Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G1-G15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38651949

ABSTRACT

The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.


Subject(s)
Liver , Supervised Machine Learning , Liver/pathology , Liver/metabolism , Animals , Mice , Biliary Tract/pathology , Biliary Tract/metabolism , Image Processing, Computer-Assisted/methods , Bile Ducts/pathology , Bile Ducts/metabolism , Bile Duct Diseases/pathology , Bile Duct Diseases/metabolism , Disease Models, Animal
2.
Nat Commun ; 12(1): 6504, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764255

ABSTRACT

The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.


Subject(s)
Bile Duct Diseases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Pluripotent Stem Cells/metabolism , Cell Differentiation/physiology , Developmental Biology , Epithelial Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
3.
Nat Commun ; 12(1): 6138, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686668

ABSTRACT

To investigate the pathogenesis of a congenital form of hepatic fibrosis, human hepatic organoids were engineered to express the most common causative mutation for Autosomal Recessive Polycystic Kidney Disease (ARPKD). Here we show that these hepatic organoids develop the key features of ARPKD liver pathology (abnormal bile ducts and fibrosis) in only 21 days. The ARPKD mutation increases collagen abundance and thick collagen fiber production in hepatic organoids, which mirrors ARPKD liver tissue pathology. Transcriptomic and other analyses indicate that the ARPKD mutation generates cholangiocytes with increased TGFß pathway activation, which are actively involved stimulating myofibroblasts to form collagen fibers. There is also an expansion of collagen-producing myofibroblasts with markedly increased PDGFRB protein expression and an activated STAT3 signaling pathway. Moreover, the transcriptome of ARPKD organoid myofibroblasts resemble those present in commonly occurring forms of liver fibrosis. PDGFRB pathway involvement was confirmed by the anti-fibrotic effect observed when ARPKD organoids were treated with PDGFRB inhibitors. Besides providing insight into the pathogenesis of congenital (and possibly acquired) forms of liver fibrosis, ARPKD organoids could also be used to test the anti-fibrotic efficacy of potential anti-fibrotic therapies.


Subject(s)
Liver Cirrhosis/pathology , Models, Biological , Organoids/pathology , Bile Duct Diseases/genetics , Bile Duct Diseases/metabolism , Bile Duct Diseases/pathology , Collagen/metabolism , Epithelial Cells/pathology , Humans , Induced Pluripotent Stem Cells/cytology , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mutation , Myofibroblasts/metabolism , Myofibroblasts/pathology , Organoids/drug effects , Organoids/metabolism , Polycystic Kidney, Autosomal Recessive/drug therapy , Polycystic Kidney, Autosomal Recessive/genetics , Polycystic Kidney, Autosomal Recessive/metabolism , Polycystic Kidney, Autosomal Recessive/pathology , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33798093

ABSTRACT

The c-Jun N-terminal kinase (JNK) signaling pathway mediates adaptation to stress signals and has been associated with cell death, cell proliferation, and malignant transformation in the liver. However, up to now, its function was experimentally studied mainly in young mice. By generating mice with combined conditional ablation of Jnk1 and Jnk2 in liver parenchymal cells (LPCs) (JNK1/2LPC-KO mice; KO, knockout), we unraveled a function of the JNK pathway in the regulation of liver homeostasis during aging. Aging JNK1/2LPC-KO mice spontaneously developed large biliary cysts that originated from the biliary cell compartment. Mechanistically, we could show that cyst formation in livers of JNK1/2LPC-KO mice was dependent on receptor-interacting protein kinase 1 (RIPK1), a known regulator of cell survival, apoptosis, and necroptosis. In line with this, we showed that RIPK1 was overexpressed in the human cyst epithelium of a subset of patients with polycystic liver disease. Collectively, these data reveal a functional interaction between JNK signaling and RIPK1 in age-related progressive cyst development. Thus, they provide a functional linkage between stress adaptation and programmed cell death (PCD) in the maintenance of liver homeostasis during aging.


