Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Theranostics ; 14(7): 2719-2735, 2024.
Article in English | MEDLINE | ID: mdl-38773969

ABSTRACT

Aim: To elucidate dynamics and functions in colonic macrophage subsets, and their regulation by Bifidobacterium breve (B. breve) and its associated metabolites in the initiation of colitis-associated colorectal cancer (CAC). Methods: Azoxymethane (AOM) and dextran sodium sulfate (DSS) were used to create a CAC model. The tumor-suppressive effect of B. breve and variations of macrophage subsets were evaluated. Intestinal macrophages were ablated to determine their role in the protective effects of B. breve. Efficacious molecules produced by B. breve were identified by non-targeted and targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The molecular mechanism was further verified in murine bone marrow-derived macrophages (BMDMs), macrophages derived from human peripheral blood mononuclear cells (hPBMCs), and demonstrated in CAC mice. Results: B. breve alleviated colitis symptoms, delayed colonic tumorigenesis, and promoted phenotypic differentiation of immature inflammatory macrophages into mature homeostatic macrophages. On the contrary, the ablation of intestinal macrophages largely annulled the protective effects of B. breve. Microbial analysis of colonic contents revealed the enrichment of probiotics and the depletion of potential pathogens following B. breve supplementation. Moreover, indole-3-lactic acid (ILA) was positively correlated with B. breve in CAC mice and highly enriched in the culture supernatant of B. breve. Also, the addition of ILA directly promoted AKT phosphorylation and restricted the pro-inflammatory response of murine BMDMs and macrophages derived from hPBMCs in vitro. The effects of ILA in murine BMDMs and macrophages derived from hPBMCs were abolished by the aryl hydrocarbon receptor (AhR) antagonist CH-223191 or the AKT inhibitor MK-2206. Furthermore, ILA could protect against tumorigenesis by regulating macrophage differentiation in CAC mice; the AhR antagonist largely abrogated the effects of B. breve and ILA in relieving colitis and tumorigenesis. Conclusion: B. breve-mediated tryptophan metabolism ameliorates the precancerous inflammatory intestinal milieu to inhibit tumorigenesis by directing the differentiation of immature colonic macrophages.


Subject(s)
Bifidobacterium breve , Cell Differentiation , Colitis , Indoles , Macrophages , Probiotics , Animals , Mice , Macrophages/metabolism , Macrophages/drug effects , Bifidobacterium breve/metabolism , Indoles/pharmacology , Indoles/metabolism , Humans , Colitis/chemically induced , Colitis/microbiology , Colitis/complications , Cell Differentiation/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Disease Models, Animal , Carcinogenesis/drug effects , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/metabolism , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Colon/metabolism , Dextran Sulfate , Male , Gastrointestinal Microbiome , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Azoxymethane
2.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674825

ABSTRACT

Human milk promotes the growth of bifidobacteria in the infant gut. Adding bifidobacterial species to infant formula may contribute to increasing their presence in the gut of formula-fed infants. Therefore, the safety and anti-infectious effects of Bifidobacterium breve DSM32583, a breast milk isolate, were assessed in a pilot trial involving 3-month-old infants. The infants were randomly assigned to either the probiotic (PG) or the control (CG) groups. All the infants consumed the same formula, although it was supplemented with the strain (1 × 107 cfu/g of formula) in the PG. Overall, 160 infants (80 per group) finished the intervention. Infants in CG gained more weight compared to PG (p < 0.05), but the weights for age Z-scores at 6 months were within the normal distribution for this age group. The rates of infections affecting the gastrointestinal and respiratory tracts and antibiotic therapy were significantly lower in the PG. The bifidobacterial population and the level of short-chain fatty acids were higher (p < 0.05) in the fecal samples of PG infants. No adverse events related to formula consumption were observed. In conclusion, the administration of an infant formula with B. breve DSM32583 was safe and exerted potential beneficial effects on gut health.


