Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
J Ovarian Res ; 17(1): 97, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720330

ABSTRACT

The epidermal growth factor (EGF)-like factors, comprising amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG), play a critical role in regulating the ovulatory process. Pentraxin 3 (PTX3), an essential ovulatory protein, is necessary for maintaining extracellular matrix (ECM) stability during cumulus expansion. The aim of this study was to investigate the impact of EGF-like factors, AREG, BTC, and EREG on the expression and production of PTX3 in human granulosa-lutein (hGL) cells and the molecular mechanisms involved. Our results demonstrated that AREG, BTC, and EREG could regulate follicular function by upregulating the expression and increasing the production of PTX3 in both primary (obtained from 20 consenting patients undergoing IVF treatment) and immortalized hGL cells. The upregulation of PTX3 expression was primarily facilitated by the activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway, induced by these EGF-like factors. In addition, we found that the upregulation of PTX3 expression triggered by the EGF-like factors was completely reversed by either pretreatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, or knockdown of EGFR, suggesting that EGFR is crucial for activating the ERK1/2 signaling pathway in hGL cells. Overall, our findings indicate that AREG, BTC, and EREG may modulate human cumulus expansion during the periovulatory stage through the upregulation of PTX3.


Subject(s)
Amphiregulin , Betacellulin , C-Reactive Protein , Epiregulin , Luteal Cells , Serum Amyloid P-Component , Up-Regulation , Female , Humans , Amphiregulin/metabolism , Amphiregulin/genetics , Betacellulin/metabolism , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Epiregulin/metabolism , Epiregulin/genetics , ErbB Receptors/metabolism , Luteal Cells/metabolism , MAP Kinase Signaling System , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics
2.
Theriogenology ; 218: 137-141, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325150

ABSTRACT

The present experiments are aimed to examine the effect of copper nanoparticles supported on charcoal (CuNPs/C), growth factor betacellulin (BTC) and their interrelationships in the control of ovarian cell functions. Porcine ovarian granulosa cells were cultured in the presence of CuNPs/C (0, 1, 10 or 100 ng/ml), BTC (100 ng/ml) and the combination of both, CuNPs/C + BTC. Markers of cell proliferation (BrDU incorporation), of the S-phase (PCNA) and G-phase (cyclin B1) of the cell cycle, markers of extrinsic (nuclear DNA fragmentation) and cytoplasmic/mitochondrial apoptosis (bax and caspase 3), and the release of progesterone and estradiol were assessed by BrDU test, TUNEL, quantitative immunocytochemistry and ELISA. Both CuNPs/C and BTC, when added alone, increased the expression of all the markers of cell proliferation, reduced the expression of all apoptosis markers and stimulated progesterone and estradiol release. Moreover, BTC was able to promote the CuNPs/C action on the accumulation of PCNA, cyclin B1, bax and estradiol output. These observations demonstrate the stimulatory action of both CuNPs/C and BTC on ovarian cell functions, as well as the ability of BTC to promote the action of CuNPs/C on ovarian cell functions.


Subject(s)
Nanoparticles , Progesterone , Female , Swine , Animals , Cyclin B1/metabolism , Progesterone/pharmacology , Charcoal/metabolism , Charcoal/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , bcl-2-Associated X Protein/metabolism , Betacellulin/metabolism , Betacellulin/pharmacology , Bromodeoxyuridine/metabolism , Bromodeoxyuridine/pharmacology , Granulosa Cells , Estradiol/pharmacology , Cell Proliferation , Apoptosis , Cells, Cultured , Insulin-Like Growth Factor I/metabolism
3.
EMBO Mol Med ; 15(11): e18367, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37859621

ABSTRACT

Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-ß2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.