Subject(s)
Aging/metabolism , Bile Duct Diseases/etiology , Bile Duct Diseases/metabolism , Caspase 8/metabolism , Cysts/etiology , Cysts/metabolism , MAP Kinase Signaling System , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Animals , Apoptosis , Biopsy , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Immunophenotyping , Liver Diseases/etiology , Liver Diseases/metabolism , Mice , Mitogen-Activated Protein Kinase 8/deficiency , Necroptosis
5.
Physiol Rev ; 101(2): 683-731, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32790577

ABSTRACT

Over the past two decades, bile acids (BAs) have become established as important signaling molecules that enable fine-tuned inter-tissue communication from the liver, their site of production, over the intestine, where they are modified by the gut microbiota, to virtually any organ, where they exert their pleiotropic physiological effects. The chemical variety of BAs, to a large extent determined by the gut microbiome, also allows for a complex fine-tuning of adaptive responses in our body. This review provides an overview of the mechanisms by which BA receptors coordinate several aspects of physiology and highlights new therapeutic strategies for diseases underlying pathological BA signaling.


Subject(s)
Aging/pathology , Aging/physiology , Bile Acids and Salts/physiology , Animals , Bile Acids and Salts/biosynthesis , Bile Duct Diseases/metabolism , Bile Duct Diseases/physiopathology , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Liver/metabolism
6.
Sci Rep ; 10(1): 21900, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318612

ABSTRACT

The development, homeostasis, and repair of intrahepatic and extrahepatic bile ducts are thought to involve distinct mechanisms including proliferation and maturation of cholangiocyte and progenitor cells. This study aimed to characterize human extrahepatic cholangiocyte organoids (ECO) using canonical Wnt-stimulated culture medium previously developed for intrahepatic cholangiocyte organoids (ICO). Paired ECO and ICO were derived from common bile duct and liver tissue, respectively. Characterization showed both organoid types were highly similar, though some differences in size and gene expression were observed. Both ECO and ICO have cholangiocyte fate differentiation capacity. However, unlike ICO, ECO lack the potential for differentiation towards a hepatocyte-like fate. Importantly, ECO derived from a cystic fibrosis patient showed no CFTR channel activity but normal chloride channel and MDR1 transporter activity. In conclusion, this study shows that ECO and ICO have distinct lineage fate and that ECO provide a competent model to study extrahepatic bile duct diseases like cystic fibrosis.


Subject(s)
Bile Duct Diseases/metabolism , Bile Ducts, Intrahepatic/metabolism , Cell Differentiation , Cystic Fibrosis/metabolism , Organoids/metabolism , Adolescent , Bile Duct Diseases/pathology , Bile Ducts, Intrahepatic/pathology , Cystic Fibrosis/pathology , Humans , Male , Organoids/pathology
7.
Nat Commun ; 11(1): 445, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974352

ABSTRACT

The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration.


Subject(s)
Bile Duct Diseases/pathology , Cholangitis, Sclerosing/pathology , Cicatrix/pathology , Wnt Signaling Pathway , Animals , Axin Protein/genetics , Axin Protein/metabolism , Bile Duct Diseases/chemically induced , Bile Duct Diseases/metabolism , Bile Ducts/cytology , Cell Polarity , Cholangitis, Sclerosing/metabolism , Cicatrix/metabolism , Disease Models, Animal , Epithelial Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pyridines/toxicity , Wnt Signaling Pathway/drug effects , Wnt-5a Protein/metabolism
8.
Hepatology ; 70(5): 1674-1689, 2019 11.
Article in English | MEDLINE | ID: mdl-31070797

ABSTRACT

During biliary disease, cholangiocytes become activated by various pathological stimuli, including transforming growth factor ß (TGF-ß). The result is an epigenetically regulated transcriptional program leading to a pro-fibrogenic microenvironment, activation of hepatic stellate cells (HSCs), and progression of biliary fibrosis. This study evaluated how TGF-ß signaling intersects with epigenetic machinery in cholangiocytes to support fibrogenic gene transcription. We performed RNA sequencing in cholangiocytes with or without TGF-ß. Ingenuity pathway analysis identified "HSC Activation" as the highly up-regulated pathway, including overexpression of fibronectin 1 (FN), connective tissue growth factor, and other genes. Bioinformatics identified enhancer of zeste homologue 2 (EZH2) as an epigenetic regulator of the cholangiocyte TGF-ß response. EZH2 overexpression suppressed TGF-ß-induced FN protein in vitro, suggesting FN as a direct target of EZH2-based repression. Chromatin immunoprecipitation assays identified an FN promoter element in which EZH2-mediated tri-methylation of lysine 27 on histone 3 is diminished by TGF-ß. TGF-ß also caused a 50% reduction in EZH2 protein levels. Proteasome inhibition rescued EZH2 protein and led to reduced FN production. Immunoprecipitation followed by mass spectrometry identified ubiquitin protein ligase E3 component N-recognin 4 in complex with EZH2, which was validated by western blotting in vitro. Ubiquitin mutation studies suggested K63-based ubiquitin linkage and chain elongation on EZH2 in response to TGF-ß. A deletion mutant of EZH2, lacking its N-terminal domain, abrogates both TGF-ß-stimulated EZH2 degradation and FN release. In vivo, cholangiocyte-selective knockout of EZH2 exacerbates bile duct ligation-induced fibrosis whereas MDR2-/- mice are protected from fibrosis by the proteasome inhibitor bortezomib. Conclusion: TGF-ß regulates proteasomal degradation of EZH2 through N-terminal, K63-linked ubiquitination in cholangiocytes and activates transcription of a fibrogenic gene program that supports biliary fibrosis.