Subject(s)
Bifidobacterium breve , Feces , Infant Formula , Milk, Human , Probiotics , Humans , Infant , Pilot Projects , Probiotics/administration & dosage , Milk, Human/microbiology , Female , Male , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Weight Gain
3.
Nutrients ; 16(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542727

ABSTRACT

Visceral fat accumulation is considered to be associated with a higher risk of chronic diseases. We investigated the effects of Bifidobacterium longum subsp. longum (B. longum) BB536 and Bifidobacterium breve (B. breve) MCC1274 on body composition, including visceral fat, in a randomized, parallel-group, placebo-controlled study. Participants were between 29 and 64 years of age and had a body mass index (BMI) of greater than 23 and less than 30. One hundred participants were randomly assigned to the probiotics group or placebo group. Participants were administered probiotic capsules containing 1 × 1010 colony-forming units (CFUs) of B. longum BB536 and 5 × 109 CFU of B. breve MCC1274 or placebo capsules without bifidobacteria for 16 weeks. In the probiotics group, abdominal visceral fat area, total abdominal fat area, and serum triglyceride levels were significantly decreased compared to those in the placebo group. Additionally, the increase in BMI observed in the placebo group was significantly suppressed in the probiotics group. This study showed that B. longum BB536 and B. breve MCC1274 reduced abdominal visceral fat and total fat levels in healthy normal and overweight adults, suggesting their beneficial effects on body composition.


Subject(s)
Bifidobacterium breve , Bifidobacterium longum , Bifidobacterium , Probiotics , Adult , Humans , Overweight/therapy , Body Composition
4.
J Microbiol Biotechnol ; 34(4): 871-879, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38494884

ABSTRACT

Our group had isolated Bifidobacterium breve strain BS2-PB3 from human breast milk. In this study, we sequenced the whole genome of B. breve BS2-PB3, and with a focus on its safety profile, various probiotic characteristics (presence of antibiotic resistance genes, virulence factors, and mobile elements) were then determined through bioinformatic analyses. The antibiotic resistance profile of B. breve BS2-PB3 was also evaluated. The whole genome of B. breve BS2-PB3 consisted of 2,268,931 base pairs with a G-C content of 58.89% and 2,108 coding regions. The average nucleotide identity and whole-genome phylogenetic analyses supported the classification of B. breve BS2-PB3. According to our in silico assessment, B. breve BS2-PB3 possesses antioxidant and immunomodulation properties in addition to various genes related to the probiotic properties of heat, cold, and acid stress, bile tolerance, and adhesion. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk-diffusion test, in which the minimum inhibitory concentrations for selected antibiotics were subsequently tested using the Epsilometer test. B. breve BS2-PB3 only exhibited selected resistance phenotypes, i.e., to mupirocin (minimum inhibitory concentration/MIC >1,024 µg/ml), sulfamethoxazole (MIC >1,024 µg/ml), and oxacillin (MIC >3 µg/ml). The resistance genes against those antibiotics, i.e., ileS, mupB, sul4, mecC and ramA, were detected within its genome as well. While no virulence factor was detected, four insertion sequences were identified within the genome but were located away from the identified antibiotic resistance genes. In conclusion, B. breve BS2-PB3 demonstrated a sufficient safety profile, making it a promising candidate for further development as a potential functional food.


Subject(s)
Anti-Bacterial Agents , Bifidobacterium breve , Genome, Bacterial , Microbial Sensitivity Tests , Phylogeny , Probiotics , Bifidobacterium breve/genetics , Anti-Bacterial Agents/pharmacology , Functional Food , Virulence Factors/genetics , Whole Genome Sequencing , Drug Resistance, Bacterial/genetics , Base Composition , Humans , Genomics , Antioxidants/pharmacology
5.
J Agric Food Chem ; 72(7): 3572-3583, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334304

