Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 508
Filter
1.
Heart Vessels ; 39(6): 486-495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393377

ABSTRACT

This study examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α agonist, on the serum biochemical parameters of male patients with coronary artery disease and metabolic syndrome (MetS). This was a post hoc analysis of a randomized, crossover study that treated hypertriglyceridemia with pemafibrate or bezafibrate for 24 weeks, followed by a crossover of another 24 weeks. Of the 60 patients enrolled in the study, 55 were male. Forty-one of 55 male patients were found to have MetS. In this sub-analysis, male patients with MetS (MetS group, n = 41) and those without MetS (non-MetS group, n = 14) were compared. The primary endpoint was a change in fasting serum triglyceride (TG) levels during pemafibrate therapy, and the secondary endpoints were changes in insulin resistance-related markers and liver function parameters. Serum TG levels significantly decreased (MetS group, from 266.6 to 148.0 mg/dL, p < 0.001; non-MetS group, from 203.9 to 97.6 mg/dL, p < 0.001); however, a percent change (%Change) was not significantly different between the groups (- 44.1% vs. - 51.6%, p = 0.084). Serum insulin levels and homeostasis model assessment of insulin resistance significantly decreased in the MetS group but not in the non-MetS group. %Change in liver enzyme levels was markedly decreased in the MetS group compared with that in the non-MetS group (alanine aminotransferase, - 25.1% vs. - 11.3%, p = 0.027; gamma-glutamyl transferase, - 45.8% vs. - 36.2%, p = 0.020). In conclusion, pemafibrate can effectively decrease TG levels in patients with MetS, and it may be a more efficient drug for improving insulin resistance and liver function in such patients.


Subject(s)
Benzoxazoles , Butyrates , Coronary Artery Disease , Cross-Over Studies , Hypertriglyceridemia , Insulin Resistance , Metabolic Syndrome , Humans , Male , Metabolic Syndrome/blood , Metabolic Syndrome/drug therapy , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Hypertriglyceridemia/blood , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/complications , Hypertriglyceridemia/diagnosis , Middle Aged , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Benzoxazoles/therapeutic use , Benzoxazoles/pharmacology , Butyrates/therapeutic use , Butyrates/pharmacology , Treatment Outcome , Aged , Triglycerides/blood , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology , Biomarkers/blood , PPAR alpha/agonists , Bezafibrate/therapeutic use , Bezafibrate/pharmacology
2.
Sci Rep ; 14(1): 2240, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38279013

ABSTRACT

Muscle atrophy due to fragility fractures or frailty worsens not only activity of daily living and healthy life expectancy, but decreases life expectancy. Although several therapeutic agents for muscle atrophy have been investigated, none is yet in clinical use. Here we report that bezafibrate, a drug used to treat hyperlipidemia, can reduce immobilization-induced muscle atrophy in mice. Specifically, we used a drug repositioning approach to screen 144 drugs already utilized clinically for their ability to inhibit serum starvation-induced elevation of Atrogin-1, a factor related to muscle atrophy, in myotubes in vitro. Two candidates were selected, and here we demonstrate that one of them, bezafibrate, significantly reduced muscle atrophy in an in vivo model of muscle atrophy induced by leg immobilization. In gastrocnemius muscle, immobilization reduced muscle weight by an average of ~ 17.2%, and bezafibrate treatment prevented ~ 40.5% of that atrophy. In vitro, bezafibrate significantly inhibited expression of the inflammatory cytokine Tnfa in lipopolysaccharide-stimulated RAW264.7 cells, a murine macrophage line. Finally, we show that expression of Tnfa and IL-1b is induced in gastrocnemius muscle in the leg immobilization model, an activity significantly antagonized by bezafibrate administration in vivo. We conclude that bezafibrate could serve as a therapeutic agent for immobilization-induced muscle atrophy.


