Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biotechnol ; 31(7): 949-955, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34024895

ABSTRACT

Previously, our research group isolated Bifidobacterium breve IDCC4401 from infant feces as a potential probiotic. For this study, we evaluated the safety of B. breve IDCC4401 using genomic and phenotypic analyses. Whole genome sequencing was performed to identify genomic characteristics and investigate the potential presence of genes encoding virulence, antibiotic resistance, and mobile genetic elements. Phenotypic analyses including antibiotic susceptibility, enzyme activity, production of biogenic amines (BAs), and proportion of D-/L-lactate were evaluated using E-test, API ZYM test, high-performance liquid chromatography (HPLC), and D-/L-lactic acid assay respectively. The genome of B. breve IDCC4401 consists of 2,426,499 bp with a GC content of 58.70% and 2,016 coding regions. Confirmation of the genome as B. breve was provided by its 98.93% similarity with B. breve DSM20213. Furthermore, B. breve IDCC4401 genes encoding virulence and antibiotic resistance were not identified. Although B. breve IDCC4401 showed antibiotic resistance against vancomycin, we confirmed that this was an intrinsic feature since the antibiotic resistance gene was not present. B. breve IDCC4401 showed leucine arylamidase, cystine arylamidase, α-galactosidase, ß-galactosidase, and α-glucosidase activities, whereas it did not show production of harmful enzymes such as ß-glucosidase and ß-glucuronidase. In addition, B. breve IDCC4401 did not produce any tyramine, histamine, putrescine, cadaverine, or 2-phenethylamine, which are frequently detected BAs during fermentation. B. breve IDCC4401 produced 95.08% of L-lactate and 4.92% of Dlactate. Therefore, our findings demonstrate the safety of B. breve IDCC 4401 as a potential probiotic for use in the food industry.


Subject(s)
Bifidobacterium breve/isolation & purification , Feces/microbiology , Food Safety , Probiotics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bifidobacterium breve/drug effects , Bifidobacterium breve/genetics , Drug Resistance, Bacterial , Genes, Bacterial , Genome, Bacterial/genetics , Humans , Infant , Lactic Acid/metabolism , Microbial Sensitivity Tests , Vancomycin/pharmacology
2.
Biomolecules ; 10(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512899

ABSTRACT

A new Thymus vulgaris L. solid essential oil (SEO) formulation composed of liquid EO linked to solid excipients has been chemically analysed and evaluated for its intestinal spasmolytic and antispastic effects in ex vivo ileum and colon of guinea pig and compared with liquid EO and excipients. Liquid EO and solid linked EO were analysed by original capillary electrochromatography coupled to diode array detection (CEC-DAD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodologies. The main bioactive constituents are thymol and carvacrol, with minor constituents for a total of 12 selected analysed compounds. Liquid EO was the most effective in decreasing basal contractility in ileum and colon; excipients addiction permitted normal contractility pattern in solid linked EO SEO. In ileum and colon, the Thymus vulgaris L. solid formulation exerted the relaxant activity on K+-depolarized intestinal smooth muscle as well as liquid EO. The solid essential oil exhibits antimicrobial activity against different strains (Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli, Salmonella Thyphimurium, Candida albicans) similarly to liquid oil, with activity against pathogen, but not commensal strains (Bifidobacterium Breve, Lactobacillus Fermentum) in intestinal homeostasis. Therefore, Thymus vulgaris L. solid essential oil formulation can be proposed as a possible spasmolytic and antispastic tool in medicine.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Muscle Contraction/drug effects , Oils, Volatile/pharmacology , Parasympatholytics/pharmacology , Thymus Plant/chemistry , Animals , Anti-Bacterial Agents/analysis , Antifungal Agents/analysis , Bifidobacterium breve/drug effects , Candida albicans/drug effects , Drug Compounding , Escherichia coli/drug effects , Guinea Pigs , Limosilactobacillus fermentum/drug effects , Male , Microbial Sensitivity Tests , Molecular Structure , Oils, Volatile/analysis , Parasympatholytics/analysis , Pseudomonas aeruginosa/drug effects , Salmonella/drug effects , Staphylococcus aureus/drug effects , Streptococcus pyogenes/drug effects
3.
J Cell Physiol ; 235(12): 9464-9473, 2020 12.
Article in English | MEDLINE | ID: mdl-32394447

ABSTRACT

There has been a marked increase in life-threatening food allergy (FA). One hypothesis is that changes in bacterial communities may be key to FA. To better understand how gut microbiota regulates FA in humans, we established a mouse model with FA induced by ovalbumin. We found that the mice with FA had abnormal bacterial composition, accompanied by increased immunoglobulin G, immunoglobulin E, and interleukin-4/interferon-γ, and there existed a certain coherence between them. Interestingly, Bifidobacterium breve M-16V may alter the gut microbiota to alleviate the allergy symptoms by IL-33/ST2 signaling. Our results indicate that gut microbiota is essential for regulating FA to dietary antigens and demonstrate that intervention in bacterial community regulation may be therapeutically related to FA.