ABSTRACT

In this study, we aimed to explore the protective effects of Bifidobacterium in colitis mice and the potential mechanisms. Results showed that Bifidobacterium breve (B. breve) effectively colonized the intestinal tract and alleviated colitis symptoms by reducing the disease activity index. Moreover, B. breve mitigated intestinal epithelial cell damage, inhibited the pro-inflammatory factors, and upregulated tight junction (TJ)-proteins. Gut microbiota and metabolome analysis found that B. breve boosted bile acid-regulating genera (such as Bifidobacterium and Clostridium sensu stricto 1), which promoted bile acid deconjugation in the intestine. Notably, cholic acid (CA) was closely associated with the expression levels of inflammatory factors and TJ-proteins (p < 0.05). Our in vitro cell experiments further confirmed that CA (20.24 ± 4.53 pg/mL) contributed to the inhibition of lipopolysaccharide-induced tumor necrosis factor-α expression (49.32 ± 5.27 pg/mL) and enhanced the expression of TJ-proteins (Occludin and Claudin-1) and MUC2. This study suggested that B. breve could be a probiotic candidate for use in infant foods.


Subject(s)
Bifidobacterium breve , Colitis , Gastrointestinal Microbiome , Humans , Infant , Animals , Mice , Bifidobacterium breve/genetics , Cholic Acid/adverse effects , Colitis/chemically induced , Colitis/genetics , Colitis/microbiology , Intestinal Mucosa , Bifidobacterium , Inflammation , Mice, Inbred C57BL , Disease Models, Animal , Dextran Sulfate/adverse effects
6.
Appl Environ Microbiol ; 90(3): e0207423, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38319094

ABSTRACT

Bifidobacterium breve, one of the main bifidobacterial species colonizing the human gastrointestinal tract in early life, has received extensive attention for its purported beneficial effects on human health. However, exploration of the mode of action of such beneficial effects exerted by B. breve is cumbersome due to the lack of effective genetic tools, which limits its synthetic biology application. The widespread presence of CRISPR-Cas systems in the B. breve genome makes endogenous CRISPR-based gene editing toolkits a promising tool. This study revealed that Type I-C CRISPR-Cas systems in B. breve can be divided into two groups based on the amino acid sequences encoded by cas gene clusters. Deletion of the gene coding uracil phosphoribosyl-transferase (upp) was achieved in five B. breve strains from both groups using this system. In addition, translational termination of uracil phosphoribosyl-transferase was successfully achieved in B. breve FJSWX38M7 by single-base substitution of the upp gene and insertion of three stop codons. The gene encoding linoleic acid isomerase (bbi) in B. breve, being a characteristic trait, was deleted after plasmid curing, which rendered it unable to convert linoleic acid into conjugated linoleic acid, demonstrating the feasibility of successive editing. This study expands the toolkit for gene manipulation in B. breve and provides a new approach toward functional genome editing and analysis of B. breve strains.IMPORTANCEThe lack of effective genetic tools for Bifidobacterium breve is an obstacle to studying the molecular mechanisms of its health-promoting effects, hindering the development of next-generation probiotics. Here, we introduce a gene editing method based on the endogenous CRISPR-Cas system, which can achieve gene deletion, single-base substitution, gene insertion, and successive gene editing in B. breve. This study will facilitate discovery of functional genes and elucidation of molecular mechanisms of B. breve pertaining to health-associated benefits.


Subject(s)
Bifidobacterium breve , CRISPR-Cas Systems , Humans , Gene Editing/methods , Bifidobacterium breve/genetics , Linoleic Acid , Transferases/genetics , Uracil
7.
Nutrients ; 16(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38398861

ABSTRACT

We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.


Subject(s)
Alzheimer Disease , Bifidobacterium breve , Mobile Applications , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Bifidobacterium breve/metabolism , Mice, Transgenic , Disease Models, Animal , Memory Disorders/drug therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
8.
Neurochem Int ; 174: 105691, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311217