Subject(s)
Bile Duct Diseases/metabolism , Bile Ducts/cytology , Bile Ducts/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Epithelial Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligase Complexes/physiology , Animals , Cells, Cultured , Female , Fibrosis , Humans , Male , Mice
9.
Methods Mol Biol ; 1981: 203-236, 2019.
Article in English | MEDLINE | ID: mdl-31016657

ABSTRACT

Cholangiopathies are an important group of liver diseases affecting the biliary system, and the purpose of this review is to describe how diseases in the biliary system can be studied in mouse models. A particular focus is placed on mouse models for Alagille syndrome, a cholangiopathy with a strong genetic link to dysfunctional Notch signaling. Recently, a number of different genetic mouse models based on various manipulations of the Notch signaling pathway have been generated to study Alagille syndrome, and we discuss the resulting phenotypes, and possible causes for the phenotypic heterogeneity among the various models. In the final section, we provide a more general discussion on how well mouse models can be expected to mimic human liver disease, as well as an outlook toward the need for new technologies that can help us to gain new insights from mouse models for liver disease.


Subject(s)
Bile Duct Diseases/metabolism , Disease Models, Animal , Animals , Mice , Receptors, Notch/metabolism , Signal Transduction
10.
Dig Dis Sci ; 64(3): 759-772, 2019 03.
Article in English | MEDLINE | ID: mdl-30465176

ABSTRACT

BACKGROUND: Macrophage migration inhibitory factor (MIF) is involved in many acute and chronic inflammatory diseases. However, its role in intrahepatic bile duct (IBD) cell damage associated with severe acute pancreatitis (SAP) remains unclear. AIMS: This study was aimed to identify the role of MIF and its underlying mechanisms in SAP complicated by IBD cell damage. METHODS: Forty-eight specific-pathogen-free male Wistar rats were randomly divided into four groups (N = 12): a sham operation group (SO group) and three SAP model groups (SAP-3h, SAP-6h, and SAP-12h). Immunohistochemistry was used to detect the expression of MIF and P38 in IBD cells. MIF mRNA expression in IBD cells was observed using real-time fluorescent quantitative polymerase chain reaction (real-time PCR). In addition, Western blotting was performed to detect the protein expression of P38, phosphorylated P38 (P-P38), nuclear factor-κB (NF-κB p65), and tumor necrosis factor alpha (TNF-α). Enzyme-linked immunosorbent assays were used to analyze the levels of TNF-α, IL-1ß, and IL-6 in the IBD of rats. RESULTS: Compared with the SO group, the expression of MIF in the IBD was significantly upregulated both at mRNA and at protein levels in the SAP group. Besides, the protein expression levels of P38, P-P38, NF-κB, p65, TNF-α, IL-1ß, and IL-6 in the IBD in rats were also significantly increased in the SAP group and the levels increased gradually as acute pancreatitis progressed (all P < 0.05). CONCLUSIONS: MIF may promote the IBD injury and inflammatory reaction in SAP via activating the P38-MAPK and NF-κB signaling pathways.


