Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
J Virol ; 95(15): e0046321, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011548

ABSTRACT

The OC43 coronavirus is a human pathogen that usually causes only the common cold. One of its key enzymes, similar to other coronaviruses, is the 2'-O-RNA methyltransferase (MTase), which is essential for viral RNA stability and expression. Here, we report the crystal structure of the 2'-O-RNA MTase in a complex with the pan-methyltransferase inhibitor sinefungin solved at 2.2-Å resolution. The structure reveals an overall fold consistent with the fold observed in other coronaviral MTases. The major differences are in the conformation of the C terminus of the nsp16 subunit and an additional helix in the N terminus of the nsp10 subunits. The structural analysis also revealed very high conservation of the S-adenosyl methionine (SAM) binding pocket, suggesting that the SAM pocket is a suitable spot for the design of antivirals effective against all human coronaviruses. IMPORTANCE Some coronaviruses are dangerous pathogens, while some cause only common colds. The reasons are not understood, although the spike proteins probably play an important role. However, to understand the coronaviral biology in sufficient detail, we need to compare the key enzymes from different coronaviruses. We solved the crystal structure of 2'-O-RNA methyltransferase of the OC43 coronavirus, a virus that usually causes mild colds. The structure revealed some differences in the overall fold but also revealed that the SAM binding site is conserved, suggesting that development of antivirals against multiple coronaviruses is feasible.


Subject(s)
Betacoronavirus/enzymology , Methyltransferases/chemistry , Viral Proteins/chemistry , Betacoronavirus/genetics , Binding Sites , Crystallography, X-Ray , Methyltransferases/genetics , Protein Conformation, alpha-Helical , Viral Proteins/genetics
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118825, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-32866803

ABSTRACT

Novel antiviral active molecule 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl)acetamide has been synthesised and characterized by FT-IR and FT-Raman spectra. The equilibrium geometry, natural bond orbital calculations and vibrational assignments have been carried out using density functional B3LYP method with the 6-311G++(d,p) basis set. The complete vibrational assignments for all the vibrational modes have been supported by normal coordinate analysis, force constants and potential energy distributions. A detailed analysis of the intermolecular interactions has been performed based on the Hirshfeld surfaces. Drug likeness has been carried out based on Lipinski's rule and the absorption, distribution, metabolism, excretion and toxicity of the title molecule has been calculated. Antiviral potency of 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro-phenyl) acetamide has been investigated by docking against SARS-CoV-2 protein. The optimized geometry shows near-planarity between the phenyl ring and the pyrimidine ring. Differences in the geometries due to the substitution of the most electronegative fluorine atom and intermolecular contacts due to amino pyrimidine were analyzed. NBO analysis reveals the formation of two strong stable hydrogen bonded N-H···N intermolecular interactions and weak intramolecular interactions C-H···O and N-H···O. The Hirshfeld surfaces and consequently the 2D-fingerprint confirm the nature of intermolecular interactions and their quantitative contributions towards the crystal packing. The red shift in N-H stretching frequency exposed from IR substantiate the formation of N-H···N intermolecular hydrogen bond. Drug likeness and absorption, distribution, metabolism, excretion and toxicity properties analysis gives an idea about the pharmacokinetic properties of the title molecule. The binding energy -8.7 kcal/mol of the nonbonding interaction present a clear view that 2- [(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluoro- phenyl) acetamide can irreversibly interact with SARS-CoV-2 protease.


Subject(s)
Acetamides/chemistry , Antiviral Agents/chemistry , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/chemistry , Pyrimidines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Acetamides/pharmacokinetics , Antiviral Agents/pharmacokinetics , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Nonlinear Dynamics , Protease Inhibitors/pharmacokinetics , Protein Conformation , Pyrimidines/pharmacokinetics , Quantum Theory , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics , Vibration , COVID-19 Drug Treatment
3.
J Mol Model ; 26(12): 341, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33200284

ABSTRACT

HER-2 type breast cancer is one of the most aggressive malignancies found in women. Tucatinib is recently developed and approved as a potential medicine to fight this disease. In this manuscript, we present the gross structural features of this compound and its reactivity and wave function properties using computational simulations. Density functional theory was used to optimise the ground state geometry of the molecule and molecular docking was used to predict biological activity. As the electrons interact with electromagnetic radiations, electronic excitations between different energy levels are analysed in detail using time-dependent density functional theory. Various intermolecular and intermolecular interactions are analysed and reaction sites for attacking electrophiles and nucleophiles identified. Information entropy calculations show that the compound is inherently stable. Docking with COVID-19 proteins show docking score of - 9.42, - 8.93, - 8.45 and - 8.32 kcal/mol respectively indicating high interaction between the drug and proteins. Hence, this is an ideal candidate to study repurposing of existing drugs to combat the pandemic.