Subject(s)
Bezafibrate , Muscular Atrophy , Mice , Animals , Bezafibrate/pharmacology , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism
3.
Int Immunopharmacol ; 123: 110751, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567013

ABSTRACT

Acute lung injury (ALI) serves as a common life-threatening clinical syndrome with high mortality rates, which is characterized by disturbed mitochondrial dynamics in pulmonary epithelial barrier. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is one of the critical nuclear receptors, exerting important roles in preserving mitochondrial dynamics equilibrium. Previous studies have suggested that bezafibrate (BEZ), a PPAR-γ agonist, could improve obesity and insulin resistance. In the present study, we explored whether bezafibrate could attenuate lipopolysaccharide (LPS)-induced ALI in vivo and in vitro. Using C57BL/6 mice exposed to LPS, we observed that BEZ pretreatment (100 mg/kg) for 7 days decreased lung pathologic injury, reduced oxidative stress, suppressed inflammation and apoptosis, accompanied by shifting the dynamic course of mitochondria from fission into fusion. Meanwhile, we observed that BEZ could reverse the inhibition of PPAR-γ in lung tissues from LPS-treated mice. In vitro experiments also disclosed that BEZ could improve cell viability in primary pulmonary epithelial cells in a concentration-dependent manner. And BEZ (80 µM) treatment could not only inhibit oxidative stress but also preserve mitochondrial dynamics equilibrium in primary pulmonary epithelial cells. However, PPAR-γ knockdown partially abolished BEZ-mediated antioxidation and completely offset its regulatory effects on mitochondrial dynamics in primary pulmonary epithelial cells. In PPAR-γ-deficient mice, BEZ lost its pulmonary protection including anti-inflammatory and antioxidative effects in mice with ALI. Taken together, BEZ could attenuate ALI by preserving mitochondrial dynamics equilibrium in pulmonary epithelial cells in a PPAR-γ-dependent manner.


Subject(s)
Acute Lung Injury , Bezafibrate , Mice , Animals , Bezafibrate/pharmacology , Bezafibrate/therapeutic use , Lipopolysaccharides/adverse effects , Mitochondrial Dynamics , Mice, Inbred C57BL , Lung , Acute Lung Injury/chemically induced , PPAR gamma , Epithelial Cells , Antioxidants
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166841, 2023 12.
Article in English | MEDLINE | ID: mdl-37558011

ABSTRACT

Mitochondrial dysfunction plays an important role in the pathogenesis of Alzheimer's disease (AD), the most common neurodegenerative disease. Prior studies suggested impaired mitochondrial biogenesis likely contributes to mitochondrial dysfunction in AD. Bezafibrate, a peroxisome proliferator-activated receptor (PPAR) pan-agonist, has been shown to enhance mitochondrial biogenesis and increase oxidative phosphorylation capacity. In the present study, we investigated whether bezafibrate could rescue mitochondrial dysfunction and other AD-related deficits in 5xFAD mice. Bezafibrate was well tolerated by 5xFAD mice. Indeed, it rescued the expression of key mitochondrial proteins as well as mitochondrial dynamics and function in the brain of 5xFAD mice. Importantly, bezafibrate treatment led to significant improvement of cognitive/memory function in 5xFAD mice accompanied by alleviation of amyloid pathology and neuronal loss as well as reduced oxidative stress and neuroinflammation. Overall, this study suggests that bezafibrate improves mitochondrial function, mitigates neuroinflammation and improves cognitive functions in 5xFAD mice, thus supporting the notion that enhancing mitochondrial biogenesis/function is a promising therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Bezafibrate/pharmacology , Bezafibrate/therapeutic use , Neuroprotection , Neuroinflammatory Diseases
5.
Cells ; 12(12)2023 06 06.
Article in English | MEDLINE | ID: mdl-37371027

ABSTRACT

Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms of ISOD and MoCD, we investigated the effects of intrastriatal administration of sulfite on myelin structure, neuroinflammation, and oxidative stress in rat striatum. Sulfite administration decreased FluoromyelinTM and myelin basic protein staining, suggesting myelin abnormalities. Sulfite also increased the staining of NG2, a protein marker of oligodendrocyte progenitor cells. In line with this, sulfite also reduced the viability of MO3.13 cells, which express oligodendroglial markers. Furthermore, sulfite altered the expression of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1), indicating neuroinflammation and redox homeostasis disturbances. Iba1 staining, another marker of neuroinflammation, was also increased by sulfite. These data suggest that myelin changes and neuroinflammation induced by sulfite contribute to the pathophysiology of ISOD and MoCD. Notably, post-treatment with bezafibrate (BEZ), a pan-PPAR agonist, mitigated alterations in myelin markers and Iba1 staining, and IL-1ß, IL-6, iNOS and HO-1 expression in the striatum. MO3.13 cell viability decrease was further prevented. Moreover, pre-treatment with BEZ also attenuated some effects. These findings show the modulation of PPAR as a potential opportunity for therapeutic intervention in these disorders.