Subject(s)
Bile Duct Diseases/etiology , Bile Ducts, Intrahepatic/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Pancreatitis/complications , Acute Disease , Animals , Bile Duct Diseases/genetics , Bile Duct Diseases/metabolism , Bile Duct Diseases/pathology , Bile Ducts, Intrahepatic/pathology , Disease Models, Animal , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Intramolecular Oxidoreductases/genetics , Macrophage Migration-Inhibitory Factors/genetics , Male , Pancreatitis/genetics , Pancreatitis/metabolism , Pancreatitis/pathology , Phosphorylation , Rats, Wistar , Severity of Illness Index , Signal Transduction , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Biochem Pharmacol ; 161: 1-13, 2019 03.
Article in English | MEDLINE | ID: mdl-30582898

ABSTRACT

Bile acids, amphipathic molecules known for their facilitating role in fat absorption, are also recognized as signalling molecules acting via nuclear and membrane receptors. Of the bile acid-activated receptors, the Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor-1 (Gpbar1 or TGR5) have been studied most extensively. Bile acid signaling is critical in the regulation of bile acid metabolism itself, but it also plays a significant role in glucose, lipid and energy metabolism. Activation of FXR and TGR5 leads to reduced hepatic bile salt load, improved insulin sensitivity and glucose regulation, increased energy expenditure, and anti-inflammatory effects. These beneficial effects render bile acid signaling an interesting therapeutic target for the treatment of diseases such as cholestasis, non-alcoholic fatty liver disease, and diabetes. Here, we summarize recent findings on bile acid signaling and discuss potential and current limitations of bile acid receptor agonist and modulators of bile acid transport as future therapeutics for a wide-spectrum of diseases.


Subject(s)
Bile Acids and Salts/metabolism , Bile Acids and Salts/therapeutic use , Drug Development/methods , Gastrointestinal Agents/metabolism , Gastrointestinal Agents/therapeutic use , Animals , Bile Duct Diseases/drug therapy , Bile Duct Diseases/metabolism , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
12.
Semin Liver Dis ; 38(4): 333-339, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30357770

ABSTRACT

TGR5 (GPBAR1) is a G protein-coupled receptor activated by primary and secondary bile acids, which is expressed in different nonparenchymal cells of the liver, such as sinusoidal endothelial cells, Kupffer cells, cholangiocytes as well as activated hepatic stellate cells. In liver, TGR5 modulates microcirculation, inflammation, regeneration, biliary secretion and proliferation as well as gallbladder filling. Absence of TGR5 renders mice more susceptible toward infectious, inflammatory, metabolic as well as cholestatic liver injuries. It is unknown whether TGR5 plays a role in the pathogenesis of human nonalcoholic steatohepatitis and cholestatic liver diseases such as primary sclerosing cholangitis and primary biliary cholangitis. However, overexpression of TGR5 has been detected in human intra- and extrahepatic cholangiocarcinoma as well as in cystic cholangiocytes, where the receptor promotes cell proliferation, anti-apoptosis as well as cyst growth. While TGR5 agonists may improve various aspects of metabolic, inflammatory, and cholestatic liver diseases, TGR5 inhibitors may attenuate disease progression in polycystic liver disease and cholangiocarcinoma.


Subject(s)
Bile Acids and Salts/metabolism , Bile Duct Diseases/metabolism , Liver Diseases/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Bile Duct Diseases/etiology , Cholangiocarcinoma/etiology , Cholangiocarcinoma/metabolism , Cholestasis/metabolism , Epithelial Cells/metabolism , Humans , Hypertension, Portal/metabolism , Liver Diseases/etiology , Mice , Signal Transduction
14.
Pediatr Res ; 82(6): 1007-1016, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28355202

ABSTRACT

BackgroundBiliary atresia (BA) is an etiologically perplexing disease, manifested by neonatal cholestasis, repeated cholangitis, and progressive biliary fibrosis. MiR-155 has been implicated to modulate the immune response, which contributes to biliary injury. However, its potential role in the pathogenesis of BA has not been addressed so far.MethodsThe microRNA changes from BA patients and controls were identified via microarray. The immunomodulatory function of miR-155 was investigated via cell transfection and reporter assay. The lentiviral vector pL-miR-155 inhibitor was transfected into a mouse model to investigate its role in BA.ResultsThe expression of miR-155 in livers of BA patients was significantly increased, and an inverse correlation between miR-155 and suppressor of cytokine signaling 1 (SOCS1) was detected. MiR-155 overexpression promoted expressions of major histocompatibility complex (MHC) I, MHC II, Chemokine (C-X-C motif) ligand (CXCL) 9, CXCL10, monocyte chemotactic protein 1, and CXCL1 after IFN-γ stimulation, which could be suppressed by SOCS1 overexpression. Moreover, miR-155 overexpression activated JAK2/STAT3, thus enhancing the pro-inflammatory effect. Downregulating miR-155 reduced the incidence of BA in a rhesus monkey rotavirus-induced BA model.ConclusionOur results reveal a vital contribution of miR-155 upregulation and consequent SOCS1 downregulation to an immune response triggered via IFN-γ in BA.