ABSTRACT

Human gut microbiota are thought to affect different physiological processes in the body, including brain functions. Gut dysbiosis has been linked to the progression of Parkinson's disease (PD) and thus, restoring the healthy gut microbiota with supplementation of putative probiotic strains can confer some benefits in PD. In the current study, we explored the neuroprotective potential of Bifidobacterium breve Bif11 supplementation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) treated female Sprague Dawley rats. This study investigated the behavioural, molecular and biochemical parameters in the MPTP rat model. A pharmacological intervention of Bif11 at doses of 1 × 1010 CFU and 2 × 1010 CFU for 21 days was found to attenuate the cognitive and motor changes in the MPTP rat model. Furthermore, it also increased the tyrosine hydroxylase levels, reduced pro-inflammatory markers and decreased oxidative and nitrosative stress in the mid brain of MPTP-lesioned rats. Bif11 supplementation even restored the levels of short-chain fatty acids and decreased intestinal epithelial permeability in MPTP-induced PD model rats. In summary, these findings demonstrate that B. breve Bif11 has the potential to ameliorate symptoms of PD. However, this therapy needs to be further investigated with in-depth mechanistic insights in the future for the treatment of PD.


Subject(s)
Bifidobacterium breve , Neuroprotective Agents , Parkinson Disease , Probiotics , Rats , Female , Humans , Animals , Mice , Parkinson Disease/drug therapy , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Rats, Sprague-Dawley , Disease Models, Animal , Oxidative Stress , Probiotics/pharmacology , Probiotics/therapeutic use , Dietary Supplements , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
Food Funct ; 15(3): 1598-1611, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38240388

ABSTRACT

Psychobiotics that modulate the gut-brain axis have emerged as promising interventions for clinical mental disorders. Bifidobacterium breve CCFM1025 has demonstrated antidepressant effects in both mice and patients with major depression. Nevertheless, the precise mechanism of action of CCFM1025 in emotional regulation remains ambiguous. This study aimed to explore the colonization capacity of CCFM1025 and its dose-dependent effect on emotional regulation in mice exposed to chronic unpredictable mild stress (CUMS). Additionally, we examined its regulatory effects on intestinal and serum metabolites in mice. The results revealed that CCFM1025 did not exhibit a heightened gut retention capability compared to the conspecific control strain. Nevertheless, CCFM1025 exhibited dose-dependent mitigation of anxiety-like behavior and memory impairment induced by CUMS, while also restoring gut microbiota homeostasis. Notably, CCFM1025 demonstrated a robust ability to exert potent gut metabolite regulation, resulting in significant elevation of bile acid and tryptophan metabolites in the gut contents and serum of mice. These findings indicate that the impact of CCFM1025 on emotional regulation may be attributed to its regulation of gut metabolites rather than its gut retention capability. The potential of Bifidobacterium to modulate bile acid metabolism may serve as a valuable avenue for regulating the gut microbiota and successfully exert emotion regulation.


Subject(s)
Bifidobacterium breve , Depressive Disorder, Major , Emotional Regulation , Humans , Mice , Animals , Bifidobacterium breve/metabolism , Bifidobacterium , Stress, Psychological/metabolism , Bile Acids and Salts/metabolism , Depression/metabolism
10.
Microb Biotechnol ; 17(1): e14405, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206097

ABSTRACT

The 190 kb megaplasmid pMP7017 of Bifidobacterium breve JCM7017 represents the first conjugative and largest plasmid characterised within this genus to date. In the current study, we adopted an integrated approach combining transcriptomics, whole genome comparative analysis and metagenomic data mining to understand the biology of pMP7017 and related megaplasmids, and to assess the impact of plasmid-carriage on the host strain. The data generated revealed variations within basic features of promoter elements which correlate with a high level of transcription on the plasmid and highlight the transcriptional activity of genes encoding both offensive and defensive adaptations, including a Type IIL restriction-modification system, an anti-restriction system and four Type II toxin-antitoxin systems. Furthermore, a highly transcribed tmRNA, which likely provides translational support to the host strain, was identified, making pMP7017 the first plasmid of the Bifidobacterium genus and the smallest plasmid known to express a tmRNA. Analyses of synteny and variability among pMP7017 and related plasmids indicate substantial diversity in gene organisation and accessory gene cargo highlighting diverse (co-)evolution and potential host-specific rearrangements and adaptations. Systematic analysis of the codon usage profile of transcriptionally active pMP7017-encoded genes suggests that pMP7017 originated from (sub)species of Bifidobacterium longum. Furthermore, mining of metagenomic data suggests the presence of pMP7017-homologues in ~10% of microbiome samples, mostly infants and/or mothers from various geographical locations. Comparative transcriptome analysis of the B. breve UCC2003 chromosome in the presence or absence of pMP7017 revealed differential expression of genes representing 8% of the total gene pool. Genes involved in genetic information processing were exclusively upregulated, while altered expression of genes involved in biofilm production and polysaccharide biosynthesis was also observed.


