Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
RMD Open ; 10(2)2024 May 28.
Article in English | MEDLINE | ID: mdl-38806188

ABSTRACT

OBJECTIVE: Clinical observation suggests that vascular activation and autoimmunity precede remodelling of the extracellular matrix (ECM) in systemic sclerosis (SSc). We challenge this paradigm by hypothesising that ECM biomarkers are already disturbed in patients with very early SSc (veSSc) when fibrosis is not yet clinically detectable. METHODS: 42 patients with veSSc, defined as the presence of Raynaud's phenomenon and at least one of puffy fingers, positive antinuclear antibodies or pathological nailfold capillaroscopy, not meeting the 2013 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for SSc, were compared with healthy controls (HCs, n=29). ECM degradation (BGM, C3M, C4M and C6M) and ECM formation biomarkers (PRO-C3, PRO-C4 and PRO-C5) were measured in serum using ELISAs. A cross-sectional analysis at baseline and a longitudinal analysis was performed. RESULTS: Compared with HC, veSSc patients showed a strongly dysregulated turnover of type III and IV collagens (higher C3M, C4M, both p<0.0001 and PRO-C3, p=0.004, lower turnover ratios PRO-C3/C3M and PRO-C4/C4M, both p<0.0001). The biglycan degradation biomarker BGM was higher in veSSc than in HC (p=0.006), whereas the degradation biomarker for type VI collagen, C6M, was lower (p=0.002). In an ROC analysis, biomarkers of type III and IV collagen excellently distinguished between veSSc and HC: C3M, AUC=0.95, p<0.0001; C4M, AUC=0.97, p<0.0001; turnover ratios PRO-C3/C3M, AUC=0.80, p<0.0001; PRO-C4/C4M, AUC=0.97; p<0.0001. CONCLUSION: These findings indicate ECM remodelling as a very early phenomenon of SSc occurring in parallel with microvascular and autoimmune changes. Biomarkers of type III and IV collagens distinguished between veSSc patients and HC, indicating them as potential biomarkers for the detection of veSSc.


Subject(s)
Biomarkers , Scleroderma, Systemic , Humans , Scleroderma, Systemic/blood , Scleroderma, Systemic/diagnosis , Biomarkers/blood , Female , Male , Middle Aged , Adult , Extracellular Matrix/metabolism , Collagen/metabolism , Case-Control Studies , Cross-Sectional Studies , ROC Curve , Aged , Biglycan/blood , Biglycan/metabolism , Collagen Type III/blood , Collagen Type III/metabolism
2.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786104

ABSTRACT

Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.


Subject(s)
Apoptosis , Biglycan , Decorin , Myocytes, Cardiac , Decorin/metabolism , Biglycan/metabolism , Apoptosis/radiation effects , Apoptosis/drug effects , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans
3.
BMC Cancer ; 24(1): 516, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654221

ABSTRACT

BACKGROUND: Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF subtypes in CRC. METHODS: The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the functional characteristics of CAF subtypes and construct prognostic models. RESULTS: Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features proved to be a valuable tool for predicting CRC prognosis. CONCLUSION: In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in predicting the OS and RFS of CRC patients.


Subject(s)
Biglycan , Cancer-Associated Fibroblasts , Colorectal Neoplasms , Machine Learning , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Prognosis , Biglycan/metabolism , Biglycan/genetics , Cell Proliferation , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Gene Expression Regulation, Neoplastic , Female , Cell Movement , Tumor Microenvironment
4.
Cell Tissue Res ; 396(3): 343-351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492000

ABSTRACT

Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.