Subject(s)
Bile Duct Diseases/genetics , Biliary Atresia/genetics , Inflammation/genetics , MicroRNAs/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Animals , Animals, Newborn , Bile Duct Diseases/metabolism , Bile Duct Diseases/pathology , Biliary Atresia/metabolism , Biliary Atresia/pathology , Case-Control Studies , Cell Line , Disease Models, Animal , Female , Humans , Infant , Infant, Newborn , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Mice , Mice, Inbred BALB C , Pregnancy
15.
Physiol Rep ; 5(4)2017 Feb.
Article in English | MEDLINE | ID: mdl-28219981

ABSTRACT

Natural killer T (NKT) cells are activated by lipid antigens presented by CD1d molecules and represent a major lymphocyte subset of the liver. NODc3c4 mice spontaneously develop biliary inflammation in extra- and intrahepatic bile ducts. We demonstrated by flow cytometry that invariant NKT (iNKT) cells were more abundant in the thymus, spleen, and liver of NODc3c4 mice compared to NOD mice. iNKT cells in NODc3c4 mice displayed an activated phenotype. Further, NOD and NODCd1d-/- mice were irradiated and injected with NODc3c4 bone marrow, and injection of NODc3c4 bone marrow resulted in biliary infiltrates independently of CD1d expression in recipient mice. Activation or blocking of NKT cells with α-galactosylceramide or anti-CD1d antibody injections did not affect the biliary phenotype of NODc3c4 mice. NODc3c4.Cd1d-/- mice were generated by crossing NODCd1d-/- mice onto a NODc3c4 background. NODc3c4.Cd1d-/- and NODc3c4 mice developed the same extent of biliary disease. This study demonstrates that iNKT cells are more abundant and activated in the NODc3c4 model. The portal inflammation of NODc3c4 mice can be transferred to irradiated recipients, which suggests an immune-driven disease. Our findings imply that NKT cells can potentially participate in the biliary inflammation, but are not the primary drivers of disease in NODc3c4 mice.


Subject(s)
Antigens, CD1d/genetics , Bile Duct Diseases/immunology , Inflammation/immunology , Natural Killer T-Cells/immunology , Animals , Antigens, CD1d/immunology , Bile Duct Diseases/metabolism , Bile Duct Diseases/pathology , Disease Models, Animal , Galactosylceramides/pharmacology , Inflammation/metabolism , Inflammation/pathology , Liver/immunology , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/metabolism , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/pathology
16.
PLoS One ; 11(9): e0162286, 2016.
Article in English | MEDLINE | ID: mdl-27618307

ABSTRACT

Chronic cholangiopathies, such as primary and secondary sclerosing cholangitis, are progressive disease entities, associated with periportal accumulation of inflammatory cells, encompassing monocytes and macrophages, peribiliary extracellular matrix (ECM) deposition and ductular reaction (DR). This study aimed to elucidate the relevance of macrophages in the progression of chronic cholangiopathies through macrophage depletion in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) mouse model. One group of mice received a single i.p. injection of Clodronate encapsulated liposomes (CLOLipo) at day 7 of a 14 day DDC treatment, while control animals were co-treated with PBSLipo instead. Mice were sacrificed after 7 or respectively 14 days of treatment for immunohistochemical assessment of macrophage recruitment (F4/80), ECM deposition (Sirius Red, Laminin) and DR (CK19). Macrophage depletion during a 14 day DDC treatment resulted in a significant inhibition of ECM deposition. Porto-lobular migration patterns of laminin-rich ECM and ductular structures were significantly attenuated and a progression of DR was effectively inhibited by macrophage depletion. CLOLipo co-treatment resulted in a confined DR to portal regions without amorphous cell clusters. This study suggests that therapeutic options selectively directed towards macrophages might represent a feasible treatment for chronic cholestatic liver diseases.


