and substructure in many medicinal compounds. In the past years, numerous benzoxazole derivatives have been synthesised and evaluated for their biological potential. The wide range in therapeutic potential of benzoxazole derivatives is related to the favourable interactions of the benzoxazole moiety with different protein targets. Herein we review the biological activities of benzoxazole derivatives patented within the past six years. Using the Lens database, granted patents issued from 2015 to 2020 were retrieved. The patented benzoxazole derivatives demonstrated excellent activity against various protein targets and diseases, with some reaching clinical trial stage. Pharmacological and medicinal aspects of patented benzoxazole derivatives are discussed. The recent development and drawbacks are also reviewed.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Drug Development , Enzyme Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure
9.
Chem Commun (Camb) ; 57(62): 7709-7712, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34259249

ABSTRACT

Chiral 3-substituted benzoxaboroles were designed as carbapenemase inhibitors and efficiently synthesised via asymmetric Morita-Baylis-Hillman reaction. Some of the benzoxaboroles were potent inhibitors of clinically relevant carbapenemases and restored the activity of meropenem in bacteria harbouring these enzymes. Crystallographic analyses validate the proposed mechanism of binding to carbapenemases, i.e. in a manner relating to their antibiotic substrates. The results illustrate how combining a structure-based design approach with asymmetric catalysis can efficiently lead to potent ß-lactamase inhibitors and provide a starting point to develop drugs combatting carbapenemases.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Benzoxazoles/chemical synthesis , Benzoxazoles/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , beta-Lactamases/pharmacology , Anti-Bacterial Agents/chemistry , Benzoxazoles/chemistry , Chemistry Techniques, Synthetic , Stereoisomerism
10.
Bioorg Med Chem ; 40: 116129, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33971488

ABSTRACT

Over the past few decades, an increasing variety of molecular chaperones have been investigated for their role in tumorigenesis and as potential chemotherapeutic targets; however, the 60 kDa Heat Shock Protein (HSP60), along with its HSP10 co-chaperone, have received little attention in this regard. In the present study, we investigated two series of our previously developed inhibitors of the bacterial homolog of HSP60/10, called GroEL/ES, for their selective cytotoxicity to cancerous over non-cancerous colorectal cells. We further developed a third "hybrid" series of analogs to identify new candidates with superior properties than the two parent scaffolds. Using a series of well-established HSP60/10 biochemical screens and cell-viability assays, we identified 24 inhibitors (14%) that exhibited > 3-fold selectivity for targeting colorectal cancer over non-cancerous cells. Notably, cell viability EC50 results correlated with the relative expression of HSP60 in the mitochondria, suggesting a potential for this HSP60-targeting chemotherapeutic strategy as emerging evidence indicates that HSP60 is up-regulated in colorectal cancer tumors. Further examination of five lead candidates indicated their ability to inhibit the clonogenicity and migration of colorectal cancer cells. These promising results are the most thorough analysis and first reported instance of HSP60/10 inhibitors being able to selectively target colorectal cancer cells and highlight the potential of the HSP60/10 chaperonin system as a viable chemotherapeutic target.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Chaperonin 10/antagonists & inhibitors , Chaperonin 60/antagonists & inhibitors , Colorectal Neoplasms/drug therapy , Salicylanilides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Chaperonin 10/metabolism , Chaperonin 60/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Salicylanilides/chemical synthesis , Salicylanilides/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
11.
Bioorg Chem ; 112: 104913, 2021 07.
Article in English | MEDLINE | ID: mdl-33945950

ABSTRACT

Discovery of novel anticancer drugs which have low toxicity and high activity is very significant area in anticancer drug research and development. One of the important targets for cancer treatment research is topoisomerase enzymes. In order to make a contribution to this field, we have designed and synthesized some 5(or 6)-nitro-2-(substitutedphenyl)benzoxazole (1a-1r) and 2-(substitutedphenyl)oxazolo[4,5-b]pyridine (2a-2i) derivatives as novel candidate antitumor agents targeting human DNA topoisomerase enzymes (hTopo I and hTopo IIα). Biological activity results were found very promising for the future due to two compounds, 5-nitro-2-(4-butylphenyl)benzoxazole (1i) and 2-(4-butylphenyl)oxazolo[4,5-b]pyridine (2i), that inhibited hTopo IIα with 2 µM IC50 value. These two compounds were also found to be more active than reference drug etoposide. However, 1i and 2i did not show any satisfactory cyctotoxic activity on the HeLa, WiDR, A549, and MCF7 cancer cell lines. Moreover, molecular docking and molecular dynamic simulations studies for the most active compounds were applied in order to understand the mechanism of inhibition activity of hTopo IIα. In addition, in silico ADME/Tox studies were performed to predict drug-likeness and pharmacokinetic properties of all the tested compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Drug Discovery , Oxazoles/pharmacology , Pyrimidines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type II , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
12.
Drug Des Devel Ther ; 15: 1225-1243, 2021.
Article in English | MEDLINE | ID: mdl-33776421