Subject(s)
Fatty Acids, Omega-3 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/metabolism , Diet, Western , Betacellulin/metabolism , Multiomics , Fibrosis , Liver Neoplasms/pathology , Liver/pathology , Disease Models, Animal , Mice, Inbred C57BL
4.
Cytotherapy ; 25(12): 1259-1264, 2023 12.
Article in English | MEDLINE | ID: mdl-37737767

ABSTRACT

Blood, tissue and cell establishments (BTCs) stand out in the management of donor selection, procurement and processing of all types of substances of human origin (SoHO). In the last decades, the framework created around BTCs, including hospitals and national health system networks, and their links to research, development and innovation organizations and agencies have spurred their involvement in the study of groundbreaking advanced therapy medicinal products (ATMP). To further improve strategic synergies in the development of ATMPs, it will be required to promote intra- and inter-European collaborations by creating an international network involving BTCs and major stakeholders (i.e., research organizations, hospitals, universities, patient associations, public agencies). This vision is already shared with the European Blood Alliance, the association of non-profit blood establishments, with 26 member states throughout the European Union and European Free Trade Association states. Herein we present and analyze the "BTC for ATMP Development And Manufacture" (BADAM) model, an ethically responsible business model based on the values and missions of BTCs and their commitment to health equity, patient access and education (based on voluntary donation of SoHO to address unmet clinical needs, while contributing to training professionals and scientific literacy of our Society).


Subject(s)
Commerce , Humans , Europe , Betacellulin , Cell Differentiation , European Union
5.
J Ovarian Res ; 16(1): 103, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37231448

ABSTRACT

BACKGROUND: The gap junction protein, connexin 43 (Cx43) is highly expressed in human granulosa-lutein (hGL) cells. The phosphorylation of certain amino acid residues in the Cx43 protein has been shown to be related to a decline in gap junction intercellular communication (GJIC), which subsequently affects oocyte meiotic resumption. As a member of the epidermal growth factor (EGF) family, betacellulin (BTC) mediates luteinizing hormone (LH)-induced oocyte maturation and cumulus cell expansion in mammalian follicles. Whether BTC can regulate Cx43 phosphorylation, which further reduces Cx43-coupled GJIC activity in hGL cells remains to be determined. METHODS: Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing in vitro fertilization in an academic research center were used as the study models. The expression levels of Cx43 and phosphorylated Cx43 were examined following cell incubation with BTC at different time points. Several kinase inhibitors (sotrastaurin, AG1478, and U0126) and small interfering RNAs targeting EGF receptor (EGFR) and receptor tyrosine-protein kinase 4 (ErbB4) were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. RESULTS: The results showed that BTC induced the rapid phosphorylation of Cx43 at serine368 without altering the expression of Cx43 in primary and immortalized hGL cells. Additionally, using a dual inhibition approach (kinase inhibitors and siRNA-based expression knockdown), we demonstrated that this effect was mainly mediated by the EGFR but not the ErbB4 receptor. Furthermore, using a protein kinase C (PKC) kinase assay and a scrape-loading and dye transfer assay, we revealed that PKC signaling is the downstream signaling pathway that mediates the increase in Cx43 phosphorylation and subsequent decrease in GJIC activity in response to BTC treatment in hGL cells. CONCLUSIONS: BTC promptly induced the phosphorylation of connexin 43 at Ser368, leading to decreased GJIC activity in hGL cells. The BTC-induced cellular activities were most likely driven by the EGFR-mediated PKC-dependent signaling pathway. Our findings shed light on the detailed molecular mechanisms by which BTC regulates the process of oocyte meiotic resumption.


Subject(s)
Connexin 43 , Luteal Cells , Female , Humans , Betacellulin/metabolism , Betacellulin/pharmacology , Cell Communication , Connexin 43/genetics , Connexin 43/metabolism , ErbB Receptors/metabolism , Gap Junctions/metabolism , Luteal Cells/metabolism , Mammals/metabolism , Phosphorylation
6.
Reprod Biol ; 23(2): 100762, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37058773

ABSTRACT

The action of betacellulin (BTC) on basic ovarian cell functions and interrelationships with kisspeptin (KISS) was investigated. For this purpose, we examined (1) the effect of the addition of BTC (0, 1, 10, and 100 ng/ml) given alone or in combination with KISS (10 ng/ml) on cultured feline ovarian fragments or granulosa cells. Viability, proliferation (accumulation of cyclin B1) and apoptosis (accumulation of bax), and the release of steroid hormones (progesterone, testosterone, and estradiol) were analyzed by using the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. The addition of KISS alone increased proliferation, apoptosis, progesterone, estradiol release, and decreased testosterone but did not affect viability. The addition of BTC alone decreased cell proliferation, apoptosis, progesterone, testosterone, and estradiol release but did not influence viability. Furthermore, BTC mainly inhibited the stimulatory action of KISS on feline ovarian functions. The findings of our study suggest the effects of KISS on basic ovarian functions. We also observed the influence of BTC on these functions and its ability to modify the effects of KISS on these processes.


