Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 6786, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321974

ABSTRACT

Aiming to understand Nature´s strategies that inspire new composite materials, the hierarchical levels of organization of the Brazil nut (Bertholletia excelsa) mesocarp were investigated. Optical microscopy, scanning electron microscopy (SEM), microtomography (MicroCT) and small-angle X-ray scattering (SAXS) were used to deeply describe the cellular and fibrillary levels of organization. The mesocarp is the middle layer of the fruit which has developed several strategies to avoid its opening and protect its seed. Fibers have a different orientation in the three layers of the mesocarp, what reduces the anisotropy of the structure. Sclereids cells with thick cell walls fill the spaces between the fibers resembling a foam-filled structural composite. The mesocarp has several tubular channels and fractured surfaces which may work as sites for crack trapping and increase toughness. The thick and lignified cell wall of sclereids and fibers and the weak interface between cells can promote a longer and tortuous intercellular crack path. Additionally, fibers with high strength and stiffness due to microfibrils oriented along the main cell axis (µ = 0° to 17°) were identified in the innermost layer of the mesocarp. Such an understanding of each hierarchical level can inspire the development of new cellular composites with improved mechanical behavior.


Subject(s)
Bertholletia/metabolism , Cell Wall/metabolism , Fruit/metabolism , Microfibrils/metabolism , Seeds/metabolism , Algorithms , Bertholletia/anatomy & histology , Bertholletia/ultrastructure , Cell Wall/ultrastructure , Fruit/anatomy & histology , Fruit/ultrastructure , Humans , Microfibrils/ultrastructure , Microscopy, Electron, Scanning/methods , Scattering, Small Angle , Seeds/anatomy & histology , Seeds/ultrastructure , X-Ray Diffraction/methods , X-Ray Microtomography/methods
2.
J Food Sci ; 79(7): H1443-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24974969

ABSTRACT

UNLABELLED: In this article, tissue layers and cells characteristics of the Brazil nut (Bertholletia excelsa H.B.K.) shell (tegument), brown skin (testae), and edible part (cotyledons) were identified by stereoscopy (SM) and scanning electron microscopies (SEM). (a) The shell (a lignin rich, protective wall) varies in thickness throughout the nut structure and comprises different tissue types (total 3)/texture (hard/mid-hard/soft), layers (2 to 5), colors (light to dark brown and white to cream), cell shape (amorphous/flattened on both surfaces; polygonal and cylindrical with thick, porous primary and secondary wall in cross-section), and vascular distribution (helically and polyedrical thickened vessels at soft tissue and locule/channel structures). These variations are observed either in the shell faces, face corners, nut tips, or locule in testae. (b) The brown skin (shell nut part linked to both the shell and edible part) is made of flattened irregular-shaped parenchymal cells distributed in several layers with more flexible fibrous, thinner wall tissue than shell. It has both rough and smooth shiny texture on the upper and lower surfaces, respectively. However, the nut (c) edible part, that is the nut storage tissue, shows several different tissue/cell layers starting from epidermis (double/triple cells sequence of round and palisade shapes) layer-the endosperm tissue. The parenchymal tissues show cells of irregular shape with small and larger sizes distributed in regular and randomly layers, respectively, separated by a short meristem tissue layer. The cortex cells increase in size as they approach the cotyledons junction. The Brazil nut part's tissue layers and cells were identified by the SM and SEM microscopy methods applied, which provides knowledge for further understanding of nut alterations that may occur either in the forest or during the factory processing. PRACTICAL APPLICATION: Knowledge about the characteristics and nature of the waste woody tissues from the Brazil nut factories is of interest for potential applications in the industry. Understanding the nut tissues and cells structures helps in judging how much whole nut edible part gets spoiled/deteriorated (either raw or processed), for further development of procedures to prevent and/or control such spoiling/deterioration for achieving nut quality and safety (to be discussed in Part Two).


Subject(s)
Bertholletia/ultrastructure , Nuts/ultrastructure , Bertholletia/physiology , Food Analysis , Microscopy, Electron, Scanning , Nuts/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...