ABSTRACT

Rare diseases are increasingly recognized as a global public health priority. Governments worldwide currently provide important incentives to stimulate the discovery and development of orphan drugs for the treatment of these conditions, but substantial scientific, clinical, and regulatory challenges remain. Tafamidis is a first-in-class, disease-modifying transthyretin (TTR) kinetic stabilizer that represents a major breakthrough in the treatment of transthyretin amyloidosis (ATTR amyloidosis). ATTR amyloidosis is a rare, progressive, and fatal systemic disorder caused by aggregation of misfolded TTR and extracellular deposition of amyloid fibrils in various tissues and organs, including the heart and nervous systems. In this review, we present the successful development of tafamidis spanning 3 decades, marked by meticulous laboratory research into disease mechanisms and natural history, and innovative clinical study design and implementation. These efforts established the safety and efficacy profile of tafamidis, leading to its regulatory approval, and enabled post-approval initiatives that further support patients with ATTR amyloidosis.


Subject(s)
Benzoxazoles/therapeutic use , Drug Discovery , Rare Diseases/drug therapy , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Humans
13.
Org Biomol Chem ; 19(12): 2784-2793, 2021 03 28.
Article in English | MEDLINE | ID: mdl-33704342

ABSTRACT

Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2-aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with the obtained kinetic and thermodynamic parameters indicating full agreement with the experimental observations. The obtained amidines were subjected to a condensation reaction with aryl carboxylic acids that allowed the synthesis of a new library of 5- and 6-amidino substituted 2-arylbenzoxazoles. Their antiproliferative features against four human tumour cell lines (SW620, HepG2, CFPAC-1, HeLa) revealed sub-micromolar activities on SW620 for several cyclic amidino 2-naphthyl benzoxazoles, thus demonstrating the usefulness of the proposed synthetic strategy and promoting amidino substituted 2-aminophenols as important building blocks towards biologically active systems.


Subject(s)
Amidines/pharmacology , Aminophenols/pharmacology , Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Amidines/chemistry , Aminophenols/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Density Functional Theory , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure
14.
Bioorg Chem ; 109: 104752, 2021 04.
Article in English | MEDLINE | ID: mdl-33657444

ABSTRACT

New benzoxazole derivatives containing 1,3,4-oxadiazole, 1,2,4-triazole or triazolothiadiazine rings were synthesized and screened for their in vitro antiproliferative activities against MCF-7 and MDA-MB-231 breast cancer cell lines using MTT assay. Doxorubicin, cisplatin and 2-(4-aminophenyl)benzothiazole (CJM 126) were used as references. The most active compounds 7a, 8d, 8e and 10c were screened for their antiproliferative activities against MCF-10A normal breast cells where compounds 8e and 7a were the most selective towards MCF-7 and MDA-MB-231 cell lines, respectively compared to CJM 126. In vitro enzymatic inhibition assays of epidermal growth factor receptor (EGFR) and aromatase (ARO) enzymes were performed. Compound 7a showed inhibition of EGFR comparable to that of erlotinib while compound 8e exhibited nearly half the inhibitory activity of erlotinib towards EGFR and was more potent inhibitor of ARO than letrozole. Caspase-9 activation assay, cell cycle analysis and Annexin-V/ Propidium iodide assay performed for compounds 7a, 8d, 8e and 10c demonstrated over expression of caspase-9 protein level, pre G1 apoptosis and high annexin V binding affinity. Therefore, these compounds are considered as potent apoptosis-promoting agents. The predicted docking studies and in silico chemo-informatic properties of compounds 7a and 8e were appropriate. Compounds 7a and 8e are promising anti-breast cancer agents exhibiting potent apoptosis-promoting properties.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Breast Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
15.
J Med Chem ; 64(4): 2024-2045, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33538587

ABSTRACT

We identified a set of thiosemicarbazone (TSC) metal ion chelators that reactivate specific zinc-deficient p53 mutants using a mechanism called zinc metallochaperones (ZMCs) that restore zinc binding by shuttling zinc into cells. We defined biophysical and cellular assays necessary for structure-activity relationship studies using this mechanism. We investigated an alternative class of zinc scaffolds that differ from TSCs by substitution of the thiocarbamoyl moiety with benzothiazolyl, benzoxazolyl, and benzimidazolyl hydrazones. Members of this series bound zinc with similar affinity and functioned to reactivate mutant p53 comparable to the TSCs. Acute toxicity and efficacy assays in rodents demonstrated C1 to be significantly less toxic than the TSCs while demonstrating equivalent growth inhibition. We identified C85 as a ZMC with diminished copper binding that functions as a chemotherapy and radiation sensitizer. We conclude that the benzothiazolyl, benzoxazolyl, and benzimidazolyl hydrazones can function as ZMCs to reactivate mutant p53 in vitro and in vivo.