Subject(s)
Bezafibrate , Peroxisome Proliferator-Activated Receptors , Rats , Animals , Bezafibrate/pharmacology , Peroxisome Proliferator-Activated Receptors/pharmacology , Myelin Sheath , Neuroinflammatory Diseases , Interleukin-6/pharmacology , Oxidative Stress , Sulfites/pharmacology
6.
J Hazard Mater ; 458: 131904, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37356174

ABSTRACT

Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (

Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Polyethylene/metabolism , Bezafibrate/metabolism , Bezafibrate/pharmacology , Plastics/metabolism , Citalopram/metabolism , Citalopram/pharmacology , Bioaccumulation , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/analysis
7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3857-3866, 2023 12.
Article in English | MEDLINE | ID: mdl-37358795

ABSTRACT

In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.


Subject(s)
Hydrogen Peroxide , Pulmonary Fibrosis , Humans , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Reactive Oxygen Species/metabolism , Bezafibrate/pharmacology , Bezafibrate/metabolism , Pulmonary Fibrosis/pathology , Lung/metabolism , Oxidative Stress , Fibroblasts , RNA, Messenger/metabolism
8.
Mol Neurobiol ; 59(8): 4839-4853, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35639256

ABSTRACT

Patients with glutaric aciduria type 1 (GA1), a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) activity, commonly manifest acute encephalopathy associated with severe striatum degeneration and progressive cortical and striatal injury whose pathogenesis is still poorly known. We evaluated redox homeostasis, inflammatory response, mitochondrial biogenesis and dynamics, endoplasmic reticulum (ER)-mitochondria crosstalk, and ER stress in the brain of GCDH-deficient (Gcdh-/-) and wild-type (Gcdh+/+) mice fed a high Lys chow, which better mimics the human neuropathology mainly characterized by striatal lesions. Increased lipid peroxidation and altered antioxidant defenses, including decreased concentrations of reduced glutathione and increased activities of superoxide dismutase, catalase, and glutathione transferase, were observed in the striatum and cerebral cortex of Gcdh-/- mice. Augmented Iba-1 staining was also found in the dorsal striatum and neocortex, whereas the nuclear content of NF-κB was increased, and the cytosolic content of IκBα decreased in the striatum of the mutant animals, indicating a pro-inflammatory response. Noteworthy, in vivo treatment with the pan-PPAR agonist bezafibrate normalized these alterations. It was also observed that the ER-mitochondria crosstalk proteins VDAC1 and IP3R were reduced, whereas the ER stress protein DDIT3 was augmented in Gcdh-/- striatum, signaling disturbances of these processes. Finally, DRP1 content was elevated in the striatum of Gcdh-/- mice, indicating activated mitochondrial fission. We presume that some of these novel pathomechanisms may be involved in GA1 neuropathology and that bezafibrate should be tested as a potential adjuvant therapy for GA1.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Neuroprotective Agents , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Bezafibrate/pharmacology , Brain/metabolism , Brain Diseases, Metabolic , Endoplasmic Reticulum/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Homeostasis , Humans , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Dynamics , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidation-Reduction
9.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35563117

ABSTRACT

Among the agonists against three peroxisome proliferator-activated receptor (PPAR) subtypes, those against PPARα (fibrates) and PPARγ (glitazones) are currently used to treat dyslipidemia and type 2 diabetes, respectively, whereas PPARδ agonists are expected to be the next-generation metabolic disease drug. In addition, some dual/pan PPAR agonists are currently being investigated via clinical trials as one of the first curative drugs against nonalcoholic fatty liver disease (NAFLD). Because PPARα/δ/γ share considerable amino acid identity and three-dimensional structures, especially in ligand-binding domains (LBDs), clinically approved fibrates, such as bezafibrate, fenofibric acid, and pemafibrate, could also act on PPARδ/γ when used as anti-NAFLD drugs. Therefore, this study examined their PPARα/δ/γ selectivity using three independent assays-a dual luciferase-based GAL4 transactivation assay for COS-7 cells, time-resolved fluorescence resonance energy transfer-based coactivator recruitment assay, and circular dichroism spectroscopy-based thermostability assay. Although the efficacy and efficiency highly varied between agonists, assay types, and PPAR subtypes, the three fibrates, except fenofibric acid that did not affect PPARδ-mediated transactivation and coactivator recruitment, activated all PPAR subtypes in those assays. Furthermore, we aimed to obtain cocrystal structures of PPARδ/γ-LBD and the three fibrates via X-ray diffraction and versatile crystallization methods, which we recently used to obtain 34 structures of PPARα-LBD cocrystallized with 17 ligands, including the fibrates. We herein reveal five novel high-resolution structures of PPARδ/γ-bezafibrate, PPARγ-fenofibric acid, and PPARδ/γ-pemafibrate, thereby providing the molecular basis for their application beyond dyslipidemia treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Dyslipidemias , Non-alcoholic Fatty Liver Disease , PPAR delta , Benzoxazoles , Bezafibrate/pharmacology , Bezafibrate/therapeutic use , Butyrates , Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/drug therapy , Fenofibrate/analogs & derivatives , Humans , Ligands , PPAR alpha/metabolism , PPAR delta/agonists , PPAR gamma/metabolism
10.
Ecotoxicol Environ Saf ; 238: 113611, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35526456

