Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 418: 115496, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33744279

ABSTRACT

The toxicokinetic behavior of α-pinene and its potential reactive metabolite, α-pinene oxide, was investigated following whole body inhalation exposure to 50 and 100 ppm α-pinene in rats and mice for 6 h per day for 7d. In both species and sexes, the maximum blood concentration (Cmax) increased more than proportionally while the increase in area under the concentration time curve (AUC) was proportional to the exposure concentration. When normalized to the calculated dose (D), both Cmax/D (male rats, 12.2-54.5; female rats, 17.4-74.1; male mice, 7.41-14.2; female mice, 6.59-13.0 (ng/mL)/(mg/kg)) and AUC/D (male rats, 28.9-31.1; female rats, 55.8-56.8; male mice, 18.1-19.4; female mice, 19.2-22.5 (h*ng/mL)/(mg/kg)) in rats were higher than in mice and in female rats were higher than in male rats; no sex difference was observed in mice. α-Pinene was eliminated from blood with half-lives between 12.2 and 17.4 h in rats and 6.18-19.4 h in mice. At the low dose, the ratio of α-pinene oxide to α-pinene, based on Cmax and AUC, respectively, was 0.200-0.237 and 0.279-0.615 in rats and 0.060-0.086 and 0.036-0.011 in mice demonstrating lower formation of the oxide in mice than in rats. At the high dose, the ratio decreased considerably in both species pointing to saturation of pathways leading to the formation of α-pinene oxide. α-Pinene and the oxide were quantified in the mammary glands of rats and mice with tissue to blood ratios of ≥23 demonstrating retention of these analytes in mammary glands. The findings of epoxide formation and species- and sex-differences in systemic exposure may be important in providing context and relating animal findings to human exposures.


Subject(s)
Air Pollutants/pharmacokinetics , Air Pollution, Indoor , Bicyclic Monoterpenes/pharmacokinetics , Activation, Metabolic , Air Pollutants/toxicity , Animals , Bicyclic Monoterpenes/toxicity , Female , Inhalation Exposure , Male , Mammary Glands, Animal/metabolism , Mice , Rats, Sprague-Dawley , Risk Assessment , Sex Factors , Species Specificity , Tissue Distribution
2.
Molecules ; 25(8)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32294954

ABSTRACT

(1S,5R)-4-((E)-3,4-dihydroxy-5-methoxystryryl)-6,6-dimethylbicylco[3.1.1]hept-3-en-2-one (SP-8356) is a novel (1S)-(-)-verbenone derivative that is currently in preclinical development for the treatment of ischemic stroke and atherosclerosis. This report aimed at characterization of the metabolism and pharmacokinetic properties of SP-8356. Following intravenous dose in rats and dogs, plasma concentrations of SP-8356 declined rapidly with high clearance (CL) and short half-life; after oral administration in both species, its plasma levels were below the quantitation limit. Fourteen circulating metabolites, formed by mono-oxygenation, demethylation, glucuronidation, catechol O-methylation, sulfation and oxidation (bioactivation) followed by glutathione (GSH) conjugation, were tentatively identified in both species. Urinary excretion of SP-8356 appeared to be minimal in rats, compared to its metabolites. GSH conjugate of SP-8356 was also formed during incubation with rat liver S9 fraction consistent with oxidative bioactivation; this bioactivation was almost completely inhibited by the cofactors for glucuronidation, sulfation and methylation, indicating that it may be abolished by competing metabolic reactions in the body. The human pharmacokinetics of SP-8356 was predicted to be similar to that of the animals based on the current in vitro metabolic stability results. In summary, rapid phase II metabolism appears to be mainly responsible for its suboptimal pharmacokinetics, such as high CL and low oral absorption. Because of competing metabolic reactions, potential safety risks related to SP-8356 bioactivation may be low.


Subject(s)
Bicyclic Monoterpenes/metabolism , Bicyclic Monoterpenes/pharmacokinetics , Liver/drug effects , Administration, Intravenous , Administration, Oral , Animals , Bicyclic Monoterpenes/administration & dosage , Bicyclic Monoterpenes/blood , Chromatography, High Pressure Liquid , Dogs , Glutathione/metabolism , Half-Life , Humans , Liver/metabolism , Male , Metabolic Clearance Rate/physiology , Pharmacokinetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...