Subject(s)
Dentin , Mice, Knockout , Receptors, Calcitriol , Animals , Receptors, Calcitriol/metabolism , Dentin/metabolism , Mice , Biglycan/metabolism , Wound Healing , Mice, Inbred C57BL , Decorin/metabolism , Calcification, Physiologic
5.
J Clin Res Pediatr Endocrinol ; 16(2): 151-159, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38238969

ABSTRACT

Objective: In animal models of obesity, adipocyte-derived versican, and macrophage-derived biglycan play a crucial role in mediating adipose tissue inflammation. The aim was to investigate levels of versican and biglycan in obese children and any potential association with body adipose tissue and hepatosteatosis. Methods: Serum levels of versican, biglycan, interleukin-6 (IL-6), and high sensitivity C-reactive protein (hsCRP) were measured by ELISA. Fat deposition in the liver, spleen, and subcutaneous adipose tissue was calculated using the IDEAL-IQ sequences in magnetic resonance images. Bioimpedance analysis was performed using the Tanita BC 418 MA device. Results: The study included 36 obese and 30 healthy children. The age of obese children was 13.6 (7.5-17.9) years, while the age of normal weight children was 13.0 (7.2-17.9) years (p=0.693). Serum levels of versican, hsCRP, and IL-6 were higher in the obese group (p=0.044, p=0.039, p=0.024, respectively), while no significant difference was found in biglycan levels between the groups. There was a positive correlation between versican, biglycan, hsCRP, and IL-6 (r=0.381 p=0.002, r=0.281 p=0.036, rho=0.426 p=0.001, r=0.424 p=0.001, rho=0.305 p=0.017, rho=0.748 p<0.001, respectively). Magnetic resonance imaging revealed higher segmental and global hepatic steatosis in obese children. There was no relationship between hepatic fat content and versican, biglycan, IL-6, and hsCRP. Versican, biglycan, hsCRP, and IL-6 were not predictive of hepatosteatosis. Body fat percentage >32% provided a predictive sensitivity of 81.8% and a specificity of 70.5% for hepatosteatosis [area under the curve (AUC): 0.819, p<0.001]. Similarly, a body mass index standard deviation score >1.75 yielded a predictive sensitivity of 81.8% and a specificity of 69.8% for predicting hepatosteatosis (AUC: 0.789, p<0.001). Conclusion: Obese children have higher levels of versican, hsCRP, and IL-6, and more fatty liver than their healthy peers.


Subject(s)
Adipose Tissue , Biglycan , Pediatric Obesity , Versicans , Humans , Versicans/metabolism , Versicans/blood , Child , Male , Female , Biglycan/metabolism , Biglycan/blood , Adolescent , Adipose Tissue/metabolism , Pediatric Obesity/blood , Pediatric Obesity/metabolism , Macrophages/metabolism , Adipocytes/metabolism , Fatty Liver/metabolism , Fatty Liver/blood , Biomarkers/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Interleukin-6/blood , Case-Control Studies
6.
Exp Dermatol ; 33(1): e14969, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967213

ABSTRACT

Alopecia is a prevalent problem of cutaneous appendages and lacks effective therapy. Recently, researchers have been focusing on mesenchymal components of the hair follicle, i.e. dermal papilla cells, and we previously identified biglycan secreted by dermal papilla cells as the key factor responsible for hair follicle-inducing ability. In this research, we hypothesized biglycan played an important role in hair follicle cycle and regeneration through regulating the Wnt signalling pathway. To characterize the hair follicle cycle and the expression pattern of biglycan, we observed hair follicle morphology in C57BL/6 mice on Days 0, 3, 5, 12 and 18 post-depilation and found that biglycan is highly expressed at both mRNA and protein levels throughout anagen in HFs. To explore the role of biglycan during the phase transit process and regeneration, local injections were administered in C57BL/6 and nude mice. Results showed that local injection of biglycan in anagen HFs delayed catagen progression and involve activating the Wnt/ß-catenin signalling pathway. Furthermore, local injection of biglycan induced HF regeneration and up-regulated expression of key Wnt factors in nude mice. In addition, cell analyses exhibited biglycan knockdown inactivated the Wnt signalling pathway in early-passage dermal papilla cell, whereas biglycan overexpression or incubation activated the Wnt signalling pathway in late-passage dermal papilla cells. These results indicate that biglycan plays a critical role in regulating HF cycle transit and regeneration in a paracrine and autocrine fashion by activating the Wnt/ß-catenin signalling pathway and could be a potential treatment target for hair loss diseases.