Subject(s)
Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Electrons , Oxazoles/chemistry , Protease Inhibitors/chemistry , Pyridines/chemistry , Quinazolines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antineoplastic Agents/metabolism , Antiviral Agents/metabolism , Betacoronavirus/enzymology , Binding Sites , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxazoles/metabolism , Protease Inhibitors/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pyridines/metabolism , Quantum Theory , Quinazolines/metabolism , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
4.
Sci Rep ; 10(1): 19522, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177594

ABSTRACT

SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID-19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy. Physiologically, ACE2 plays a role in the regulation of three systems that could potentially be involved in the pathogenesis of severe COVID-19: the kinin-kallikrein system, resulting in acute lung inflammatory edema; the renin-angiotensin system, promoting cardiovascular instability; and the coagulation system, leading to thromboembolism. Here we assembled a healthy human lung cell atlas meta-analysis with ~ 130,000 public single-cell transcriptomes and show that key elements of the bradykinin, angiotensin and coagulation systems are co-expressed with ACE2 in alveolar cells and associated with their differentiation dynamics, which could explain how changes in ACE2 promoted by SARS-CoV-2 cell entry result in the development of the three most severe clinical components of COVID-19.


Subject(s)
Betacoronavirus/genetics , Blood Coagulation , Gene Expression Profiling , Kallikrein-Kinin System/genetics , Peptidyl-Dipeptidase A/genetics , Pulmonary Alveoli/cytology , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2 , Betacoronavirus/enzymology , Betacoronavirus/physiology , Humans , Pulmonary Alveoli/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics
5.
Nat Commun ; 11(1): 5877, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208735

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (Mpro) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on Mpro inhibition.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/chemistry , Viral Nonstructural Proteins/chemistry , Betacoronavirus/chemistry , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Dimerization , Humans , Models, Molecular , Mutation , Protease Inhibitors/metabolism , Protein Conformation , SARS-CoV-2 , Substrate Specificity , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
6.
J Mol Model ; 26(12): 340, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33184722

ABSTRACT

Among targets selected for studies aimed at identifying potential inhibitors against COVID-19, SARS-CoV2 main proteinase (Mpro) is highlighted. Mpro is indispensable for virus replication and is a promising target of potential inhibitors of COVID-19. Recently, monomeric SARS-CoV2 Mpro, drug repurposing, and docking methods have facilitated the identification of several potential inhibitors. Results were refined through the assessment of dimeric SARS-CoV2 Mpro, which represents the functional state of enzyme. Docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area (MM/GBSA) studies indicated that dimeric Mpro most significantly impacts binding affinity tendency compared with the monomeric state, which suggests that dimeric state is most useful when performing studies aimed at identifying drugs targeting Mpro. In this study, we extend previous research by performing docking and MD simulation studies coupled with an MM/GBSA approach to assess binding of dimeric SARS-CoV2 Mpro to 12 FDA-approved drugs (darunavir, indinavir, saquinavir, tipranavir, diosmin, hesperidin, rutin, raltegravir, velpatasvir, ledipasvir, rosuvastatin, and bortezomib), which were identified as the best candidates for the treatment of COVID-19 in some previous dockings studies involving monomeric SARS-CoV2 Mpro. This analysis identified saquinavir as a potent inhibitor of dimeric SARS-CoV2 Mpro; therefore, the compound may have clinical utility against COVID-19. Graphical abstract.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Saquinavir/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , Protein Multimerization , SARS-CoV-2 , Saquinavir/chemistry
7.
F1000Res ; 9: 1166, 2020.
Article in English | MEDLINE | ID: mdl-33204411

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.


Subject(s)
Antiviral Agents , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Humans , Molecular Docking Simulation , Pandemics , Pentanoic Acids/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Quinolones/pharmacology , SARS-CoV-2 , COVID-19 Drug Treatment
8.
Phys Chem Chem Phys ; 22(43): 25335-25343, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33140777

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines have been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the SARS-CoV-2 virus that causes COVID-19 have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here, we explore the underlying molecular mechanisms of the computationally determined top candidate, namely, rutin which is a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target-Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro's pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed two more hydrophobic analogs, M1 and M2, which satisfy the rule of five for western medicines and demonstrated that they (M2 in particular) possess much stronger binding affinities to the SARS-COV-2s Mpro than rutin, due to the enhanced hydrophobic interaction as well as more hydrogen bonds. Therefore, our results provide invaluable insights into the mechanism of a ligand's binding inside the Mpro and shed light on future structure-based designs of high-potent inhibitors for SARS-CoV-2 Mpro.