Subject(s)
Kisspeptins , Progesterone , Female , Cats , Animals , Kisspeptins/pharmacology , Betacellulin , Estradiol , Testosterone
7.
J Cell Physiol ; 238(4): 761-775, 2023 04.
Article in English | MEDLINE | ID: mdl-36790936

ABSTRACT

The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.


Subject(s)
ADAM10 Protein , Fibroblasts , Phosphatidylserines , Animals , Mice , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Betacellulin/metabolism , Fibroblasts/metabolism , Ionomycin/pharmacology , Membrane Proteins/metabolism , Mole Rats , Phospholipid Transfer Proteins
8.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232814

ABSTRACT

Betacellulin (BTC) is a peptide ligand that belongs to the epidermal growth factor family, the members of which have been implicated in skin morphogenesis, homeostasis, repair, and angiogenesis; however, the role of BTC in the regulation of the skin barrier remains unknown. To examine the role of BTC in skin barrier function, we analyzed atopic dermatitis (AD) transcriptomic data from Gene Expression Omnibus (GEO) datasets, performed BTC immunohistochemistry using human skin tissues, and evaluated the effects of BTC on primary human keratinocytes by real-time PCR, Western blotting, and assay of the transepidermal electrical resistance (TER), a functional parameter to monitor the tight junction barrier. We found that the gene expression of BTC was downregulated in skin lesions from patients with AD, and this downregulated expression recovered following biological treatments. Consistently, the BTC protein levels were downregulated in the lesional skin of AD patients compared with the normal skin of healthy participants, suggesting that the BTC levels in skin might be a biomarker for the diagnosis and therapy of AD. Furthermore, in human keratinocytes, BTC knockdown reduced the levels of skin-derived antimicrobial peptides and skin barrier-related genes, whereas BTC addition enhanced their levels. Importantly, in human skin equivalents, BTC restored the increased tight junction permeability induced by Th2 cytokine IL-4/IL-13 treatment. In addition, specific inhibitors of epidermal growth factor receptor (EGFR) and protein kinase C (PKC) abolished the BTC-mediated improvement in skin barrier-related proteins in keratinocyte monolayers. Collectively, our findings suggest that treatment with BTC might improve the Th2-type cytokine-mediated impairment of skin barrier function through the EGFR/PKC axis and that BTC might be a novel potential biomarker and therapeutic target for the treatment of skin conditions characterized by the overproduction of Th2 cytokines and dysfunctional skin barriers, such as AD.


Subject(s)
Cytokines , Dermatitis, Atopic , Betacellulin/metabolism , Cytokines/metabolism , Dermatitis, Atopic/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Interleukin-13/metabolism , Interleukin-13/pharmacology , Interleukin-4/metabolism , Keratinocytes/metabolism , Ligands , Protein Kinase C/metabolism , Skin/metabolism
10.
BMC Ophthalmol ; 22(1): 193, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477375