Subject(s)
Bifidobacterium breve , Humans , Bifidobacterium breve/genetics , Bifidobacterium breve/metabolism , Transcriptome , Bifidobacterium/genetics , Plasmids/genetics , Gene Expression Profiling
11.
J Agric Food Chem ; 72(3): 1561-1570, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38197881

ABSTRACT

Purine metabolism plays a pivotal role in numerous biological processes with potential implications for brain function and emotional regulation. This study utilizes gene-edited probiotics and pseudo-germ-free mice to unravel this intricate interplay. Transcriptomic analysis identified a ribonucleoside-diphosphate reductase ß chain (nrdB) as a pivotal gene in purine metabolism within Bifidobacterium breve CCFM1025. Comparative evaluation between the wild-type and nrdB mutant strains revealed CCFM1025's effective reduction of xanthine and xanthosine levels in the serum and brain of stressed mice. Concomitantly, it downregulated the expression of the adenosine receptor gene (Adora2b) and inhibited the overactivation of microglia. These findings emphasize the potential of psychobiotics in modulating emotional responses by regulating purine metabolites and adenosine receptors. This study sheds light on novel pathways that influence emotional well-being through gut microbiota interactions and purine metabolic processes.


Subject(s)
Bifidobacterium breve , Gastrointestinal Microbiome , Probiotics , Mice , Animals , Bifidobacterium breve/genetics , Bifidobacterium breve/metabolism , Purines/metabolism , Emotions
12.
Mol Neurobiol ; 61(1): 498-509, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37639065

ABSTRACT

Despite the anatomical separation, strong evidence suggested a bidirectional association between gut microbiota and central nervous system. Cross-talk between gut microbiota and brain has an important role in the pathophysiology of neurodegenerative disorders and regenerative processes. However, choosing the appropriate probiotics and combination therapy of probiotics to provide a synergistic effect is very crucial. In the present study, we investigated the effect of Lactobacillus casei (L. casei) and Bifidobacterium breve (B. breve) on alternation performance, oxidant/antioxidant biomarkers, the extent of demyelination, and the expression level of HO-1, Nrf-2, Olig2, MBP, PDGFRα, and BDNF in cuprizone (CPZ)-induced demyelination model of rat corpus callosum. In order to induce this model, rats received oral administration of CPZ 0.6% w/w in corn oil for 28 days. Then, L. casei, B. breve, or their combinations were orally administrated for 28 days. Y maze test was performed to investigate the alternation performance. Oxidant/antioxidant biomarkers were determined by colorimetric methods. Extent of demyelination was investigated using FluoroMyelin staining. The genes' expression levels of antioxidant and myelin lineage cells were assessed by quantitative real time PCR. The results showed the probiotics supplementation significantly improve the alternation performance and antioxidant capacity in demyelinated corpus callosum. Interestingly, B. breve supplementation alleviated demyelination and oxidative stress levels more than the administration of L. casei alone or the combination of two probiotics. These observations suggest that B. breve could provide a supplementary strategy for the treatment of multiple sclerosis by increasing antioxidant capacity and remyelination.