Subject(s)
Betacoronavirus/enzymology , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Rutin/chemistry , Viral Nonstructural Proteins/metabolism , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Herbal Medicine , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protease Inhibitors/metabolism , Protein Domains , Rutin/metabolism , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/chemistry
9.
Article in English | MEDLINE | ID: mdl-32998618

ABSTRACT

This work aimed at evaluating the inhibitory effect of ten natural bioactive compounds (1-10) as potential inhibitors of SARS-CoV-2-3CL main protease (PDB ID: 6LU7) and SARS-CoV main proteases (PDB IDs: 2GTB and 3TNT) by molecular docking analysis. The inhibitory effect of all studied compounds was studied with compared to some proposed antiviral drugs which currently used in COVID-19 treatment such as chloroquine, hydroxychloroquine, azithromycin, remdesivir, baloxvir, lopinavir, and favipiravir. Homology modeling and sequence alignment was computed to evaluate the similarity between the SARS-CoV-2-3CL main protease and other SARS-CoV receptors. ADMET properties of all studied compounds were computed and reported. Also, molecular dynamic (MD) simulation was performed on the compound which has the highest binding affinity inside 6LU7 obtained from molecular docking analysis to study it is stability inside receptor in explicit water solvent. Based on molecular docking analysis, we found that caulerpin has the highest binding affinity inside all studied receptors compared to other bioactive compounds and studied drugs. Our homology modeling and sequence alignment showed that SARS-CoV main protease (PDB ID: 3TNT) shares high similarity with 3CLpro (96.00%). Also, ADMET properties confirmed that caulerpin obeys Lipinski's rule and passes ADMET property, which make it a promising compound to act as a new safe natural drug against SARS-CoV-2-3CL main protease. Finally, MD simulation confirmed that the complex formed between caulerpin and 3CLpro is stable in water explicit and had no major effect on the flexibility of the protein throughout the simulations and provided a suitable basis for our study. Also, binding free energy between caulerpin and 6LU7 confirmed the efficacy of the caulerpin molecule against SARS-CoV-2 main protease. So, this study suggested that caulerpin could be used as a potential candidate in COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Betacoronavirus/enzymology , Cysteine Endopeptidases/metabolism , Indoles/pharmacology , Viral Nonstructural Proteins/metabolism , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 117(43): 26946-26954, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33028676

ABSTRACT

Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Ebolavirus/enzymology , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Betacoronavirus/chemistry , Cell Line , Drug Tolerance/genetics , Ebolavirus/drug effects , Ebolavirus/genetics , Humans , Models, Molecular , Mutation , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
11.
Sci Rep ; 10(1): 16577, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024223

ABSTRACT

SARS-CoV-2 is responsible for COVID-19, resulting in the largest pandemic in over a hundred years. After examining the molecular structures and activities of hepatitis C viral inhibitors and comparing hepatitis C virus and coronavirus replication, we previously postulated that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) might inhibit SARS-CoV-2. We subsequently demonstrated that Sofosbuvir triphosphate is incorporated by the relatively low fidelity SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases (RdRps), serving as an immediate polymerase reaction terminator, but not by a host-like high fidelity DNA polymerase. Other investigators have since demonstrated the ability of Sofosbuvir to inhibit SARS-CoV-2 replication in lung and brain cells; additionally, COVID-19 clinical trials with EPCLUSA and with Sofosbuvir plus Daclatasvir have been initiated in several countries. SARS-CoV-2 has an exonuclease-based proofreader to maintain the viral genome integrity. Any effective antiviral targeting the SARS-CoV-2 RdRp must display a certain level of resistance to this proofreading activity. We report here that Sofosbuvir terminated RNA resists removal by the exonuclease to a substantially higher extent than RNA terminated by Remdesivir, another drug being used as a COVID-19 therapeutic. These results offer a molecular basis supporting the current use of Sofosbuvir in combination with other drugs in COVID-19 clinical trials.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Exonucleases/metabolism , Pneumonia, Viral/drug therapy , Prodrugs/pharmacology , RNA, Viral/drug effects , Sofosbuvir/pharmacology , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/chemistry , Alanine/pharmacology , Alanine/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Betacoronavirus/enzymology , COVID-19 , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Drug Discovery/methods , Drug Repositioning/methods , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Pandemics , Pneumonia, Viral/virology , Prodrugs/therapeutic use , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Sofosbuvir/chemistry , Sofosbuvir/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
12.
Phys Chem Chem Phys ; 22(40): 23099-23106, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33025993