Subject(s)
Hair Follicle , beta Catenin , Mice , Animals , Hair Follicle/metabolism , beta Catenin/metabolism , Mice, Nude , Biglycan/metabolism , Mice, Inbred C57BL , Wnt Signaling Pathway/genetics , Alopecia/metabolism , Regeneration/physiology , Cell Proliferation
7.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37982607

ABSTRACT

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Subject(s)
Glycocalyx , Syndecan-1 , Syndecan-1/metabolism , Glycocalyx/metabolism , Syndecan-3/metabolism , Syndecan-4/metabolism , Syndecan-2/metabolism , Biglycan/metabolism , Glypicans/metabolism , Decorin/metabolism , Chemokines/metabolism , Anti-Inflammatory Agents/metabolism
8.
Matrix Biol ; 123: 48-58, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793508

ABSTRACT

In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.


Subject(s)
Chondroitin Sulfate Proteoglycans , Small Leucine-Rich Proteoglycans , Chondroitin Sulfate Proteoglycans/metabolism , Decorin/genetics , Decorin/metabolism , Small Leucine-Rich Proteoglycans/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Cues , Keratan Sulfate/metabolism , Biglycan/genetics , Biglycan/metabolism , Extracellular Matrix/metabolism
9.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37840262

ABSTRACT

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Subject(s)
Small Leucine-Rich Proteoglycans , Telocytes , Female , Humans , Biglycan/metabolism , Small Leucine-Rich Proteoglycans/metabolism , Lumican/metabolism , Decorin/metabolism , Fibromodulin/metabolism , Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix Proteins/metabolism , Endometrium , Telocytes/metabolism
10.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446002

ABSTRACT

Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Osteoarthritis , Humans , Aggrecans/metabolism , Cartilage, Articular/metabolism , Decorin/metabolism , Extracellular Matrix Proteins/metabolism , Biglycan/metabolism , Osteoarthritis/diagnosis , Osteoarthritis/metabolism , Cartilage Diseases/metabolism , Lectins, C-Type/metabolism
11.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Article in English | MEDLINE | ID: mdl-37460872

ABSTRACT

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Subject(s)
Prostatic Neoplasms , Protein Serine-Threonine Kinases , Male , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , TOR Serine-Threonine Kinases/metabolism , Prostatic Neoplasms/genetics , Myeloid Cells/metabolism , Hepatocyte Growth Factor/metabolism , Osteopontin/metabolism , Biglycan/metabolism
12.
J Orthop Res ; 41(10): 2238-2249, 2023 10.
Article in English | MEDLINE | ID: mdl-37132501

ABSTRACT

The small leucine-rich proteoglycans, decorin and biglycan, are minor components of the tendon extracellular matrix that regulate fibrillogenesis and matrix assembly. Our study objective was to define the temporal roles of decorin and biglycan during tendon healing using inducible knockout mice to include genetic knockdown at specific phases of healing: time of injury, the proliferative phase, and the remodeling phase. We hypothesized that knockdown of decorin or biglycan would adversely affect tendon healing, and that by prescribing the timing of knockdown, we could elucidate the temporal roles of these proteins during healing. Contrary to our hypothesis, decorin knockdown did not affect tendon healing. However, when biglycan was knocked down, either alone or coupled with decorin, tendon modulus was increased relative to wild-type mice, and this finding was consistent among all induction timepoints. At 6 weeks postinjury, we observed increased expression of genes associated with the extracellular matrix and growth factor signaling in the biglycan knockdown and compound decorin-biglycan knockdown tendons. Interestingly, these groups demonstrated opposing trends in gene expression as a function of knockdown-induction timepoint, highlighting distinct temporal roles for decorin and biglycan. In summary, this study finds that biglycan plays multiple functions throughout tendon healing, with the most impactful, detrimental role likely occurring during late-stage healing. Statement of clinical importance: This study helps to define the molecular factors that regulate tendon healing, which may aid in the development of new clinical therapies.