Subject(s)
Bifidobacterium breve , Demyelinating Diseases , Lacticaseibacillus casei , Probiotics , Rats , Animals , Cuprizone/toxicity , Antioxidants , Bifidobacterium/physiology , Probiotics/pharmacology , Probiotics/therapeutic use , Oxidative Stress , Demyelinating Diseases/chemically induced , Biomarkers , Oxidants
13.
Aliment Pharmacol Ther ; 59(3): 341-349, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036761

ABSTRACT

BACKGROUND: Gastric and duodenal ulcerations are common during multiple-dosing aspirin treatment, such as for prevention of cardiovascular disease. On capsule endoscopy, oral administration of the bacterial strain Bifidobacterium breve Bif195 (DSM 33360) reduced the risk of aspirin-induced small intestinal damage, without affecting cyclo-oxygenase-2 (COX-2) inhibition. AIM: To evaluate endoscopically the effect of Bif195 on aspirin-induced stomach and duodenal mucosal damage METHODS: Twenty-five healthy volunteers underwent two intervention periods in a randomised, double-blind, placebo-controlled crossover design including four gastroduodenoscopies and 6 weeks washout. Each intervention was a 4-week oral co-treatment of aspirin 300 mg daily and Bif195 (≥1011 colony-forming units daily) or placebo. Primary endpoint was change in Lanza score - ranging from 0 (normal mucosa) to 4 (>10 erosions or ulcer). RESULTS: All 25 participants (56% females); age 27.3 (±4.8) years; BMI 23.2 (±3.4) kg/m2 , completed the trial exhibiting significant increases in Lanza scores during placebo treatment as compared to baseline. Bif195 reduced gastric Lanza score with an odds ratio of 7.2 (95% confidence interval 1.72-30.08, p = 0.009) compared to placebo with no related adverse events. There were no significant changes in Lanza scores in the duodenum. CONCLUSIONS: Bif195 reduces aspirin-induced gastric mucosal damage and may serve as a safe supplement during multiple-dosing aspirin treatment.


Subject(s)
Anti-Ulcer Agents , Bifidobacterium breve , Duodenal Ulcer , Female , Humans , Adult , Male , Aspirin/pharmacology , Cross-Over Studies , Anti-Ulcer Agents/adverse effects , Duodenal Ulcer/chemically induced , Duodenal Ulcer/drug therapy , Duodenal Ulcer/prevention & control , Gastric Mucosa , Double-Blind Method
14.
Behav Brain Res ; 460: 114820, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38128887

ABSTRACT

We conducted a randomized controlled trial to investigate the potential of Bifidobacterium breve M-16 V to improve mood in humans. In this evaluation, we incorporated the use of near-infrared spectroscopy (NIRS), which has been used to evaluate mood states in studies with small sample sizes. Participants were given B. breve M-16 V (20 billion cells/day) for 6 weeks, and their mood state was assessed before and after ingestion. NIRS data were collected at rest and during a mental arithmetic task (under stress). Intake of B. breve M-16 V decreased the heart rate under stress and increased levels of the GABA-like substance pipecolic acid in stool samples. In addition, B. breve M-16 V improved mood and sleep scores in participants with high anxiety levels. These results suggest that B. breve M-16 V affects the metabolites of the gut microbiota and has the potential to modulate the autonomic nervous system and to improve mood and sleep.


Subject(s)
Bifidobacterium breve , Probiotics , Thalidomide/analogs & derivatives , Humans , Probiotics/pharmacology , Intestines , Double-Blind Method , Autonomic Nervous System
15.
Int J Oral Sci ; 15(1): 56, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072973

ABSTRACT

Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.


Subject(s)
Bifidobacterium breve , Interleukin-10 , Animals , Mice , Up-Regulation , Angiogenesis Inhibitors , Sunitinib , X-Ray Microtomography , Administration, Oral , Wound Healing , Antibodies, Neutralizing
16.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37951296