ABSTRACT

COVID-19 has caused lockdowns all over the world in early 2020, as a global pandemic. Both theoretical and experimental efforts are seeking to find an effective treatment to suppress the virus. In silico drug design can play a vital role in identifying promising drug candidates against COVID-19. Herein, we focused on the main protease of SARS-CoV-2 that has crucial biological functions in the virus. We performed a ligand-based virtual screening followed by a docking screening for testing approved drugs and bioactive compounds listed in the DrugBank and ChEMBL databases. The top 8 docking results were advanced to all-atom MD simulations to study the relative stability of the protein-ligand interactions. MD simulations support that the catalytic residue, His41, has a neutral side chain with a protonated delta position. An absolute binding energy (ΔG) of -42 kJ mol-1 for the protein-ligand (Mpro-N3) complex has been calculated using the potential-of-mean-force (geometrical) approach. Furthermore, the relative binding energies were computed for the top docking results. Our results suggest several promising approved and bioactive inhibitors of SARS-CoV-2 Mpro as follows: a bioactive compound, ChEMBL275592, which has the best MM/GBSA binding energy; the second-best compound, montelukast, is an approved drug used in the treatment of asthma and allergic rhinitis; the third-best compound, ChEMBL288347, is a bioactive compound. Bromocriptine and saquinavir are other approved drugs that also demonstrate stability in the active site of Mpro, albeit their relative binding energies are low compared to the N3 inhibitor. This study provides useful insights into de novo protein design and novel inhibitor development, which could reduce the cost and time required for the discovery of a potent drug to combat SARS-CoV-2.


Subject(s)
Betacoronavirus/enzymology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cysteine Endopeptidases/metabolism , Drug Design , Humans , Hydrogen Bonding , Ligands , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protease Inhibitors/metabolism , SARS-CoV-2 , Static Electricity , Thermodynamics , Viral Nonstructural Proteins/metabolism
13.
Biomed Res Int ; 2020: 5324560, 2020.
Article in English | MEDLINE | ID: mdl-33029513

ABSTRACT

The ongoing global pandemic caused by the human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions of people and claimed hundreds of thousands of lives. The absence of approved therapeutics to combat this disease threatens the health of all persons on earth and could cause catastrophic damage to society. New drugs are therefore urgently required to bring relief to people everywhere. In addition to repurposing existing drugs, natural products provide an interesting alternative due to their widespread use in all cultures of the world. In this study, alkaloids from Cryptolepis sanguinolenta have been investigated for their ability to inhibit two of the main proteins in SARS-CoV-2, the main protease and the RNA-dependent RNA polymerase, using in silico methods. Molecular docking was used to assess binding potential of the alkaloids to the viral proteins whereas molecular dynamics was used to evaluate stability of the binding event. The results of the study indicate that all 13 alkaloids bind strongly to the main protease and RNA-dependent RNA polymerase with binding energies ranging from -6.7 to -10.6 kcal/mol. In particular, cryptomisrine, cryptospirolepine, cryptoquindoline, and biscryptolepine exhibited very strong inhibitory potential towards both proteins. Results from the molecular dynamics study revealed that a stable protein-ligand complex is formed upon binding. Alkaloids from Cryptolepis sanguinolenta therefore represent a promising class of compounds that could serve as lead compounds in the search for a cure for the corona virus disease.