Subject(s)
Tendons , Wound Healing , Animals , Mice , Biglycan/genetics , Biglycan/metabolism , Decorin , Extracellular Matrix Proteins/metabolism , Mice, Knockout , Tendons/physiology , Wound Healing/physiology
13.
J Biochem Mol Toxicol ; 37(8): e23381, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37128782

ABSTRACT

Gastric cancer (GC) is the fifth utmost common malignant cancer type globally, in which ferroptosis acts a critical function in the progress of GC. Long noncoding RNA ZEB1-AS1 has been recognized in numerous cancers, but the role of ZEB1-AS1 in ferroptosis remains obscure. Hence, we investigated the efficacy of ZEB1-AS1 on ferroptosis of GC cells. The cell growth and viability were analyzed via cell counting kit assay and xenograft tumor model in vivo and in vitro, respectively. The RNA and protein expression were measured by qRT-PCR and western blot analysis assay, respectively. The levels of Fe2+ , malondialdehyde (MDA), and lipid reactive oxygen species (ROS) were tested to determine ferroptosis. The erastin and RSL3 were used to induce ferroptosis. The mechanism was analyzed via luciferase reporter gene and RIP assays. The treatment of ferroptosis inducer Erastin and RSL3 suppressed the viability of GC cells and the ZEB1-AS1 overexpression rescued the phenotype in the cells. The levels of Fe2+ , MDA, and ROS were enhanced through the depletion of ZEB1-AS1 in Erastin/RSL3 treated GC cells. ZEB1-AS1 directly sponged miR-429 in GC cells and miR-429 targeted BGN in GC cells, and the inhibition of miR-429 rescued ZEB1-AS1 depletion-inhibited BGN expression. We validated that miR-429 induced and BGN-repressed ferroptosis in cancer cells. The BGN overexpression and miR-429 suppression could reverse the efficacy of ZEB1-AS1 on proliferation and ferroptosis in cancer cells. The expression of ZEB1-AS1 and BGN was enhanced and miR-429 expression was decreased in clinical GC tissues. ZEB1-AS1 attenuated ferroptosis of cancer cells by modulating miR-429/BGN axis.


Subject(s)
Ferroptosis , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ferroptosis/genetics , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Biglycan/genetics , Biglycan/metabolism
14.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047781

ABSTRACT

BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.


Subject(s)
Microtubule-Associated Proteins , Muscular Atrophy, Spinal , Humans , Biglycan/metabolism , Microtubule-Associated Proteins/metabolism , Proteomics , Muscular Atrophy, Spinal/genetics , Mutation , Muscle, Skeletal/metabolism
15.
Circulation ; 147(20): 1518-1533, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37013819

