Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.927
Filter
1.
J Mater Chem B ; 12(23): 5571-5572, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832500

ABSTRACT

Injectable hydrogels have emerged as intelligent and versatile materials that have been proven to possess huge potential for many biomedical applications including drug delivery, tissue engineering, and regenerative medicine. Hydrogels are a class of polymers with highly hydrated 3D networks that have microenvironmental properties such as oxygen/nutrient permeability that are similar to the native extracellular matrix. In addition to possessing the typical advantages of conventional hydrogels, injectable hydrogels offer extra unique features, enabling minimally invasive injectability and durability for irregularly shaped sites, and the possibility of processing these materials via, e.g., additive manufacturing techniques. As such, there has been a growing interest in using injectable hydrogels as scaffolds/carriers for therapeutic agents, including but not limited to drugs, cells, proteins, and bioactive molecules, targeted to treat chronic diseases including cancer, but also to facilitate the repair and regeneration of damaged organs/tissues. In this themed collection of Journal of Materials Chemistry B and Biomaterials Science, we include outstanding contributions covering recent developments in this rapidly evolving field of injectable hydrogels including emerging chemistries, synthesis pathways, fabrication methods, cell-material interaction, in vitro, ex vivo and in vivo performances, and subsequent targeted applications (drug delivery, tissue engineering and regenerative medicine) of injectable hydrogels.


Subject(s)
Biocompatible Materials , Hydrogels , Injections , Tissue Engineering , Hydrogels/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Regenerative Medicine/methods , Drug Delivery Systems , Animals
2.
J Oleo Sci ; 73(6): 857-863, 2024.
Article in English | MEDLINE | ID: mdl-38825539

ABSTRACT

The hybridization of lipids with graphene is expected to produce a promising, novel biomaterial. However, there are limited examples of the covalent introduction of lipid molecules, especially the immobilization of lipid molecules, onto graphene on a substrate. Therefore, we investigated the hybridization of a silane coupling agent having phospholipid moieties with graphene oxide on substrates prepared by photo-oxidation using chlorine dioxide. Three silane coupling agents with different carbon chain lengths (C4, C6, C8) were synthesized and phospholipid molecules were introduced onto graphene on a substrate. Phospholipid-immobilized graphene on a grid for TEM (transmission electron microscope) was used for EM analysis of proteins (glyceraldehyde 3-phosphate dehydrogenase and ß-galactosidase), enabling the observation of sufficient particles compared to the conventional graphene grid.


Subject(s)
Graphite , Phospholipids , Silanes , Graphite/chemistry , Phospholipids/chemistry , Silanes/chemistry , beta-Galactosidase/metabolism , Microscopy, Electron, Transmission , Oxidation-Reduction , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
3.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823918

ABSTRACT

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Subject(s)
Biocompatible Materials , Chondrocytes , Disulfides , Hyaluronic Acid , Hydrogels , Rheology , Tissue Engineering , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Disulfides/chemistry , Chondrocytes/drug effects , Chondrocytes/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration
4.
J Am Chem Soc ; 146(20): 13903-13913, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38721817

ABSTRACT

Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.


Subject(s)
Biocompatible Materials , Citric Acid , Gels , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Citric Acid/chemistry , Gels/chemistry , Carnitine/chemistry , Ionic Liquids/chemistry , Tensile Strength , Adhesives/chemistry
5.
ACS Appl Bio Mater ; 7(5): 3154-3163, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38695332

ABSTRACT

ß-Galactosidase (ß-Gala) is an essential biomarker enzyme for early detection of breast tumors and cellular senescence. Creating an accurate way to monitor ß-Gala activity is critical for biological research and early cancer detection. This work used fluorometric, colorimetric, and paper-based color sensing approaches to determine ß-Gala activity effectively. Via the sensing performance, the catalytic activity of ß-Gala resulted in silicon nanoparticles (SiNPs), fluorescent indicators obtained via a one-pot hydrothermal process. As a standard enzymatic hydrolysis product of the substrate, kaempferol 3-O-ß-d-galactopyranoside (KOßDG) caused the fluorometric signal to be attenuated on kaempferol-silicon nanoparticles (K-SiNPs). The sensing methods demonstrated a satisfactory linear response in sensing ß-Gala and a low detection limit. The findings showed the low limit of detection (LOD) as 0.00057 and 0.098 U/mL for fluorometric and colorimetric, respectively. The designed probe was then used to evaluate the catalytic activity of ß-Gala in yogurt and human serum, with recoveries ranging from 98.33 to 107.9%. The designed sensing approach was also applied to biological sample analysis. In contrast, breast cancer cells (MCF-7) were used as a model to test the in vitro toxicity and molecular fluorescence imaging potential of K-SiNPs. Hence, our fluorescent K-SiNPs can be used in the clinic to diagnose breast cellular carcinoma, since they can accurately measure the presence of invasive ductal carcinoma in serologic tests.