Subject(s)
Benzothiazoles/therapeutic use , Benzoxazoles/therapeutic use , Chelating Agents/therapeutic use , Hydrazones/therapeutic use , Tumor Suppressor Protein p53/metabolism , Zinc/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , Benzoxazoles/chemical synthesis , Benzoxazoles/pharmacology , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/pharmacology , Humans , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Mice, Nude , Molecular Structure , Neoplasms/drug therapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Structure-Activity Relationship , Tumor Suppressor Protein p53/drug effects , Xenograft Model Antitumor Assays
16.
Eur J Med Chem ; 215: 113269, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33588177

ABSTRACT

Diabetic nephropathy (DN) is resulted from activations of polyol pathway and oxidative stress by abnormal metabolism of glucose, and no specific medication is available. We designed a novel class of benzoxazolone derivatives, and a number of individuals were found to have significant antioxidant activity and inhibition of aldose reductase of the key enzyme in the polyol pathway. The outstanding compound (E)-2-(7-(4-hydroxy-3-methoxystyryl)-2-oxobenzo[d]oxazol-3(2H)-yl)acetic acid was identified to reduce urinary proteins in diabetic mice suggesting an alleviation in the diabetic nephropathy, and this was confirmed by kidney hematoxylin-eosin staining. Further investigations showed blood glucose normalization, declined in the polyol pathway and lipid peroxides, and raised glutathione and superoxide dismutase activity. Thus, we suggest a therapeutic function of the compound for DN which could be attributed to the combination of hypoglycemic, aldose reductase inhibition and antioxidant.


Subject(s)
Antioxidants/therapeutic use , Benzoxazoles/therapeutic use , Diabetic Nephropathies/drug therapy , Enzyme Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/metabolism , Benzoxazoles/chemical synthesis , Benzoxazoles/metabolism , Diabetes Mellitus, Experimental/drug therapy , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , HEK293 Cells , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/metabolism , Mice , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship
17.
ChemMedChem ; 16(8): 1268-1282, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33410233

ABSTRACT

Tuberculosis (TB) is currently the leading cause of death related to infectious diseases worldwide, as reported by the World Health Organization. Moreover, the increasing number of multidrug-resistant tuberculosis (MDR-TB) cases has alarmed health agencies, warranting extensive efforts to discover novel drugs that are effective and also safe. In this study, 23 new compounds were synthesized and evaluated in vitro against the drug-resistant strains of M. tuberculosis. The compound 6-((3-fluoro-4-thiomorpholinophenyl)carbamoyl)benzo[c][1,2,5]oxadiazole 1-N-oxide (5 b) was particularly remarkable in this regard as it demonstrated MIC90 values below 0.28 µM against all the MDR strains evaluated, thus suggesting that this compound might have a different mechanism of action. Benzofuroxans are an attractive new class of anti-TB agents, exemplified by compound 5 b, with excellent potency against the replicating and drug-resistant strains of M. tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Benzoxazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Oxadiazoles/pharmacology , Antitubercular Agents/chemical synthesis , Benzoxazoles/chemical synthesis , Drug Design , Drug Resistance, Multiple/drug effects , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemical synthesis , Structure-Activity Relationship
18.
Eur J Med Chem ; 212: 113124, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33395623

ABSTRACT

In this study, four series of compounds with benzoxazolone and benzothiazolone cores were designed, synthesized and evaluated as multifunctional agents against Alzheimer's disease (AD). Additionally, in order to shed light on the effect of the carbonyl groups of benzoxazolone/benzothiazolone, benzoxazole/benzothiazole-containing analogues were also synthesized and evaluated. Inhibition potency of all final compounds towards cholinesterase enzymes and their antioxidant activity were tested. Subsequently, the anti-inflammatory activity, cytotoxicity, apoptosis, and Aß aggregation inhibition tests were also performed for selected compounds. The results indicated that compounds 11c, a pentanamide derivative with benzothiazolone core, and 14b, a keton derivative with benzothiazolone core, were considered as promising multi-functional agents for further investigation against AD. The reversibility, kinetic and molecular docking studies were also performed for the compounds with the highest AChE 14b (eeAChE IC50 = 0.34 µM, huAChE IC50 = 0.46 µM) and BChE 11c (eqBChE IC50 = 2.98 µM, huBChE IC50 = 2.56 µM) inhibitory activities.