ABSTRACT

BACKGROUND: To examine an effect of intravitreally applied antibodies against epidermal growth factor family members, namely epiregulin, epigen and betacellulin, on ocular axial elongation. METHODS: The experimental study included 30 guinea pigs (age:3-4 weeks) which underwent bilateral lens-induced myopization and received three intraocular injections of 20 µg of epiregulin antibody, epigen antibody and betacellulin antibody in weekly intervals into their right eyes, and of phosphate-buffered saline into their left eyes. Seven days after the last injection, the animals were sacrificed. Axial length was measured by sonographic biometry. RESULTS: At baseline, right eyes and left eyes did not differ (all P > 0.10) in axial length in neither group, nor did the interocular difference in axial length vary between the groups (P = 0.19). During the study period, right and left eyes elongated (P < 0.001) from 8.08 ± 0.07 mm to 8.59 ± 0.06 mm and from 8.08 ± 0.07 mm to 8.66 ± 0.07 mm, respectively. The interocular difference (left eye minus right eye) in axial elongation increased significantly in all three groups (epiregulin-antibody:from 0.03 ± 0.06 mm at one week after baseline to 0.16 ± 0.08 mm at three weeks after baseline;P = 0.001); epigen-antibody group:from -0.01 ± 0.06 mm to 0.06 ± 0.08 mm;P = 0.02; betacellulin antibody group:from -0.05 ± 0.05 mm to 0.02 ± 0.04 mm;P = 0.004). Correspondingly, interocular difference in axial length increased from -0.02 ± 0.04 mm to 0.13 ± 0.06 mm in the epiregulin-antibody group (P < 0.001), and from 0.01 ± 0.05 mm to 0.07 ± 0.05 mm in the epigen-antibody group (P = 0.045). In the betacellulin-antibody group the increase (0.01 ± 0.04 mm to 0.03 ± 0.03 mm) was not significant (P = 0.24). CONCLUSIONS: The EGF family members epiregulin, epigen and betacellulin may be associated with axial elongation in young guinea pigs, with the effect decreasing from epiregulin to epigen and to betacellulin.


Subject(s)
Lens, Crystalline , Animals , Betacellulin , Epigen , Epiregulin , Eye , Guinea Pigs , Humans
11.
Gynecol Endocrinol ; 37(9): 836-840, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34223781

ABSTRACT

OBJECTIVE: Ovarian hyperstimulation syndrome (OHSS) is mainly caused by human chorionic gonadotropin (hCG) through vasoactive mediators such as vascular endothelial growth factor (VEGF) and various inflammatory factors. Our previous study showed that soluble receptor for advanced glycation end products (sRAGE) played a protective role in PCOS by inhibiting VEGF, so wanted to explore the role of sRAGE in OHSS. METHODS: Two sets of experiments were performed in this study. In part one, sRAGE protein levels in follicular fluid (FF) samples from 60 patients with OHSS and 60 non-OHSS patients were measured by ELISA. In part two, ovarian granulosa cells were isolated from an additional 25 patients with OHSS and cultured. Then, ovarian granulosa cells were treated with different concentrations of sRAGE. Granulosa cells cultured without sRAGE stimulation were used as the control group. The levels of VEGF, amphiregulin (AREG), betacellulin (BTC), and epiregulin (EREG) mRNA were examined by quantitative RT-PCR. The protein levels of VEGF, AREG, BTC, and EREG were measured by ELISA. RESULTS: Compared with non-OHSS patients, patients with OHSS exhibited lower sRAGE levels in both serum and FF (p < .05). Treatment with sRAGE decreased the production of VEGF, and the effects were dependent on the concentration of sRAGE (p < .05). Simultaneously, the expression of the EGF-like growth factors AREG, BTC and EREG was decreased, and their expression was dependent on the concentration of sRAGE (p < .05). CONCLUSIONS: sRAGE downregulate VEGF expression in OHSS ovarian granulosa cells, in which EGF-like growth factor pathway may be involved, and sRAGE may play a potential protective role in OHSS.


Subject(s)
Down-Regulation/drug effects , Granulosa Cells/metabolism , Ovarian Hyperstimulation Syndrome/metabolism , Receptor for Advanced Glycation End Products/administration & dosage , Vascular Endothelial Growth Factors/genetics , Adult , Amphiregulin/analysis , Amphiregulin/genetics , Betacellulin/analysis , Betacellulin/genetics , Cells, Cultured , Epiregulin/analysis , Epiregulin/genetics , Female , Follicular Fluid/chemistry , Humans , RNA, Messenger/analysis , Receptor for Advanced Glycation End Products/analysis , Receptor for Advanced Glycation End Products/blood , Vascular Endothelial Growth Factors/analysis
12.
Mol Med ; 27(1): 27, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33794764