Subject(s)
Food Hypersensitivity/drug therapy , Interleukin-33/metabolism , Probiotics/pharmacology , Signal Transduction/drug effects , Animals , Bifidobacterium breve/drug effects , Bifidobacterium breve/immunology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Mice, Inbred BALB C , Ovalbumin/pharmacology , Signal Transduction/immunology
4.
Sci Rep ; 8(1): 15591, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30349012

ABSTRACT

Current research on lipids is highlighting their relevant role in metabolic/signaling pathways. Conjugated fatty acids (CFA), namely isomers of linoleic and linolenic acid (i.e. CLA and CLNA, respectively) can positively modulate inflammation processes and energy metabolism, promoting anti-carcinogenic and antioxidant effects, improved lipid profiles and insulin resistance, among others. Bioactive doses have been indicated to be above 1 g/d, yet these cannot be achieved through a moderate intake (i.e. 1-2 servings) of natural sources, and certain CLA-containing products have limited commercial availability. Such handicaps have fueled research interest in finding alternative fortification strategies. In recent years, screening of dairy products for CFA-producing bacteria has attracted much attention and has led to the identification of some promising strains, including Bifidobacterium breve NCIMB 702258. This strain has shown interesting producing capabilities in model systems as well as positive modulation of lipid metabolism activities in animal studies. Accordingly, the aim of this research work was to assay B. breve NCIMB 702258 in semi-skimmed milk to produce a probiotic fermented dairy product enriched in bioactive CLA and CLNA. The effect of substrates (LA, α-LNA and γ-LNA) on growth performance and membrane fatty acids profile was also studied, as these potential modifications have been associated to stress response. When tested in cys-MRS culture medium, LA, α-LNA and γ-LNA impaired the fatty acid synthesis by B. breve since membrane concentrations for stearic and oleic acids decreased. Variations in the C18:1 c11 and lactobacillic acid concentrations, may suggest that these substrates are also affecting the membrane fluidity. Bifidobacterium breve CFA production capacity was first assessed in cys-MRS with LA, α-LNA, γ-LNA or all substrates together at 0.5 mg/mL each. This strain did not produce CFA from γ-LNA, but converted 31.12% of LA and 68.20% of α-LNA into CLA and CLNA, respectively, after incubation for 24 h at 37 °C. In a second phase, B. breve was inoculated in a commercial semi-skimmed milk with LA, α-LNA or both at 0.5 mg/mL each. Bifidobacterium breve revealed a limited capacity to synthesize CLA isomers, but was able to produce 0.062-0.115 mg/mL CLNA after 24 h at 37 °C. However, organoleptic problems were reported which need to be addressed in future studies. These results show that although CFA were produced at too low concentrations to be able to achieve solely the bioactive dose in one daily portion size, fermented dairy products are a suitable vector to deliver B. breve NCIMB 702258.


Subject(s)
Bifidobacterium breve/metabolism , Linoleic Acid/pharmacology , Linoleic Acids, Conjugated/biosynthesis , Milk/microbiology , Probiotics/metabolism , Animals , Bifidobacterium breve/drug effects , Fermentation
5.
Appl Environ Microbiol ; 84(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29500262

ABSTRACT

Bifidobacteria are mutualistic intestinal bacteria, and their presence in the human gut has been associated with health-promoting activities. The presence of antibiotic resistance genes in this genus is controversial, since, although bifidobacteria are nonpathogenic microorganisms, they could serve as reservoirs of resistance determinants for intestinal pathogens. However, until now, few antibiotic resistance determinants have been functionally characterized in this genus. In this work, we show that Bifidobacterium breve CECT7263 displays atypical resistance to erythromycin and clindamycin. In order to delimit the genomic region responsible for the observed resistance phenotype, a library of genomic DNA was constructed and a fragment of 5.8 kb containing a gene homologous to rRNA methylase genes was able to confer erythromycin resistance in Escherichia coli This genomic region seems to be very uncommon, and homologs of the gene have been detected in only one strain of Bifidobacterium longum and two other strains of B. breve In this context, analysis of shotgun metagenomics data sets revealed that the gene is also uncommon in the microbiomes of adults and infants. The structural gene and its upstream region were cloned into a B. breve-sensitive strain, which became resistant after acquiring the genetic material. In vitro conjugation experiments did not allow us to detect gene transfer to other recipients. Nevertheless, prediction of genes potentially acquired through horizontal gene transfer events revealed that the gene is located in a putative genomic island.IMPORTANCEBifidobacterium breve is a very common human intestinal bacterium. Often described as a pioneer microorganism in the establishment of early-life intestinal microbiota, its presence has been associated with several beneficial effects for the host, including immune stimulation and protection against infections. Therefore, some strains of this species are considered probiotics. In relation to this, because probiotic bacteria are used for human and animal consumption, one of the safety concerns over these bacteria is the presence of antibiotic resistance genes, since the human gut is a densely populated habitat that could favor the transfer of genetic material to potential pathogens. In this study, we analyzed the genetic basis responsible for the erythromycin and clindamycin resistance phenotype of B. breve CECT7263. We were able to identify and characterize a novel gene homologous to rRNA methylase genes which confers erythromycin and clindamycin resistance. This gene seems to be very uncommon in other bifidobacteria and in the gut microbiomes of both adults and infants. Even though conjugation experiments showed the absence of transferability under in vitro conditions, it has been predicted to be located in a putative genomic island recently acquired by specific bifidobacterial strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bifidobacterium breve/drug effects , Bifidobacterium breve/enzymology , Clindamycin/pharmacology , Erythromycin/pharmacology , Methyltransferases/metabolism , Bacterial Proteins/genetics , Bifidobacterium breve/genetics , Drug Resistance, Bacterial , Gastrointestinal Microbiome , Gene Transfer, Horizontal , Humans , Intestines/microbiology , Methyltransferases/genetics , Phylogeny
6.
J Lipid Res ; 58(6): 1143-1152, 2017 06.
Article in English | MEDLINE | ID: mdl-28404640