ABSTRACT

Selenium is an essential micronutrient derived from daily diet to maintain the normal growth and development of vertebrates. Excessive selenium intake will induce cardiovascular toxicity, reproductive toxicity and neurotoxicity. However, there have been few studies of the toxic effects of selenium on neural development and locomotor behavior. In this study, newly fertilized zebrafish embryos were treated with selenium. As a result, selenium treatment at the concentration of 0.5 µM decreased the moving speed and distance and blunted the touch response of zebrafish embryos. TUNEL assay and immunofluorescence analysis revealed that selenium induced nervous system impairment including promoted cell apoptosis, proliferation and neuroinflammation, and decreased neurons in zebrafish embryos. RNA-seq and RT-PCR results indicated that selenium treatment significantly decreased the expression of the dopaminergic neuron, motor neuron, GABAergic neuron and neurotransmitter transport marker genes in zebrafish embryos. The expression of PPAR signaling pathway marker genes was significantly down-regulated in selenium-treated embryos. Two PPAR agonists (rosiglitazone and bezafibrate) and an anti-cancer drug (cisplatin) were tested for their effects to alleviate selenium-induced locomotor defects. Rosiglitazone and bezafibrate could restore the expression of some neural marker genes but could not fully rescue the selenium-induced locomotor behavior defects. The supplementation of cisplatin could restore the dysfunctional locomotor behavior and the abnormal expression of the PPAR and neural marker genes to almost the normal levels. In conclusion, the results of this study reveal that selenium-induced neural development and locomotor behavior defects are caused by multiple complex factors including PPAR signaling, and all the factors might be recovered by cisplatin through unknown mechanisms.


Subject(s)
Selenium , Zebrafish , Animals , Bezafibrate/metabolism , Bezafibrate/pharmacology , Cisplatin , Embryo, Nonmammalian , Peroxisome Proliferator-Activated Receptors/metabolism , Rosiglitazone/pharmacology , Selenium/metabolism , Selenium/pharmacology , Zebrafish/metabolism
11.
Eur J Pharmacol ; 924: 174950, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35430210

ABSTRACT

Barth syndrome (BTHS) and dilated cardiomyopathy with ataxia syndrome (DCMA) are biochemically characterized by high levels of 3-methylglutaric acid (MGA) in the urine and plasma of affected patients. Although cardiolipin abnormalities have been observed in these disorders, their pathophysiology is not fully established. We evaluated the effects of MGA administration on redox homeostasis and mitochondrial function in heart, as well as on vascular reactivity in aorta of Wistar rats without cardiolipin genetic deficiency. Potential cardioprotective effects of a pretreatment with bezafibrate (BEZ), a pan-PPAR agonist that induces mitochondrial biogenesis, were also determined. Our findings showed that MGA induced lipid peroxidation, altered enzymatic and non-enzymatic antioxidant defenses and reduced respiratory chain function in rat heart. MGA also increased Drp1 and reduced MFN1 levels, suggesting mitochondrial fission induction. Moreover, MGA altered MAPK and Akt signaling pathways, and had a strong tendency to reduce Sirt1 and PGC-1α, indicative of mitochondrial biogenesis impairment. Aorta vascular reactivity was further altered by MGA. Additionally, BEZ mitigated most alterations on antioxidant defenses and mitochondrial quality control proteins provoked by MGA. However, vascular reactivity disturbances were not prevented. It may be presumed that oxidative stress, mitochondrial bioenergetics and control quality disturbances, and vascular reactivity impairment caused by MGA may be involved in the cardiac failure observed in BTHS and DCMA, and that BEZ should be considered as a pharmacological candidate for the treatment of these disorders.