ABSTRACT

AIM: To evaluate the structure and functions of capsular exopolysaccharide (CPS) from Bifidobacterium breve NCIM 5671. METHODS AND RESULTS: A CPS produced by the probiotic bacteria B. breve NCIM 5671 was isolated and subjected to characterization through GC analysis, which indicated the presence of rhamnose, fucose, galactose, and glucose in a molar ratio of 3:1:5:3. The average molecular weight of the CPS was determined to be ∼8.5 × 105 Da. Further, NMR analysis revealed the probable CPS structure to be composed of major branched tetra- and penta-saccharide units alternately repeating and having both α- and ß-configuration sugar residues. CPS displayed an encouraging prebiotic score for some of the studied probiotic bacteria. Compared to standard inulin, CPS showed better resistance to digestibility against human GI tract in vitro. DPPH, total antioxidant, and ferric reducing assays carried out for CPS displayed decent antioxidant activity too. CONCLUSION: This study indicates that the CPS from B. breve NCIM 5671 has the potential to be utilized as a prebiotic food supplement. It is a high-molecular-weight (∼8.5 × 105 Da) capsular heteropolysaccharide containing rhamnose, fucose, galactose, and glucose.


Subject(s)
Bifidobacterium breve , Prebiotics , Humans , Fucose , Galactose , Rhamnose , Glucose
17.
PLoS One ; 18(11): e0287799, 2023.
Article in English | MEDLINE | ID: mdl-37917716

ABSTRACT

Necrotizing enterocolitis (NEC) is a severe intestinal disease of the newborn infants, associated with high morbidity and mortality. It has been reported that Bifidobacterium could protect the intestinal barrier function and reduce the risk of NEC. This study aimed to evaluate the probiotic potential of Bifidobacterium strains isolated from the chicken intestines and its effect on necrotizing enterocolitis in newborn SD rats. Out of 32 isolates, B. breve AHC3 not only exhibited excellent probiotic potential, including tolerance to artificial simulated gastric conditions, adhesion to HT-29 cells, antioxidant capacity and antibacterial activity, but also possessed reliable safety. Additionally, NEC model was established to further investigate the effect of B. breve AHC3 on necrotizing enterocolitis in newborn SD rats. It was illustrated that administration of B. breve AHC3 significantly not only reduced the incidence of NEC (from 81.25% to 34.38%) (P< 0.05), but also alleviated the severity of ileal injury (P< 0.05). Compared with NEC model, B. breve AHC3 could significantly decrease the level of proinflammatory factor TNF-α (P< 0.05) and increase the level of antiinflammatory factor IL-10 (P< 0.05) in the ileum of NEC rats. Through the intervention of B. breve AHC3, the gray value of inducible nitric oxide synthase (iNOS) in intestinal tissue of NEC rats was significantly reduced (P< 0.05). It was indicated that B. breve AHC3 exhibited prominent probiotic potential and reliable safety. In the neonatal SD rat model of NEC, B. breve AHC3 had an available protective effect on the intestinal injury of NEC, which might be related to reducing the inflammatory reaction in the ileum and inhibiting the expression of iNOS in intestinal tissue cells. B. breve AHC3 could be used as a potential treatment for human NEC.


Subject(s)
Bifidobacterium breve , Enterocolitis, Necrotizing , Infant, Newborn, Diseases , Probiotics , Infant , Infant, Newborn , Rats , Animals , Humans , Chickens , Enterocolitis, Necrotizing/metabolism , Rats, Sprague-Dawley , Intestines/microbiology , Probiotics/pharmacology , Probiotics/therapeutic use , Bifidobacterium , Animals, Newborn , Disease Models, Animal
18.
J Agric Food Chem ; 71(49): 19791-19803, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38031933