Subject(s)
Alkaloids/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cryptolepis/chemistry , Pneumonia, Viral/drug therapy , Viral Proteins/antagonists & inhibitors , Alkaloids/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/enzymology , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases , Drug Evaluation, Preclinical , Humans , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/virology , Quantitative Structure-Activity Relationship , Quinolines/chemistry , Quinolines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2 , Viral Nonstructural Proteins/antagonists & inhibitors
14.
J Comput Aided Mol Des ; 34(12): 1237-1259, 2020 12.
Article in English | MEDLINE | ID: mdl-33034007

ABSTRACT

Computational protein-ligand docking is well-known to be prone to inaccuracies in input receptor structures, and it is challenging to obtain good docking results with computationally predicted receptor structures (e.g. through homology modeling). Here we introduce a fragment-based docking method and test if it reduces requirements on the accuracy of an input receptor structures relative to non-fragment docking approaches. In this method, small rigid fragments are docked first using AutoDock Vina to generate a large number of favorably docked poses spanning the receptor binding pocket. Then a graph theory maximum clique algorithm is applied to find combined sets of docked poses of different fragment types onto which the complete ligand can be properly aligned. On the basis of these alignments, possible binding poses of complete ligand are determined. This docking method is first tested for bound docking on a series of Cytochrome P450 (CYP450) enzyme-substrate complexes, in which experimentally determined receptor structures are used. For all complexes tested, ligand poses of less than 1 Å root mean square deviations (RMSD) from the actual binding positions can be recovered. Then the method is tested for unbound docking with modeled receptor structures for a number of protein-ligand complexes from different families including the very recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protease. For all complexes, poses with RMSD less than 3 Å from actual binding positions can be recovered. Our results suggest that for docking with approximately modeled receptor structures, fragment-based methods can be more effective than common complete ligand docking approaches.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/drug effects , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/drug effects , ATPases Associated with Diverse Cellular Activities/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Ligands , Models, Chemical , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , SARS-CoV-2 , Transcription Factors/chemistry , Transcription Factors/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
15.
Comput Biol Med ; 126: 104046, 2020 11.
Article in English | MEDLINE | ID: mdl-33065388

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an infectious illness caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), originally identified in Wuhan, China (December 2019) and has since expanded into a pandemic. Here, we investigate metabolites present in several common spices as possible inhibitors of COVID-19. Specifically, 32 compounds isolated from 14 cooking seasonings were examined as inhibitors for SARS-CoV-2 main protease (Mpro), which is required for viral multiplication. Using a drug discovery approach to identify possible antiviral leads, in silico molecular docking studies were performed. Docking calculations revealed a high potency of salvianolic acid A and curcumin as Mpro inhibitors with binding energies of -9.7 and -9.2 kcal/mol, respectively. Binding mode analysis demonstrated the ability of salvianolic acid A and curcumin to form nine and six hydrogen bonds, respectively with amino acids proximal to Mpro's active site. Stabilities and binding affinities of the two identified natural spices were calculated over 40 ns molecular dynamics simulations and compared to an antiviral protease inhibitor (lopinavir). Molecular mechanics-generalized Born surface area energy calculations revealed greater salvianolic acid A affinity for the enzyme over curcumin and lopinavir with energies of -44.8, -34.2 and -34.8 kcal/mol, respectively. Using a STRING database, protein-protein interactions were identified for salvianolic acid A included the biochemical signaling genes ACE, MAPK14 and ESR1; and for curcumin, EGFR and TNF. This study establishes salvianolic acid A as an in silico natural product inhibitor against the SARS-CoV-2 main protease and provides a promising inhibitor lead for in vitro enzyme testing.


Subject(s)
Betacoronavirus/enzymology , Caffeic Acids/chemistry , Coronavirus Infections/drug therapy , Curcumin/chemistry , Cysteine Endopeptidases , Drug Discovery , Lactates/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pneumonia, Viral/drug therapy , Protease Inhibitors/chemistry , Viral Nonstructural Proteins , COVID-19 , Caffeic Acids/therapeutic use , Coronavirus 3C Proteases , Coronavirus Infections/enzymology , Curcumin/therapeutic use , Cysteine Endopeptidases/chemistry , Humans , Lactates/therapeutic use , Pandemics , Pneumonia, Viral/enzymology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Thermodynamics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
16.
Molecules ; 25(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066278

ABSTRACT

The global SARS-CoV-2 pandemic started late 2019 and currently continues unabated. The lag-time for developing vaccines means it is of paramount importance to be able to quickly develop and repurpose therapeutic drugs. Protein-based biosensors allow screening to be performed using routine molecular laboratory equipment without a need for expensive chemical reagents. Here we present a biosensor for the 3-chymotrypsin-like cysteine protease from SARS-CoV-2, comprising a FRET-capable pair of fluorescent proteins held in proximity by a protease cleavable linker. We demonstrate the utility of this biosensor for inhibitor discovery by screening 1280 compounds from the Library of Pharmaceutically Active Compounds collection. The screening identified 65 inhibitors, with the 20 most active exhibiting sub-micromolar inhibition of 3CLpro in follow-up EC50 assays. The top hits included several compounds not previously identified as 3CLpro inhibitors, in particular five members of a family of aporphine alkaloids that offer promise as new antiviral drug leads.