Subject(s)
Antioxidants , Bezafibrate , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Bezafibrate/metabolism , Bezafibrate/pharmacology , Bezafibrate/therapeutic use , Cardiolipins/metabolism , Humans , Mitochondria , Rats , Rats, Wistar
12.
Neurotherapeutics ; 19(3): 994-1006, 2022 04.
Article in English | MEDLINE | ID: mdl-35334081

ABSTRACT

Leigh syndrome (LS) is one of the most common mitochondrial encephalopathy diseases in infants. To date, there is still an absence of effective therapy. Bezafibrate (BEZ), a pan-peroxisome proliferator-activated receptor (PPAR) agonist, ameliorates the phenotype of the mouse model of mitochondrial disease via an unclear mechanism. Here, we applied it to Ndufs4 knockout (KO) mice, a widely used LS animal model, to observe the therapeutic effects and metabolic changes associated with BEZ treatment to explore the therapeutic strategies for mitochondrial diseases. Administration of BEZ significantly enhances survival and attenuates disease progression in Ndufs4 KO mice. Decreased oxidative stress and stunted growth were also observed. As a PPAR agonist, we did not find mitochondrial biogenesis or enhanced metabolism upon BEZ treatment. On the contrary, mice with dietary BEZ showed daily torpor bouts and lower metabolic rates. We speculate that activating energy-saving metabolism in mice may be associated with the therapeutic effects of BEZ, but the exact mechanism of action requires further study.


Subject(s)
Bezafibrate , Mitochondrial Encephalomyopathies , Torpor , Animals , Bezafibrate/pharmacology , Bezafibrate/therapeutic use , Disease Models, Animal , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Hypoglycemic Agents , Mice , Mice, Knockout , Mitochondrial Encephalomyopathies/drug therapy , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism
13.
Int J Neurosci ; 132(6): 574-581, 2022 Jun.
Article in English | MEDLINE | ID: mdl-32976735

ABSTRACT

AIM: The purpose was to measure the effect of Oseltamivir on oxidative biomarkers and dopaminergic and serotonergic systems in brain of rats with induced hypotriglyceridemia by Bezafibrate.Male young Wistar rats were treated as follows: group 1, NaCl 0.9%, (Controls); group 2, Oseltamivir (100 mg/kg); group 3, single dose of Bezafibrate (150 mg/kg); group 4, four dose of Bezafibrate; group 5, single dose of Bezafibrate + Oseltamivir and group 6, four doses of Bezafibrate + Oseltamivir. Drugs were given orally. Triglycerides, Dopamine, 5-hydroxyindoleacetic acid (5-HIAA), Glutathione (GSH), Hydrogen peroxide (H2O2), lipid peroxidation, as well as total ATPase activity were measured using validated methods. RESULTS: Oseltamivir treated animals showed lower GSH and lipid peroxidation levels and an increment in 5-HIAA in the three evaluated brain regions. Treatment with Oseltamivir also reduces H2O2 in the cortex and cerebellum/medulla oblongata. ATPase enzyme increased in these regions in the groups that were administered with Bezafibrate in repeated doses and in combination with Oseltamivir in single dose. Dopamine concentrations decreased in groups treated with Oseltamivir in the three evaluated regions. Also, there was a decrease in dopamine concentrations in the cerebellum/medulla oblongata of the animals treated with the combination of Oseltamivir and Bezafibrate.Innovation and conclusion: Animals with bezafibrate induced hypo-triglyceridemia that received Oseltamivir, either in single or repeated doses, have a higher improvement of their antioxidant activity and also experienced changes in the dopaminergic and serotonergic system in their brain, intending establish the beneficial of joint administration of both drugs in obese patients.