ABSTRACT

BACKGROUND: Calcific aortic valve disease (CAVD) is characterized by a phenotypic switch of valvular interstitial cells to bone-forming cells. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors at the interface between innate immunity and tissue repair. Type I interferons (IFNs) are not only crucial for an adequate antiviral response but also implicated in bone formation. We hypothesized that the accumulation of endogenous TLR3 ligands in the valvular leaflets may promote the generation of osteoblast-like cells through enhanced type I IFN signaling. METHODS: Human valvular interstitial cells isolated from aortic valves were challenged with mechanical strain or synthetic TLR3 agonists and analyzed for bone formation, gene expression profiles, and IFN signaling pathways. Different inhibitors were used to delineate the engaged signaling pathways. Moreover, we screened a variety of potential lipids and proteoglycans known to accumulate in CAVD lesions as potential TLR3 ligands. Ligand-receptor interactions were characterized by in silico modeling and verified through immunoprecipitation experiments. Biglycan (Bgn), Tlr3, and IFN-α/ß receptor alpha chain (Ifnar1)-deficient mice and a specific zebrafish model were used to study the implication of the biglycan (BGN)-TLR3-IFN axis in both CAVD and bone formation in vivo. Two large-scale cohorts (GERA [Genetic Epidemiology Research on Adult Health and Aging], n=55 192 with 3469 aortic stenosis cases; UK Biobank, n=257 231 with 2213 aortic stenosis cases) were examined for genetic variation at genes implicated in BGN-TLR3-IFN signaling associating with CAVD in humans. RESULTS: Here, we identify TLR3 as a central molecular regulator of calcification in valvular interstitial cells and unravel BGN as a new endogenous agonist of TLR3. Posttranslational BGN maturation by xylosyltransferase 1 (XYLT1) is required for TLR3 activation. Moreover, BGN induces the transdifferentiation of valvular interstitial cells into bone-forming osteoblasts through the TLR3-dependent induction of type I IFNs. It is intriguing that Bgn-/-, Tlr3-/-, and Ifnar1-/- mice are protected against CAVD and display impaired bone formation. Meta-analysis of 2 large-scale cohorts with >300 000 individuals reveals that genetic variation at loci relevant to the XYLT1-BGN-TLR3-interferon-α/ß receptor alpha chain (IFNAR) 1 pathway is associated with CAVD in humans. CONCLUSIONS: This study identifies the BGN-TLR3-IFNAR1 axis as an evolutionarily conserved pathway governing calcification of the aortic valve and reveals a potential therapeutic target to prevent CAVD.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Adult , Animals , Humans , Mice , Aortic Valve/pathology , Aortic Valve Stenosis/pathology , Biglycan/metabolism , Calcinosis/metabolism , Cells, Cultured , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Zebrafish
16.
Cancer Res ; 83(10): 1725-1741, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37067922

ABSTRACT

Glioblastomas (GBM) are aggressive brain tumors with extensive intratumoral heterogeneity that contributes to treatment resistance. Spatial characterization of GBMs could provide insights into the role of the brain tumor microenvironment in regulating intratumoral heterogeneity. Here, we performed spatial transcriptomic and single-cell analyses of the mouse and human GBM microenvironment to dissect the impact of distinct anatomical regions of brains on GBM. In a syngeneic GBM mouse model, spatial transcriptomics revealed that numerous extracellular matrix (ECM) molecules, including biglycan, were elevated in areas infiltrated with brain tumor-initiating cells (BTIC). Single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing showed that ECM molecules were differentially expressed by GBM cells based on their differentiation and cellular programming phenotypes. Exogeneous biglycan or overexpression of biglycan resulted in a higher proliferation rate of BTICs, which was associated mechanistically with low-density lipoprotein receptor-related protein 6 (LRP6) binding and activation of the Wnt/ß-catenin pathway. Biglycan-overexpressing BTICs developed into larger tumors and displayed mesenchymal phenotypes when implanted intracranially in mice. This study points to the spatial heterogeneity of ECM molecules in GBM and suggests that the biglycan-LRP6 axis could be a therapeutic target to curb tumor growth. SIGNIFICANCE: Characterization of the spatial heterogeneity of glioblastoma identifies regulators of brain tumor-initiating cells and tumor growth that could serve as candidates for therapeutic interventions to improve the prognosis of patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Biglycan/genetics , Biglycan/metabolism , Glioblastoma/pathology , Brain Neoplasms/pathology , Brain/pathology , Spatial Analysis , Cell Proliferation , Tumor Microenvironment
17.
PLoS One ; 18(3): e0282176, 2023.
Article in English | MEDLINE | ID: mdl-36972253