ABSTRACT

BACKGROUND: Growth factors execute essential biological functions and affect various physiological and pathological processes, including peripheral nerve repair and regeneration. Our previous sequencing data showed that the mRNA coding for betacellulin (Btc), an epidermal growth factor protein family member, was up-regulated in rat sciatic nerve segment after nerve injury, implying the potential involvement of Btc during peripheral nerve regeneration. METHODS: Expression of Btc was examined in Schwann cells by immunostaining. The function of Btc in regulating Schwann cells was investigated by transfecting cultured cells with siRNA segment against Btc or treating cells with Btc recombinant protein. The influence of Schwann cell-secreted Btc on neurons was determined using a co-culture assay. The in vivo effects of Btc on Schwann cell migration and axon elongation after rat sciatic nerve injury were further evaluated. RESULTS: Immunostaining images and ELISA outcomes indicated that Btc was present in and secreted by Schwann cells. Transwell migration and wound healing observations showed that transfection with siRNA against Btc impeded Schwann cell migration while application of exogenous Btc advanced Schwann cell migration. Besides the regulating effect on Schwann cell phenotype, Btc secreted by Schwann cells influenced neuron behavior and increased neurite length. In vivo evidence supported the promoting role of Btc in nerve regeneration after both rat sciatic nerve crush injury and transection injury. CONCLUSION: Our findings demonstrate the essential roles of Btc on Schwann cell migration and axon elongation and imply the potential application of Btc as a regenerative strategy for treating peripheral nerve injury.


Subject(s)
Betacellulin/therapeutic use , Nerve Regeneration/drug effects , Neurons/drug effects , Peripheral Nerve Injuries/drug therapy , Schwann Cells/drug effects , Sciatic Nerve/drug effects , Animals , Betacellulin/genetics , Betacellulin/metabolism , Betacellulin/pharmacology , Cell Movement/drug effects , Cells, Cultured , Coculture Techniques , Ganglia, Spinal/cytology , Male , Neurons/physiology , RNA, Small Interfering/genetics , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Schwann Cells/metabolism , Schwann Cells/physiology , Sciatic Nerve/injuries , Sciatic Nerve/physiology
13.
Medicine (Baltimore) ; 100(2): e24263, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33466212

ABSTRACT

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck in the world. At present, the treatment methods include surgery, radiotherapy, and chemotherapy, but the 5-year survival rate is still not ideal and the quality of life of the patients is low. Due to the relative lack of immunotherapy methods, this study aims to build a risk prediction model of related immune genes, which can be used to effectively predict the prognosis of laryngeal cancer patients, and provide targets for subsequent immunotherapy. METHODS: We collected the 111 cases of laryngeal squamous cell carcinoma and 12 matched normal samples in the The Cancer Genome Atlas Database (TCGA) gene expression quantification database. The differentially expressed related immune genes were screened by R software version 3.5.2. The COX regression model of immune related genes was constructed, and the sensitivity and specificity of the model were evaluated. The risk value was calculated according to the model, and the risk curve was drawn to verify the correlation between related immune genes, risk score, and clinical traits. RESULTS: We selected 8 immune-related genes that can predict the prognosis of LSCC in a COX regression model and plotted the Kaplan-Meier survival curve. The 5-year survival rate of the high-risk group was 16.5% (95% CI: 0.059-0.459), and that of the low-risk group was 72.9% (95% CI: 0.555-0.956). The area under the receiver operating characteristic (ROC) curve was used to confirm the accuracy of the model (AUG = 0.887). After univariate and multivariate regression analysis, the risk score can be used as an independent risk factor for predicting prognosis. The risk score (P = .021) was positively correlated with the clinical Stage classification. CONCLUSION: We screened out 8 immune genes related to prognosis: RBP1, TLR2, AQP9, BTC, EPO, STC2, ZAP70, and PLCG1 to construct risk value models, which can be used to speculate the prognosis of the disease and provide new targets for future immunotherapy.


