Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 276: 65-74, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28212821

ABSTRACT

The enzyme betaine aldehyde dehydrogenase (BADH) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine (GB), a very efficient osmolyte accumulated during osmotic stress. In this study, we determined the nucleotide sequence of the cDNA for the BADH from the white shrimp Litopenaeus vannamei (LvBADH). The cDNA was 1882 bp long, with a complete open reading frame of 1524 bp, encoding 507 amino acids with a predicted molecular mass of 54.15 kDa and a pI of 5.4. The predicted LvBADH amino acid sequence shares a high degree of identity with marine invertebrate BADHs. Catalytic residues (C-298, E-264 and N-167) and the decapeptide VTLELGGKSP involved in nucleotide binding and highly conserved in BADHs were identified in the amino acid sequence. Phylogenetic analyses classified LvBADH in a clade that includes ALDH9 sequences from marine invertebrates. Molecular modeling of LvBADH revealed that the protein has amino acid residues and sequence motifs essential for the function of the ALDH9 family of enzymes. LvBADH modeling showed three potential monovalent cation binding sites, one site is located in an intra-subunit cavity; other in an inter-subunit cavity and a third in a central-cavity of the protein. The results show that LvBADH shares a high degree of identity with BADH sequences from marine invertebrates and enzymes that belong to the ALDH9 family. Our findings suggest that the LvBADH has molecular mechanisms of regulation similar to those of other BADHs belonging to the ALDH9 family, and that BADH might be playing a role in the osmoregulation capacity of L. vannamei.


Subject(s)
Betaine-Aldehyde Dehydrogenase/metabolism , Betaine/metabolism , Models, Molecular , Penaeidae/enzymology , Amino Acid Motifs , Amino Acid Sequence , Animals , Betaine-Aldehyde Dehydrogenase/classification , Betaine-Aldehyde Dehydrogenase/genetics , Binding Sites , Biocatalysis , Cloning, Molecular , Humans , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment
2.
Planta ; 233(2): 369-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21053011

ABSTRACT

Arabidopsis thaliana belongs to those plants that do not naturally accumulate glycine betaine (GB), although its genome contains two genes, ALDH10A8 and ALDH10A9 that code for betaine aldehyde dehydrogenases (BADHs). BADHs were initially known to catalyze the last step of the biosynthesis of GB in plants. But they can also oxidize metabolism-derived aminoaldehydes to their corresponding amino acids in some cases. This study was carried out to investigate the functional properties of Arabidopsis BADH genes. Here, we have shown that ALDH10A8 and ALDH10A9 proteins are targeted to leucoplasts and peroxisomes, respectively. The expression patterns of ALDH10A8 and ALDH10A9 genes have been analysed under abiotic stress conditions. Both genes are expressed in the plant and weakly induced by ABA, salt, chilling (4°C), methyl viologen and dehydration. The role of the ALDH10A8 gene was analysed using T-DNA insertion mutants. There was no phenotypic difference between wild-type and mutant plants in the absence of stress. But ALDH10A8 seedlings and 4-week-old plants were more sensitive to dehydration and salt stress than wild-type plants. The recombinant ALDH10A9 enzyme was shown to oxidize betaine aldehyde, 4-aminobutyraldehyde and 3-aminopropionaldehyde to their corresponding carboxylic acids. We hypothesize that ALDH10A8 or ALDH10A9 may serve as detoxification enzymes controlling the level of aminoaldehydes, which are produced in cellular metabolism under stress conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Betaine-Aldehyde Dehydrogenase/metabolism , Gene Expression Regulation, Plant/physiology , Protein Transport , Stress, Physiological/physiology , Arabidopsis Proteins/genetics , Betaine/metabolism , Betaine-Aldehyde Dehydrogenase/classification , Betaine-Aldehyde Dehydrogenase/genetics , Gene Expression Regulation, Enzymologic/physiology , Mutagenesis, Insertional
SELECTION OF CITATIONS
SEARCH DETAIL
...