Subject(s)
Dopamine , Oseltamivir , Adenosine Triphosphatases/metabolism , Animals , Bezafibrate/pharmacology , Brain/metabolism , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , Hydroxyindoleacetic Acid/pharmacology , Lipid Peroxidation , Male , Oseltamivir/pharmacology , Oxidative Stress , Rats , Rats, Wistar
14.
Br J Cancer ; 126(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: mdl-34686779

ABSTRACT

BACKGROUND: We previously demonstrated the in vitro killing of AML cells by the combination of the lipid-lowering agent bezafibrate (BEZ) and the contraceptive hormone medroxyprogesterone acetate (MPA). A phase II trial demonstrated in vivo safety and efficacy of BEZ and MPA (BaP) in elderly, relapsed/refractory AML and high-risk myelodysplastic syndrome (MDS) patients. However, we observed dose-limiting toxicities in a second trial that attempted to improve outcomes via escalation of BaP doses. Thus we sought to identify a third repurposed drug that potentiates activity of low dose BaP (BaP 0.1 mM). METHODS AND RESULTS: We demonstrate that addition of a commonly used anti-epileptic, valproic acid (VAL) to low dose BaP (BaP 0.1 mM)(VBaP) enhanced killing of AML cell lines/primary AML cells to levels similar to high dose BaP (BaP 0.5 mM). Similarly, addition of VAL to BaP 0.1 mM enhanced reactive oxygen species (ROS), lipid peroxidation and inhibition of de novo fatty acid synthesis. Overexpression of Nrf2 in K562 and KG1a completely inhibited ROS production and rescued cells from VAL/BaP 0.1 mM/VBaP killing. CONCLUSIONS: Given the good safety data of low-dose BaP in elderly/relapsed/refractory AML patients, and that VAL alone is well-tolerated, we propose VBaP as a novel therapeutic combination for AML.


Subject(s)
Antioxidants/metabolism , Bezafibrate/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Medroxyprogesterone Acetate/pharmacology , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Valproic Acid/pharmacology , Anticonvulsants/pharmacology , Cell Line, Tumor , Contraceptive Agents, Hormonal/pharmacology , Humans , Hypolipidemic Agents/pharmacology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Maximum Tolerated Dose
15.
Drugs ; 81(10): 1181-1192, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34142342

ABSTRACT

Cholestatic liver disease is a disease that causes liver damage and fibrosis owing to bile stasis. It is represented by primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), but the pathophysiological pathways that cause bile stasis in both diseases are different. The pathogenesis of the disease is still unclear, although autoimmune mechanisms have been postulated and partially elucidated. Although the disease may progress slowly with only mild liver dysfunction, it may progress to liver cirrhosis or liver failure, which require liver transplantation. As a medical treatment, ursodeoxycholic acid is widely used for PBC and has proved to be very effective against disease progression in cases of PBC. On the other hand, its efficacy is limited in cases of PSC, and the research and development of various drugs are underway. Furthermore, the clinical course of both diseases is quite variable, making the design of clinical trials fairly difficult. In this review, we present the general natural history of PBC and PSC, and provide information on the latest drug therapies currently available and those that are under investigation.


Subject(s)
Cholangitis, Sclerosing/drug therapy , Cholangitis, Sclerosing/physiopathology , Liver Cirrhosis, Biliary/drug therapy , Liver Cirrhosis, Biliary/physiopathology , Anti-Bacterial Agents/pharmacology , Bezafibrate/pharmacology , Cholagogues and Choleretics/therapeutic use , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/epidemiology , Fibroblast Growth Factors/agonists , Glucocorticoids/pharmacology , Hepatitis, Autoimmune/epidemiology , Humans , Immunosuppressive Agents/pharmacology , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/epidemiology , Peroxisome Proliferator-Activated Receptors/agonists , Probiotics/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Tumor Necrosis Factor-alpha/antagonists & inhibitors
16.
J Hepatol ; 75(3): 565-571, 2021 09.
Article in English | MEDLINE | ID: mdl-33882268