ABSTRACT

In this study, a novel homogeneous mannose-rich polysaccharide named EPS-1 from the fermentation broth of Bifidobacterium breve H4-2 was isolated and purified by anion exchange column chromatography and gel column chromatography. The primary structure of EPS-1 was analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance. The results indicated that EPS-1 had typical functional groups of polysaccharides. EPS-1 with an average molecular weight of 3.99 × 104 Da was mainly composed of mannose (89.65%) and glucose (5.84%). The backbone of EPS-1 was →2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→2)-α-d-Manp-(1→2,6)-α-d-Manp-(1→6)-α-d-Glcp-(1→ simultaneously containing two kinds of branched chains (α-d-Manp-(1→3)-α-d-Manp-(1→ and α-d-Manp-(1→). Besides, EPS-1 had a triple-helical conformation and exhibited excellent thermal stability. Moreover, the immunomodulatory activity of EPS-1 was evaluated by RAW 264.7 cells. Results indicated that EPS-1 significantly enhanced the viability of RAW 264.7 cells. EPS-1 could also be recognized by toll-like receptor 4, thereby activating the nuclear factors-κB (NF-κB) signaling pathway, promoting phosphorylation of related nuclear transcription factors, improving cell phagocytic activity, and promoting the secretion of NO, IL-6, IL-1ß, and TNF-α. Thus, EPS-1 could activate the TLR4-NF-κB signaling pathway to emerge immunomodulatory activity on macrophages. The above results indicate that EPS-1 can serve as a potential immune-stimulating polysaccharide.


Subject(s)
Bifidobacterium breve , Mannose , Animals , Mice , Mannose/metabolism , Bifidobacterium breve/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Polysaccharides/chemistry , Macrophages/metabolism , RAW 264.7 Cells , Molecular Weight
19.
Nutrients ; 15(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960353

ABSTRACT

Psychobiotics, a newly identified category of probiotics primarily targeting the gut-brain axis, exhibit tremendous potential in improving sleep quality. In this study, the clinical trial was registered in advance (identifier: NO. ChiCTR2300067806). Forty participants who were diagnosed with stress-induced insomnia were chosen and randomly divided into two groups: one received CCFM1025 at a dose of 5 × 109 CFU (n = 20), while the other was administered a placebo (n = 20), over a period of four weeks. The results revealed that compared to the placebo group (pre: M = 10.10, SD = 2.292; post: M = 8.650, SD = 2.793; pre vs. post: F (1, 38) = 15.41, p = 0.4316), the CCFM1025-treated group exhibited a significant decrease in Pittsburgh Sleep Quality Index (PSQI) scores from baseline (pre: M = 11.60, SD = 3.169; post: M = 7.750, SD = 3.697, F (1, 38) = 15.41, p = 0.0007). Furthermore, the administration of CCFM1025 was associated with a more pronounced reduction in stress marker concentrations. This effect could potentially be linked to changes in serum metabolites induced by the probiotic treatment, notably daidzein. In conclusion, B. breve CCFM1025 demonstrates promise as a psychobiotic strain for enhancing sleep quality.


Subject(s)
Bifidobacterium breve , Probiotics , Sleep Initiation and Maintenance Disorders , Humans , Sleep Quality , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Probiotics/therapeutic use , Double-Blind Method
20.
Int. microbiol ; 26(4): 833-840, Nov. 2023. graf
Article in English | IBECS | ID: ibc-227473

ABSTRACT

Co-administration of probiotics and antibiotics has been used to prevent or treat primary Clostridioides difficile (pCDI), and the closer the interval between the combination, the more effective it is, but the reason behind this is unknown. In this study, the cell-free culture supernatant (CFCS) of Bifidobacterium breve YH68 was used in combination with vancomycin (VAN) and metronidazole (MTR) to treat C. difficile cells. The growth and biofilm production of C. difficile under different co-administration time interval treatments were determined by optical density and crystalline violet staining, respectively. The toxin production of C. difficile was determined by enzyme immunoassay, and the relative expressions of C. difficile virulence genes tcdA and tcdB were determined by real-time qPCR method. Meanwhile, the types and contents of organic acids in YH68-CFCS were investigated by LC-MS/MS. The results showed that YH68-CFCS in combination with VAN or MTR significantly inhibited the growth, biofilm production, and toxin production of C. difficile in the effective time interval range (0–12 h) but did not affect the expression level of C. difficile virulence genes. In addition, the effective antibacterial component of YH68-CFCS is lactic acid (LA).(AU)


Subject(s)
Humans , Bifidobacterium breve , Vancomycin Resistance , Metronidazole , Probiotics , Anti-Bacterial Agents , Microbiology , Microbiological Techniques , Vancomycin
SELECTION OF CITATIONS
SEARCH DETAIL
...