Subject(s)
Bile Duct Diseases/pathology , Bile Ducts/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Macrophages/pathology , Animals , Bile Duct Diseases/metabolism , Cell Proliferation , Chronic Disease , Mice
18.
Cell Transplant ; 25(12): 2245-2257, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27480080

ABSTRACT

Liver fibrosis is characterized by excessive accumulation of extracellular matrix components in the liver parenchyma that distorts the normal architecture and hepatic function. Progressive fibrosis could end in the advanced stage known as cirrhosis, resulting in the need to resort to liver transplantation. Amniotic membrane (AM) has emerged as an innovative therapeutic approach for chronic liver diseases due to its anti-inflammatory, antiscarring, and wound-healing effects. We have recently shown that AM can be used as a patch on the liver surface at the same time of fibrosis induction, resulting in significantly reduced progression and severity of biliary fibrosis. Here we investigated the effects of human AM on the established rat model of liver fibrosis, induced by the bile duct ligation (BDL). We also explored the effect of AM on the expression of transforming growth factor-1 (TGF-1), the main profibrogenic factor in hepatic fibrosis, and the proinflammatory cytokines, tumor necrosis factor- (TNF-), interleukin-6 (IL-6), and anti-inflammatory cytokine IL-10. Two weeks after BDL, the liver was covered with a fragment of AM or left untreated. Six weeks later, the fibrosis was first assessed by the semiquantitative Knodell and the METAVIR scoring systems and, thereafter, by CellProfiler digital image analysis to quantify the area occupied by collagen deposition, ductular reactions (DRs), activated myofibroblasts, and TGF-1. The hepatic cytokines were determined by ELISA. AM-treated rats showed a significantly lower score compared to the control BDL rats (2.50.9 vs. 3.50.3, respectively; p0.05). The collagen deposition, DRs, number of activated myofibroblasts, and TGF-1 were all reduced to about 50% of levels observed in untreated BDL rats. These findings suggest that AM, when applied as a patch onto the liver surface, is useful for treating well-established cholestatic fibrosis, and the mechanism was partly by means of downregulating the profibrotic factor TGF-1 and IL-6.


Subject(s)
Amnion/transplantation , Bile Duct Diseases/surgery , Fibrosis/surgery , Amnion/metabolism , Animals , Bile Duct Diseases/metabolism , Bile Ducts/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fibrosis/metabolism , Humans , Immunohistochemistry , Interleukin-10/metabolism , Interleukin-6/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/surgery , Liver Diseases/metabolism , Liver Diseases/surgery , Male , Rats , Rats, Wistar , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
J Clin Pathol ; 69(7): 619-26, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26729014

ABSTRACT

AIMS: The distinction between intrahepatic cholangiocarcinoma (ICC) and benign bile duct lesions can be challenging. Using our previously identified potential biomarkers for ICC, we examined whether these are useful for the differential diagnosis of ICC, bile duct adenoma and reactive bile duct proliferations in an immunohistochemical approach and identified a diagnostic marker panel including known biomarkers. METHODS: Subjects included samples from 77 patients with ICC, 33 patients with bile duct adenoma and 47 patients with ductular reactions in liver cirrhosis. Our previously identified biomarkers (stress-induced phosphoprotein 1 (STIP1), SerpinH1, 14-3-3Sigma) were tested immunohistochemically following comparison with candidates from the literature (cluster of differentiation 56, heat shock protein (HSP)27, HSP70, B-cell-lymphoma2, p53, ki67). RESULTS: The expression of SerpinH1 and 14-3-3Sigma was significantly higher in ICC than in bile duct adenomas and ductular reactions (p<0.05), whereas STIP1 expression was significantly higher (p<0.05) in ICC than in ductular reactions, but the difference to the bile duct adenoma group was not significant. A panel of the biomarker SerpinH1, 14-3-3Sigma and ki67 (≥2 marker positive) showed a high diagnostic accuracy (sensitivity 87.8%, specificity 95.9%, accuracy 91.8%) in the differential diagnosis of ICC versus non-malignant bile duct lesions. CONCLUSIONS: This suggests that 14-3-3Sigma and SerpinH1 may be useful in the differential diagnosis of malignant, benign and reactive bile duct lesions in addition to ki67 where a cut-off of >5% might be used for the distinction of malignant and non-malignant lesions.


Subject(s)
Adenoma/diagnosis , Bile Duct Diseases/diagnosis , Bile Duct Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/diagnosis , Liver Cirrhosis/diagnosis , 14-3-3 Proteins/metabolism , Adenoma/metabolism , Adenoma/pathology , Bile Duct Diseases/metabolism , Bile Duct Diseases/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Diagnosis, Differential , Exoribonucleases/metabolism , HSP47 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Humans , Immunohistochemistry , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...