ABSTRACT

New breast cancer biomarkers have been sought for better tumor characterization and treatment. Among these putative markers, there is Biglycan (BGN). BGN is a class I small leucine-rich proteoglycan family of proteins characterized by a protein core with leucine-rich repeats. The objective of this study is to compare the protein expression of BGN in breast tissue with and without cancer, using immunohistochemical technique associated with digital histological score (D-HScore) and supervised deep learning neural networks (SDLNN). In this case-control study, 24 formalin-fixed, paraffin-embedded tissues were obtained for analysis. Normal (n = 9) and cancerous (n = 15) tissue sections were analyzed by immunohistochemistry using BGN monoclonal antibody (M01-Abnova) and 3,3'-Diaminobenzidine (DAB) as the chromogen. Photomicrographs of the slides were analysed with D-HScore, using arbitrary DAB units. Another set (n = 129) with higher magnification without ROI selection, was submitted to the inceptionV3 deep neural network image embedding recognition model. Next, supervised neural network analysis, using stratified 20 fold cross validation, with 200 hidden layers, ReLu activation, and regularization at α = 0.0001 were applied for SDLNN. The sample size was calculated for a minimum of 7 cases and 7 controls, having a power = 90%, an α error = 5%, and a standard deviation of 20, to identify a decrease from the average of 40 DAB units (control) to 4 DAB units in cancer. BGN expression in DAB units [median (range)] was 6.2 (0.8 to 12.4) and 27.31 (5.3 to 81.7) in cancer and normal breast tissue, respectively, using D-HScore (p = 0.0017, Mann-Whitney test). SDLNN classification accuracy was 85.3% (110 out of 129; 95%CI = 78.1% to 90.3%). BGN protein expression is reduced in breast cancer tissue, compared to normal tissue.


Subject(s)
Breast Neoplasms , Deep Learning , Image Interpretation, Computer-Assisted , Female , Humans , Biglycan/metabolism , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Case-Control Studies , Neural Networks, Computer
18.
Clin Transl Med ; 13(2): e1189, 2023 02.
Article in English | MEDLINE | ID: mdl-36772945

ABSTRACT

INTRODUCTION: Cancer-associated fibroblasts (CAFs) are correlated with the immunotherapy response. However, the culprits that link CAFs to immunotherapy resistance are still rarely investigated in real-world studies. OBJECTIVES: This study aims to systematically assess the landscape of fibroblasts in cancer patients by combining single-cell and bulk profiling data from pan-cancer cohorts. We further sought to decipher the expression, survival predictive value and association with immunotherapy response of biglycan (BGN), a proteoglycan in the extracellular matrix, in multiple cohorts. METHODS: Pan-cancer tumor bulks and 27 single-cell RNA sequencing cohorts were enrolled to investigate the correlations and crosstalk between CAFs and tumor or immune cells. Specific secreting factors of CAFs were then identified by expression profiling at tissue microdissection, isolated primary fibroblasts and single-cell level. The role of BGN was further dissected in additional three bulk and five single-cell profiling datasets from immunotherapy cohorts and validated in real-world patients who have received PD-1 blockade using immunohistochemistry and immunofluorescence. RESULTS: CAFs were closely correlated with immune components. Frequent crosstalk between CAFs and other cells was revealed by the CellChat analysis. Single-cell regulatory network inference and clustering identified common and distinct regulators for CAFs across cancers. The BGN was determined to be a specific secreting factor of CAFs. The BGN served as an unfavourable indicator for overall survival and immunotherapy response. In the real-world immunotherapy cohort, patients with high BGN levels presented a higher proportion of poor response compared with those with low BGN (46.7% vs. 11.8%) and a lower level of infiltrating CD8+ T cells was also observed. CONCLUSIONS: We highlighted the importance of CAFs in the tumor microenvironment and revealed that the BGN, which is mainly derived from CAFs, may be applicable in clinical practice and serve as a therapeutic target in immunotherapy resistance.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Transcriptome/genetics , Cancer-Associated Fibroblasts/metabolism , Biglycan/genetics , Biglycan/metabolism , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Immunotherapy , Tumor Microenvironment/genetics
19.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675295