Subject(s)
Immunoproteins/analysis , Intercellular Signaling Peptides and Proteins/analysis , Laryngeal Neoplasms/genetics , Proportional Hazards Models , Squamous Cell Carcinoma of Head and Neck/genetics , Aquaporins/analysis , Betacellulin/analysis , Biomarkers, Tumor , Databases, Genetic , Erythropoietin/analysis , Female , Gene Expression Regulation, Neoplastic/genetics , Glycoproteins/analysis , Humans , Laryngeal Neoplasms/mortality , Male , Phospholipase C gamma/analysis , Prognosis , Retinol-Binding Proteins, Cellular/analysis , Risk Assessment , Risk Factors , Sensitivity and Specificity , Squamous Cell Carcinoma of Head and Neck/mortality , Survival Rate , Toll-Like Receptor 2/analysis
14.
Cells ; 9(9)2020 09 09.
Article in English | MEDLINE | ID: mdl-32917053

ABSTRACT

The impaired spatial arrangement and connections between cells creating islets of Langerhans as well as altered expression of G protein-coupled receptors (GPCRs) often lead to dysfunction of insulin-secreting pancreatic ß cells and can significantly contribute to the development of diabetes. Differences in glucose-stimulated insulin secretion (GSIS) are noticeable not only in diabetic individuals but also in model pancreatic ß cells, e.g., ßTC3 and MIN6 ß cell lines with impaired and normal insulin secretion, respectively. Now, we compare the ability of GPCR agonists (lysophosphatidylcholines bearing fatty acid chains of different lengths) to potentiate GSIS in ßTC3 and MIN6 ß cell models, cultured as adherent monolayers and in a form of pseudoislets (PIs) with pancreatic MS1 endothelial cells. Our aim was also to investigate differences in expression of the GPCRs responsive to LPCs in these experimental systems. Aggregation of ß cells into islet-like structures greatly enhanced the expression of Gpr40, Gpr55, and Gpr119 receptors. In contrast, the co-culture of ßTC3 cells with endothelial cells converted the GPCR expression pattern closer to the pattern observed in MIN6 cells. Additionally, the efficiencies of various LPC species in ßTC3-MS1 PIs also shifted toward the MIN6 cell model.


Subject(s)
Betacellulin/metabolism , Glucose/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Lysophosphatidylcholines/metabolism , Receptors, G-Protein-Coupled/metabolism , Humans
15.
Mol Oncol ; 14(8): 1653-1669, 2020 08.
Article in English | MEDLINE | ID: mdl-32335999

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) will soon belong to the top three cancer killers. The only approved specific PDAC therapy targets the epidermal growth factor receptor (EGFR). Although EGFR is a crucial player in PDAC development, EGFR-based therapy is disappointing. In this study, we evaluated the role of the EGFR ligand betacellulin (BTC) in PDAC. The expression of BTC was investigated in human pancreatic cancer specimen. Then, we generated a BTC knockout mouse model by CRISPR/Cas9 technology and a BTC overexpression model. Both models were crossed with the Ptf1aCre/+ ;KRASG12D/+ (KC) mouse model (B-/- KC or BKC, respectively). In addition, EGFR, ERBB2, and ERBB4 were investigated by the pancreas-specific deletion of each receptor using the Cre-loxP system. Tumor initiation and progression were analyzed in all mouse lines, and the underlying molecular biology of PDAC was investigated at different time points. BTC is expressed in human and murine PDAC. B-/- KC mice showed a decelerated PDAC progression, associated with decreased EGFR activation. BKC mice developed severe PDAC with a poor survival rate. The dramatically increased BTC-mediated tumor burden was EGFR-dependent, but also ERBB4 and ERBB2 were involved in PDAC development or progression, as depletion of EGFR, ERBB2, or ERBB4 significantly improved the survival rate of BTC-mediated PDAC. BTC increases PDAC tumor burden dramatically by enhanced RAS activation. EGFR signaling, ERBB2 signaling, and ERBB4 signaling are involved in accelerated PDAC development mediated by BTC indicating that targeting the whole ERBB family, instead of a single receptor, is a promising strategy for the development of future PDAC therapies.