ABSTRACT

BACKGROUND & AIMS: A beneficial effect of bezafibrate (BZF) on symptoms and biochemical features of primary biliary cholangitis (PBC) has been reported in patients with an incomplete response to ursodeoxycholic acid (UDCA), but long-term effects on survival remain unknown. In Japan, BZF has been used as a de facto second-line therapy for PBC since 2000. Herein, we compared the survival rates between patients treated with and those without BZF in a large nationwide Japanese PBC cohort. METHODS: All consecutively registered patients of this cohort who started UDCA therapy from 2000 onwards and had a follow-up ≥1 year were included. Association between BZF exposure and mortality or need for liver transplantation (LT) was assessed using time-dependent, multivariable-and propensity score-adjusted Cox proportional hazards models. Clinical benefit was quantified using the number needed to treat (NNT). RESULTS: Of 3,908 eligible patients, 3,162 (81%) received UDCA only and 746 (19%) UDCA and BZF over 17,360 and 3,932 patient-years, respectively. During follow-up, 183 deaths (89 liver-related) and 21 LT were registered. Exposure to combination therapy was associated with a significant decrease in all-cause and liver-related mortality or need for LT (adjusted hazard ratios: 0.3253, 95% CI 0.1936-0.5466 and 0.2748, 95% CI 0.1336-0.5655, respectively; p <0.001 for both). This association was consistent across various risk groups at baseline. The NNTs with combination therapy to prevent 1 additional death or LT over 5, 10, and 15 years were 29 (95% CI 22-46), 14 (10-22), and 8 (6-15), respectively. CONCLUSIONS: In a large retrospective cohort study of treatment effects in patients with PBC, the addition of BZF to UDCA was associated with improved prognosis. LAY SUMMARY: The long-term efficacy of bezafibrate (BZF) on liver transplantation (LT) - free survival in patients with PBC and an incomplete response to ursodeoxycholic acid (UDCA) remains to be determined. In this Japanese nationwide retrospective cohort study, the use of UDCA-BZF combination therapy, compared to UDCA alone, was associated with a lower risk of all-cause and liver-related mortality or need for LT. These results indicate that BZF is so far the only drug in PBC to have demonstrated efficacy in improving symptoms, biochemical markers, and long-term outcomes.


Subject(s)
Bezafibrate/pharmacology , Liver Cirrhosis, Biliary/drug therapy , Adult , Bezafibrate/standards , Bezafibrate/therapeutic use , Cohort Studies , Female , Humans , Japan/epidemiology , Liver Cirrhosis, Biliary/epidemiology , Liver Cirrhosis, Biliary/mortality , Male , Middle Aged , Prognosis , Proportional Hazards Models , Retrospective Studies , Treatment Outcome
17.
J Enzyme Inhib Med Chem ; 36(1): 377-383, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33525941

ABSTRACT

A classical drug repurposing approach was applied to find new putative GPR40 allosteric binders. A two-step computational protocol was set up, based on an initial pharmacophoric-based virtual screening of the DrugBank database of known drugs, followed by docking simulations to confirm the interactions between the prioritised compounds and GPR40. The best-ranked entries showed binding poses comparable to that of TAK-875, a known allosteric agonist of GPR40. Three of them (tazarotenic acid, bezafibrate, and efaproxiral) affect insulin secretion in pancreatic INS-1 832/13 ß-cells with EC50 in the nanomolar concentration (5.73, 14.2, and 13.5 nM, respectively). Given the involvement of GPR40 in type 2 diabetes, the new GPR40 modulators represent a promising tool for therapeutic intervention towards this disease. The ability to affect GPR40 was further assessed in human breast cancer MCF-7 cells in which this receptor positively regulates growth activities (EC50 values were 5.6, 21, and 14 nM, respectively).


Subject(s)
Drug Repositioning , Fibric Acids/pharmacology , Insulin/metabolism , Receptors, G-Protein-Coupled/agonists , Retinoids/pharmacology , Allosteric Regulation/drug effects , Aniline Compounds/pharmacology , Animals , Bezafibrate/pharmacology , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , Propionates/pharmacology , Rats , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
18.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166100, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33549744

ABSTRACT

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common inborn long-chain fatty acid oxidation (FAO) disorder. VLCAD deficiency is characterized by distinct phenotypes. The severe phenotypes are potentially life-threatening and affect the heart or liver, with a comparatively milder phenotype characterized by myopathic symptoms. There is an unmet clinical need for effective treatment options for the myopathic phenotype. The molecular mechanisms driving the gradual decrease in mitochondrial function and associated alterations of muscle fibers are unclear. The peroxisome proliferator-activated receptor (PPAR) pan-agonist bezafibrate is a potent modulator of FAO and multiple other mitochondrial functions and has been proposed as a potential medication for myopathic cases of long-chain FAO disorders. In vitro experiments have demonstrated the ability of bezafibrate to increase VLCAD expression and activity. However, the outcome of small-scale clinical trials has been controversial. We found VLCAD deficient patient fibroblasts to have an increased oxidative stress burden and deranged mitochondrial bioenergetic capacity, compared to controls. Applying heat stress under fasting conditions to bezafibrate pretreated patient cells, caused a marked further increase of mitochondrial superoxide levels. Patient cells failed to maintain levels of the essential thiol peptide antioxidant glutathione and experienced a decrease in cellular viability. Our findings indicate that chronic PPAR activation is a plausible initiator of long-term pathogenesis in VLCAD deficiency. Our findings further implicate disruption of redox homeostasis as a key pathogenic mechanism in VLCAD deficiency and support the notion that a deranged thiol metabolism might be an important pathogenic factor in VLCAD deficiency.