ABSTRACT

Cardiac fibrosis is a common pathological feature of different cardiovascular diseases, characterized by the aberrant deposition of extracellular matrix (ECM) proteins in the cardiac interstitium, myofibroblast differentiation and increased fibrillar collagen deposition stimulated by transforming growth factor (TGF)-ß activation. Biglycan (BGN), a small leucine-rich proteoglycan (SLRPG) integrated within the ECM, plays a key role in matrix assembly and the phenotypic control of cardiac fibroblasts. Moreover, BGN is critically involved in pathological cardiac remodeling through TGF-ß binding, thus causing myofibroblast differentiation and proliferation. Adenosine receptors (ARs), and in particular A2AR, may play a key role in stimulating fibrotic damage through collagen production/deposition, as a consequence of cyclic AMP (cAMP) and AKT activation. For this reason, A2AR modulation could be a useful tool to manage cardiac fibrosis in order to reduce fibrotic scar deposition in heart tissue. Therefore, the aim of the present study was to investigate the possible crosstalk between A2AR and BGN modulation in an in vitro model of TGF-ß-induced fibrosis. Immortalized human cardiac fibroblasts (IM-HCF) were stimulated with TGF-ß at the concentration of 10 ng/mL for 24 h to induce a fibrotic phenotype. After applying the TGF-ß stimulus, cells were treated with two different A2AR antagonists, Istradefylline and ZM241385, for an additional 24 h, at the concentration of 10 µM and 1 µM, respectively. Both A2AR antagonists were able to regulate the oxidative stress induced by TGF-ß through intracellular reactive oxygen species (ROS) reduction in IM-HCFs. Moreover, collagen1a1, MMPs 3/9, BGN, caspase-1 and IL-1ß gene expression was markedly decreased following A2AR antagonist treatment in TGF-ß-challenged human fibroblasts. The results obtained for collagen1a1, SMAD3, α-SMA and BGN were also confirmed when protein expression was evaluated; phospho-Akt protein levels were also reduced following Istradefylline and ZM241385 use, thus suggesting that collagen production involves AKT recruited by the A2AR. These results suggest that A2AR modulation might be an effective therapeutic option to reduce the fibrotic processes involved in heart pathological remodeling.


Subject(s)
Fibroblasts , Proto-Oncogene Proteins c-akt , Humans , Biglycan/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Fibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Extracellular Matrix Proteins/metabolism , Collagen/metabolism , Fibrosis , Adenosine/pharmacology , Adenosine/metabolism , Transforming Growth Factor beta1/metabolism , Cells, Cultured
20.
Int J Biol Sci ; 19(2): 465-483, 2023.
Article in English | MEDLINE | ID: mdl-36632455

ABSTRACT

Peritoneal metastasis (PM) is most frequent in gastric cancer (GC) and cancer-associated fibroblasts (CAFs) play a critical role in this process. However, the concrete mechanism of crosstalk between CAFs and cancer cells in PM of GC remains unclear. Microarray sequencing of GC focus and PM lesions was performed, and biglycan (BGN) was screened for further study. Clinically, BGN expression was higher in GC tissues than adjacent normal tissues, and high expression correlated with poor prognosis. In vitro experiments demonstrated that BGN promoted tumor progression and the transformation of mesothelial cells (MCs) into cancer-associated fibroblasts like cells (CAFLCs). In turn, CAFLCs-derived fibroblast activation protein (FAP) facilitated the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of GC cells. GC-derived BGN combined with toll like receptor 2 (TLR2)/TLR4 on MCs to activate the NF-κB pathway and promote the transformation of MCs into CAFLCs by the recovery experiment, coimmunoprecipitation assay, nuclear and cytoplasmic protein extraction assay. CAFLCs-derived FAP could activate the JAK2/STAT3 signaling pathway in GC. Finally, activated STAT3 promoted BGN transcription in GC, resulting in a BGN/FAP-STAT3 positive feedback loop. Taken together, mutual interaction between tumor cells and activated MCs mediated by a BGN/FAP-STAT3 positive feedback loop facilitates PM of GC and provides a potential biomarker and therapeutic target for GC metastasis.


Subject(s)
Biglycan , Peritoneal Neoplasms , STAT3 Transcription Factor , Stomach Neoplasms , Humans , Biglycan/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Peritoneal Neoplasms/secondary , Signal Transduction/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Feedback, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...