Subject(s)
Adenocarcinoma/metabolism , Betacellulin/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-4/metabolism , Signal Transduction , Animals , Body Weight , ErbB Receptors/metabolism , Humans , Mice, Transgenic , Pancreas/metabolism , Pancreas/pathology , Phenotype , Phosphorylation , Tumor Burden , ras Proteins/metabolism , Pancreatic Neoplasms
17.
PLoS One ; 15(1): e0228331, 2020.
Article in English | MEDLINE | ID: mdl-31990955

ABSTRACT

Gastric cancer (GC) is a significant cancer-related cause of death worldwide. The most used chemotherapeutic regimen in GC is based on platinum drugs such as cisplatin (CDDP). However, CDDP resistance reduces advanced GC survival. In vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize new models of CDDP-resistant GC cell lines (AGS R-CDDP and MKN-28 R-CDDP) obtained through a stepwise increasing drug doses method, in order to understand the molecular mechanisms underlying chemoresistance as well as identify new therapeutic targets for the treatment of GC. Cell viability assays, cell death assays and the expression of resistance molecular markers confirmed that AGS R-CDDP and MKN-28 R-CDDP are reliable CDDP-resistant models. RNA-seq and bioinformatics analyses identified a total of 189 DEGs, including 178 up-regulated genes and 11 down-regulated genes, associated mainly to molecular functions involved in CDDP-resistance. DEGs were enriched in 23 metabolic pathways, among which the most enriched was the inflammation mediated by chemokine and cytokine signaling pathway. Finally, the higher mRNA expression of SERPINA1, BTC and CCL5, three up-regulated DEGs associated to CDDP resistance found by RNA-seq analysis was confirmed. In summary, this study showed that AGS R-CDDP and MKN-28 R-CDDP are reliable models of CDDP resistance because resemble many of resistant phenotype in GC, being also useful to assess potential therapeutic targets for the treatment of gastric cancers resistant to CDDP. In addition, we identified several DEGs associated with molecular functions such as binding, catalytic activity, transcription regulator activity and transporter activity, as well as signaling pathways associated with inflammation process, which could be involved in the development of CDDP resistance in GC. Further studies are necessary to clarify the role of inflammatory processes in GC resistant to CDDP and these models could be useful for these purposes.


Subject(s)
Drug Resistance, Neoplasm , Gene Expression Profiling/methods , Gene Regulatory Networks , Stomach Neoplasms/genetics , Aged , Betacellulin/genetics , Cell Line, Tumor , Chemokine CCL5/genetics , Cisplatin , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Models, Biological , Sequence Analysis, RNA , Stomach Neoplasms/drug therapy , alpha 1-Antitrypsin/genetics
18.
J Gastroenterol ; 55(3): 317-329, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31456099

ABSTRACT

BACKGROUND: The EGFR ligand betacellulin (BTC) has been previously shown to protect mice against experimentally induced acute pancreatitis (AP). BTC binds both autonomous ERBB receptors EGFR and ERBB4. In this study, we evaluated the mechanism underlying the protection from AP-associated inflammation in detail. METHODS: AP was induced with cerulein or L-arginine and investigated in a pancreas-specific ERBB4 knockout and in an EGFR knockdown mouse model (EgfrWa5/+). Pancreatitis was evaluated by scoring inflammation, necrosis, and edema, while microarrays were performed to analyze alterations in the transcriptome between mice with AP and animals which were protected against AP. The intracellular domain (ICD) of ERBB4 was analyzed in different cell compartments. RESULTS: While the pancreas of BTC transgenic mice in the background of EgfrWa5/+ is still protected against AP, the BTC-mediated protection is no longer present in the absence of ERBB4. We further demonstrate that BTC activates the ICD of ERBB4, and increases the expression of the extracellular matrix (ECM) proteins periostin and matrix gla protein as well as the ECM modulators matrix metalloproteinases 2 and 3, but only in the presence of ERBB4. Notably, the increased expression of these proteins is not accompanied by an increased ECM amount. CONCLUSIONS: These findings suggest that BTC derivates, as a drug, or the ERBB4 receptor, as a druggable target protein, could play an important role in modulating the course of AP and even prevent AP in humans.