Subject(s)
Bezafibrate/pharmacology , Congenital Bone Marrow Failure Syndromes/drug therapy , Energy Metabolism , Fibroblasts/drug effects , Hypolipidemic Agents/pharmacology , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Muscular Diseases/drug therapy , Peroxisome Proliferator-Activated Receptors/metabolism , Congenital Bone Marrow Failure Syndromes/metabolism , Congenital Bone Marrow Failure Syndromes/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/pathology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Oxidative Stress , Peroxisome Proliferator-Activated Receptors/genetics
19.
EMBO Mol Med ; 12(3): e11589, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32107855

ABSTRACT

Mitochondrial disorders affect 1/5,000 and have no cure. Inducing mitochondrial biogenesis with bezafibrate improves mitochondrial function in animal models, but there are no comparable human studies. We performed an open-label observational experimental medicine study of six patients with mitochondrial myopathy caused by the m.3243A>G MTTL1 mutation. Our primary aim was to determine the effects of bezafibrate on mitochondrial metabolism, whilst providing preliminary evidence of safety and efficacy using biomarkers. The participants received 600-1,200 mg bezafibrate daily for 12 weeks. There were no clinically significant adverse events, and liver function was not affected. We detected a reduction in the number of complex IV-immunodeficient muscle fibres and improved cardiac function. However, this was accompanied by an increase in serum biomarkers of mitochondrial disease, including fibroblast growth factor 21 (FGF-21), growth and differentiation factor 15 (GDF-15), plus dysregulation of fatty acid and amino acid metabolism. Thus, although potentially beneficial in short term, inducing mitochondrial biogenesis with bezafibrate altered the metabolomic signature of mitochondrial disease, raising concerns about long-term sequelae.


Subject(s)
Bezafibrate/pharmacology , Mitochondria/metabolism , Mitochondrial Myopathies/drug therapy , Humans , Mitochondrial Myopathies/metabolism , Organelle Biogenesis
20.
Cells ; 9(2)2020 01 27.
Article in English | MEDLINE | ID: mdl-32012656

ABSTRACT

Mitochondria are involved in many cellular processes and their main role is cellular energy production. They constantly undergo fission and fusion, and these counteracting processes are under strict balance. The cytosolic dynamin-related protein 1, Drp1, or dynamin-1-like protein (DNM1L) mediates mitochondrial and peroxisomal division. Defects in the DNM1L gene result in a complex neurodevelopmental disorder with heterogeneous symptoms affecting multiple organ systems. Currently there is no curative treatment available for this condition. We have previously described a patient with a de novo heterozygous c.1084G>A (p.G362S) DNM1L mutation and studied the effects of a small molecule, bezafibrate, on mitochondrial functions in this patient's fibroblasts compared to controls. Bezafibrate normalized growth on glucose-free medium, as well as ATP production and oxygen consumption. It improved mitochondrial morphology in the patient's fibroblasts, although causing a mild increase in ROS production at the same time. A human foreskin fibroblast cell line overexpressing the p.G362S mutation showed aberrant mitochondrial morphology, which normalized in the presence of bezafibrate. Further studies would be needed to show the consistency of the response to bezafibrate, possibly using fibroblasts from patients with different mutations in DNM1L, and this treatment should be confirmed in clinical trials. However, taking into account the favorable effects in our study, we suggest that bezafibrate could be offered as a treatment option for patients with certain DNM1L mutations.


Subject(s)
Bezafibrate/pharmacology , Dynamins/deficiency , Mitochondrial Dynamics/drug effects , Adenosine Triphosphate/biosynthesis , Cell Proliferation/drug effects , Cell Survival/drug effects , Dynamins/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Membrane Potential, Mitochondrial/drug effects , Mutation/genetics , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...