ABSTRACT

In addition to functioning as detergents that aid digestion of dietary lipids in the intestine, some bile acids have been shown to exhibit antimicrobial activity. However, detailed information on the bactericidal activities of the diverse molecular species of bile acid in humans and rodents is largely unknown. Here, we investigated the toxicity of 14 typical human and rodent free bile acids (FBAs) by monitoring intracellular pH, membrane integrity, and viability of a human intestinal bacterium, Bifidobacterium breve Japan Collection of Microorganisms (JCM) 1192T, upon exposure to these FBAs. Of all FBAs evaluated, deoxycholic acid (DCA) and chenodeoxycholic acid displayed the highest toxicities. Nine FBAs common to humans and rodents demonstrated that α-hydroxy-type bile acids are more toxic than their oxo-derivatives and ß-hydroxy-type epimers. In five rodent-specific FBAs, ß-muricholic acid and hyodeoxycholic acid showed comparable toxicities at a level close to DCA. Similar trends were observed for the membrane-damaging effects and bactericidal activities to Blautia coccoides JCM 1395T and Bacteroides thetaiotaomicron DSM 2079T, commonly represented in the human and rodent gut microbiota. These findings will help us to determine the fundamental properties of FBAs and better understand the role of FBAs in the regulation of gut microbiota composition.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteroidaceae/drug effects , Bifidobacterium breve/drug effects , Bile Acids and Salts/pharmacology , Intestine, Large/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacteroidaceae/cytology , Bacteroidaceae/physiology , Bifidobacterium breve/cytology , Bifidobacterium breve/physiology , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Cell Membrane/drug effects , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Intracellular Space/drug effects , Mice , Microbial Viability/drug effects
7.
Biometals ; 30(2): 237-248, 2017 04.
Article in English | MEDLINE | ID: mdl-28185076

ABSTRACT

Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1-32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22-24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1-32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.


Subject(s)
Bifidobacterium/drug effects , Lactobacillus/drug effects , Lactoferrin/pharmacology , Prebiotics , Probiotics , Animals , Bifidobacterium/growth & development , Bifidobacterium breve/drug effects , Bifidobacterium breve/growth & development , Cattle , Culture Media/chemistry , Lactobacillus/growth & development , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/growth & development , Lactobacillus delbrueckii/drug effects , Lactobacillus delbrueckii/growth & development , Pediococcus pentosaceus/drug effects , Pediococcus pentosaceus/growth & development , Temperature
8.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28115383

ABSTRACT

Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast (Saccharomyces cerevisiae) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of 1H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-ß-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% ß-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter (malEFG1) and pullulanase (aapA) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.IMPORTANCE In general, Bifidobacterium strains are genetically intractable. Coupling classic forward genetics with next-generation sequencing, here we identified an ABC transporter ATP-binding protein (MalK) responsible for the import of insoluble yeast glucan breakdown products by B. breve JCM1192. We demonstrated the pleiotropic effects of the ABC transporter ATP-binding protein in maltose/maltooligosaccharide, raffinose, cellobiose, melibiose, and turanose transport. With the addition of transcriptional analysis, we propose that insoluble yeast glucans are broken down by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.


Subject(s)
Bifidobacterium breve/metabolism , Glucans/metabolism , Saccharomyces cerevisiae/chemistry , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bifidobacterium breve/drug effects , Bifidobacterium breve/genetics , Bifidobacterium breve/growth & development , Cell Wall/chemistry , Cell Wall/metabolism , Dextrins/pharmacology , Glycogen/pharmacology , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Hydrolysis , Maltose/metabolism , Maltose/pharmacology , Mutation , Solubility , Synbiotics , Water , beta-Glucans/metabolism
9.
Sci Rep ; 6: 38560, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929046

ABSTRACT

In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species.


Subject(s)
Bifidobacterium breve/metabolism , Metabolic Networks and Pathways , Milk, Human/metabolism , Oligosaccharides/metabolism , Amino Sugars/pharmacology , Bifidobacterium breve/drug effects , Bifidobacterium breve/genetics , Bifidobacterium breve/growth & development , Chromatography, Ion Exchange , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial , Genetic Loci , Humans , Lactose/pharmacology , Metabolic Networks and Pathways/drug effects , Models, Biological , Mutation/genetics , Oligosaccharides/chemistry , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...