Subject(s)
Betacoronavirus/drug effects , Biosensing Techniques/methods , Coronavirus Infections/drug therapy , Fluorescence Resonance Energy Transfer/methods , Pneumonia, Viral/drug therapy , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Betacoronavirus/enzymology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases , High-Throughput Screening Assays , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
17.
Sci Adv ; 6(42)2020 10.
Article in English | MEDLINE | ID: mdl-33067239

ABSTRACT

Viral papain-like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library and performed comprehensive activity profiling of SARS-CoV-2 PLpro. On the scaffold of the best hits from positional scanning, we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro. We determined crystal structures of two of these inhibitors in complex with SARS-CoV-2 PLpro that reveals their inhibitory mechanisms and provides a molecular basis for the observed substrate specificity profiles. Last, we demonstrate that SARS-CoV-2 PLpro harbors deISGylating activity similar to SARSCoV-1 PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Together, this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repurposing.


Subject(s)
Betacoronavirus/enzymology , Drug Design , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Coronavirus Infections/pathology , Coronavirus Infections/virology , Crystallography, X-Ray , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Kinetics , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protease Inhibitors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2 , Substrate Specificity , Ubiquitins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
18.
J Phys Chem Lett ; 11(21): 9144-9151, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33052685

ABSTRACT

The raging COVID-19 pandemic caused by SARS-CoV-2 has infected tens of millions of people and killed several hundred thousand patients worldwide. Currently, there are no effective drugs or vaccines available for treating coronavirus infections. In this study, we have focused on the SARS-CoV-2 helicase (Nsp13), which is critical for viral replication and the most conserved nonstructural protein within the coronavirus family. Using homology modeling that couples published electron-density with molecular dynamics (MD)-based structural refinements, we generated structural models of the SARS-CoV-2 helicase in its apo- and ATP/RNA-bound conformations. We performed virtual screening of ∼970 000 chemical compounds against the ATP-binding site to identify potential inhibitors. Herein, we report docking hits of approved human drugs targeting the ATP-binding site. Importantly, two of our top drug hits have significant activity in inhibiting purified recombinant SARS-CoV-2 helicase, providing hope that these drugs can be potentially repurposed for the treatment of COVID-19.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/enzymology , RNA Helicases/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Tertiary , RNA Helicases/chemistry , RNA Helicases/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
19.
Nat Commun ; 11(1): 5047, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028810

ABSTRACT

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Subject(s)
Betacoronavirus/chemistry , Cysteine Endopeptidases/chemistry , Peptide Fragments/chemistry , Viral Nonstructural Proteins/chemistry , Betacoronavirus/enzymology , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Drug Design , Mass Spectrometry , Models, Molecular , Peptide Fragments/metabolism , Protein Conformation , SARS-CoV-2 , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Static Electricity , Viral Nonstructural Proteins/metabolism
20.
PLoS One ; 15(10): e0240079, 2020.
Article in English | MEDLINE | ID: mdl-33022015

ABSTRACT

The Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) pandemic represents a global challenge. SARS-CoV-2's ability to replicate in host cells relies on the action of its non-structural proteins, like its main protease (Mpro). This cysteine protease acts by processing the viruses' precursor polyproteins. As proteases, together with polymerases, are main targets of antiviral drug design, we here have performed biochemical high throughput screening (HTS) with recombinantly expressed SARS-CoV-2 Mpro. A fluorescent assay was used to identify inhibitors in a compound library containing known drugs, bioactive molecules and natural products. These screens led to the identification of 13 inhibitors with IC50 values ranging from 0.2 µM to 23 µM. The screens confirmed several known SARS-CoV Mpro inhibitors as inhibitors of SARS-CoV-2 Mpro, such as the organo-mercuric compounds thimerosal and phenylmercuric acetate. Benzophenone derivatives could also be identified among the most potent screening hits. Additionally, Evans blue, a sulfonic acid-containing dye, could be identified as an Mpro inhibitor. The obtained compounds could be of interest as lead compounds for the development of future SARS-CoV-2 drugs.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Coronavirus Infections/virology , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Drug Design , Escherichia coli/genetics , Inhibitory Concentration 50 , Models, Molecular , Pandemics , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...