Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 809937, 2021.
Article in English | MEDLINE | ID: mdl-35095900

ABSTRACT

Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we generated metabolomic data from COVID-19 patient blood using high-throughput targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable changes in serum metabolome composition of COVID-19 patients associated with disease severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-interpretable space for precise time-resolved disease monitoring and characterize the temporal dynamics of metabolomic change along the clinical course of COVID-19 patients and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to provide a novel approach for patient stratification and early prediction of severe disease. Our results show that high-dimensional metabolomic and joint immune-metabolic readouts provide rich information content for elucidation of the host's response to infection and empower discovery of novel metabolic-driven therapies, as well as precise and efficient clinical action.


Subject(s)
Biomarkers/metabolism , COVID-19/immunology , COVID-19/metabolism , Metabolome/immunology , SARS-CoV-2/immunology , Adult , Aged , Biochemical Phenomena/immunology , Biomarkers/blood , COVID-19/blood , Female , Humans , Male , Metabolomics/methods , Middle Aged
2.
Elife ; 92020 12 29.
Article in English | MEDLINE | ID: mdl-33372660

ABSTRACT

Studies in different animal model systems have revealed the impact of odors on immune cells; however, any understanding on why and how odors control cellular immunity remained unclear. We find that Drosophila employ an olfactory-immune cross-talk to tune a specific cell type, the lamellocytes, from hematopoietic-progenitor cells. We show that neuronally released GABA derived upon olfactory stimulation is utilized by blood-progenitor cells as a metabolite and through its catabolism, these cells stabilize Sima/HIFα protein. Sima capacitates blood-progenitor cells with the ability to initiate lamellocyte differentiation. This systemic axis becomes relevant for larvae dwelling in wasp-infested environments where chances of infection are high. By co-opting the olfactory route, the preconditioned animals elevate their systemic GABA levels leading to the upregulation of blood-progenitor cell Sima expression. This elevates their immune-potential and primes them to respond rapidly when infected with parasitic wasps. The present work highlights the importance of the olfaction in immunity and shows how odor detection during animal development is utilized to establish a long-range axis in the control of blood-progenitor competency and immune-priming.


Subject(s)
Biochemical Phenomena/immunology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Hematopoietic Stem Cells/cytology , Hemocytes/cytology , Animals , Drosophila/immunology , Drosophila/metabolism , Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Hematopoiesis/immunology , Larva/metabolism , Wasps/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...