Subject(s)
Alzheimer Disease/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzoxazoles/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Thiazoles/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Butyrylcholinesterase/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Horses , Humans , Mice , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
19.
Arch Pharm (Weinheim) ; 354(1): e2000235, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32930414

ABSTRACT

In an attempt to identify potential anticancer agents for non-small-cell lung cancer (NSCLC) targeting sirtuin 1 (SIRT1), the synthesis of a new series of benzoxazoles (3a - i) was carried out through a facile and versatile synthetic route. The compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cells using the MTT assay. 2-[(5-Nitro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3e) and 2-[(5-chloro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3g) were the most potent and selective anticancer agents in this series against the A549 cell line, with IC50 values of 46.66 ± 11.54 and 55.00 ± 5.00 µM, respectively. The flow cytometry-based apoptosis detection assay was performed to determine their effects on apoptosis in A549 cells. Both compounds induced apoptosis in a dose-dependent manner. The effects of compounds 3e and 3g on SIRT1 activity were determined. On the basis of in vitro studies, it was observed that compound 3g caused a significant decrease in SIRT1 levels in a dose-dependent manner, whereas compound 3e increased the SIRT1 levels. According to molecular docking studies, the substantial alteration in the type of action could be attributed to the difference between the interactions of compounds 3e and 3g with the same residues in the active site of SIRT1 (PDB code: 4IG9). On the basis of in silico ADME (absorption, distribution, metabolism, and excretion) studies, these compounds are predicted to possess favorable ADME profiles. According to the in vitro and in silico studies, compounds 3e and 3g, small-molecule SIRT1 modulators, were identified as potential orally bioavailable anticancer agents for the targeted therapy of NSCLC.


Subject(s)
Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Carcinoma, Non-Small-Cell Lung/pathology , Computer Simulation , Dose-Response Relationship, Drug , Drug Design , Humans , Lung Neoplasms/pathology , Mice , Molecular Targeted Therapy , NIH 3T3 Cells , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Structure-Activity Relationship
20.
Anticancer Agents Med Chem ; 21(1): 84-90, 2021.
Article in English | MEDLINE | ID: mdl-32698749

ABSTRACT

BACKGROUND: 2(3H)-Benzoxazolone derivatives are preferential structural blocks in pharmacological probe designing with the possibility of modifications at various positions on the core structure. Benzoxazolones showed various biological activities such as analgesics, anti-inflammatory and anti-cancer. OBJECTIVE: In the present work, we have prepared new Mannich bases of 2(3H)-benzoxazolone derivatives and evaluated their cytotoxicities and proapoptotic properties in MCF-7 breast cancer cell line. METHODS: The structures of these compounds were characterized by FT-IR, elemental analysis, 1H and 13C NMR. Cytotoxicities of all the target compounds were investigated by MTT assay. Apoptotic properties of compounds were evaluated by immunocytochemistry using antibodies against caspase-3, cytochrome-c, FasL, and also TUNEL assay. RESULTS: These two novel compounds, 1 and 2, both have the same piperazine substituent on the nitrogen atom of benzoxazolone and the main difference in the structures of these compounds is the presence of Cl substituent at the 5- position of the benzoxazolone ring. MTT results showed that compounds 1 and 2 were effective in terms of reduction of cell viability at 100µM and 50µM concentration for 48h, respectively. As a result of immunohistochemical staining, Fas L and caspase-3 immunoreactivities were significantly increased in MCF-7 cells after treatment with compound 1. Additionally, caspase-3 and cytochrome-c immunoreactivities were also increased significantly in MCF-7 cells after treatment with compound 2. The number of TUNEL positive cells was significantly higher in MCF-7 cells when compared with the control group after treatment with both compounds 1 and 2. CONCLUSION: It could be concluded that N-substituted benzoxazolone derivatives increase potential anti-cancer effects and they could be promising novel therapeutic agents for chemotherapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzoxazoles/chemical synthesis , Breast Neoplasms/drug therapy , Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoxazoles/pharmacology , Caspase 3/metabolism , Drug Screening Assays, Antitumor , Electron Transport Complex IV/metabolism , Fas Ligand Protein/metabolism , Humans , MCF-7 Cells , Piperazine/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...