Subject(s)
Betacellulin/pharmacology , ErbB Receptors/genetics , Pancreatitis/prevention & control , Receptor, ErbB-4/genetics , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Pancreatitis/genetics
19.
Cell Signal ; 65: 109439, 2020 01.
Article in English | MEDLINE | ID: mdl-31654720

ABSTRACT

Epithelial ovarian cancer is the fifth common cause of cancer death in women and the most lethal gynecological malignancies. Our previous studies have shown that up-regulation of Connexin43, a gap-junction subunit crucial for cell-cell communication, enhances ovarian cancer cell migration. Betacellulin is a member of the epidermal growth factor (EGF) family which can bind to multiple EGF family receptors. Overexpression of betacellulin is found in a variety of cancers and is associated with reduced survival. However, the specific roles and molecular mechanisms of betacellulin in ovarian cancer progression are poorly understood. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by up-regulating Connexin43. Our results showed that treatment with betacellulin significantly increased Connexin43 expression and cell migration in both OVCAR4 and SKOV3 ovarian cancer cell lines. Moreover, betacellulin induced the activation of MEK-ERK signaling, and its effects on Connexin43 were inhibited by pre-treatment with U0126. Pre-treatment with AG1478 totally blocked the activation of MEK-ERK signaling but only partially inhibited betacellulin-induced Connexin43 expression and cell migration. Most importantly, betacellulin-induced cell migration was attenuated by knockdown of Connexin43, and co-treatment with gap junction inhibitor carbenoxolone did not alter this effect. Our results suggest a bilateral role of Connexin43 in ovarian cancer migration, and also demonstrate a gap junction-independent mechanism of betacellulin.


Subject(s)
Betacellulin/metabolism , Cell Movement , Connexin 43/genetics , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Ovarian Neoplasms/pathology , Up-Regulation , Cell Line, Tumor , Cell Movement/genetics , Connexin 43/metabolism , ErbB Receptors/metabolism , Female , Gap Junctions/metabolism , Humans , Ovarian Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/genetics
20.
Neuro Oncol ; 22(4): 457-469, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31678994

ABSTRACT

BACKGROUND: The transcription factor signal transducer and activator of transcription 3 (STAT3) drives progression in glioblastoma (GBM), suggesting STAT3 as a therapeutic target. Surprisingly however, GBM cells generally show primary resistance to STAT3 blockade. METHODS: Human glioblastoma cell lines LN229, U87, SF767, and U373, and patient-derived xenografts (PDXs) GBM8 and GBM43 were used to evaluate epidermal growth factor receptor (EGFR) activation during STAT3 inhibition. Protein and gene expression experiments, protein stability assays, cytokine arrays, phospho-tyrosine arrays and EGFR-ligand protein arrays were performed on STAT3 inhibitor-treated cells. To evaluate antitumor activity, we administered a betacellulin (BTC)-neutralizing antibody alone and in combination with STAT3 inhibition. BTC is an EGFR ligand. We therefore treated mice with orthotopic xenografts using the third-generation EGFR inhibitor osimertinib, with or without STAT3 knockdown. RESULTS: We demonstrate that both small-molecule inhibitors and knockdown of STAT3 led to expression and secretion of the EGFR ligand BTC, resulting in activation of EGFR and subsequent downstream phosphorylation of nuclear factor-kappaB (NF-κB). Neutralizing antibody against BTC abrogated activation of both EGFR and NF-κB in response to inhibition of STAT3; with combinatorial blockade of STAT3 and BTC inducing apoptosis in GBM cells. Blocking EGFR and STAT3 together inhibited tumor growth, improving survival in mice bearing orthotopic GBM PDXs in vivo. CONCLUSION: These data reveal a feedback loop among STAT3, EGFR, and NF-κB that mediates primary resistance to STAT3 blockade and suggest strategies for therapeutic intervention.


Subject(s)
Glioblastoma , Animals , Betacellulin , Cell Line, Tumor , Glioblastoma/drug therapy , Mice , NF-kappa B/metabolism , Phosphorylation , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...