Subject(s)
Breast Neoplasms , Kaempferols , Materials Testing , Nanoparticles , Silicon , beta-Galactosidase , Humans , beta-Galactosidase/metabolism , Silicon/chemistry , MCF-7 Cells , Nanoparticles/chemistry , Kaempferols/chemistry , Kaempferols/pharmacology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Particle Size , Colorimetry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Female , Molecular Structure
6.
ACS Appl Bio Mater ; 7(5): 3215-3226, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38695746

ABSTRACT

This study presents a tetra-substituted phthalonitrile derivative, namely, diethyl 2-(3,4-dicyano-2,5-bis(hexyloxy)-6-(4-(trifluoromethoxy)phenoxy)phenyl)malonate (a), cyclotetramerizing in the presence of some metal salts. The resultant hexadeca-substituted metal phthalocyanines [M= Co, Zn, InCl)] (b-d) were used for the modification of reduced graphene oxide for the first time. The effect of the phthalonitrile/metal phthalocyanines on biological features of reduced graphene oxide (rGO) was extensively examined by the investigation of antioxidant, antimicrobial, DNA cleavage, cell viability, and antibiofilm activities of nanobioagents (1-4). The results were compared with those of unmodified rGO (nanobioagent 5), as well. Modification of reduced graphene oxide with the synthesized compounds improved its antioxidant activity. The antioxidant activities of all the tested nanobioagents also enhanced as the concentration increased. The antibacterial activities of all the nanobioagents improved by applying the photodynamic therapeutic (PDT) method. All the phthalonitrile/phthalocyanine-based nanobioagents (especially phthalocyanine-based nanocomposites) exhibited DNA cleavage activities, and complete DNA fragmentation was observed for nanobioagents (1-4) at 200 mg/L. They can be used as potent antimicrobial and antimicrobial photodynamic therapy agents as well as Escherichia coli microbial cell inhibitors. As a result, the prepared nanocomposites can be considered promising candidates for biomedicine.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Graphite , Indoles , Isoindoles , Materials Testing , Particle Size , Graphite/chemistry , Graphite/pharmacology , Indoles/chemistry , Indoles/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Microbial Sensitivity Tests , Cell Survival/drug effects , Escherichia coli/drug effects , Molecular Structure , Biofilms/drug effects , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Oxides/chemistry , Oxides/pharmacology
7.
ACS Appl Bio Mater ; 7(5): 3346-3357, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38695543

ABSTRACT

Septicemia, a severe bacterial infection, poses significant risks to human health. Early detection of septicemia by tracking specific biomarkers is crucial for a timely intervention. Herein, we developed a molecularly imprinted (MI) TiO2-Fe-CeO2 nanozyme array derived from Ce[Fe(CN)6] Prussian blue analogues (PBA), specifically targeting valine, leucine, and isoleucine, as potential indicators of septicemia. The synthesized nanozyme arrays were thoroughly characterized using various analytical techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, and energy-dispersive X-ray. The results confirmed their desirable physical and chemical properties, indicating their suitability for the oxidation of 3,3',5,5'-tetramethylbenzidine serving as a colorimetric probe in the presence of a persulfate oxidizing agent, further highlighting the potential of these arrays for sensitive and accurate detection applications. The MITiO2 shell selectively captures valine, leucine, and isoleucine, partially blocking the cavities for substrate access and thereby hindering the catalyzed TMB chromogenic reaction. The nanozyme array demonstrated excellent performance with linear detection ranges of 5 µM to 1 mM, 10-450 µM, and 10-450 µM for valine, leucine, and isoleucine, respectively. Notably, the corresponding limit of detection values were 0.69, 1.46, and 2.76 µM, respectively. The colorimetric assay exhibited outstanding selectivity, reproducibility, and performance in the detection of analytes in blood samples, including C-reactive protein at a concentration of 61 mg/L, procalcitonin at 870 ng/dL, and the presence of Pseudomonas aeruginosa bacteria. The utilization of Ce[Fe(CN)6]-derived MITiO2-Fe-CeO2 nanozyme arrays holds considerable potential in the field of septicemia detection. This approach offers a sensitive and specific method for early diagnosis and intervention, thereby contributing to improved patient outcomes.


Subject(s)
Ferrocyanides , Sepsis , Ferrocyanides/chemistry , Sepsis/diagnosis , Sepsis/microbiology , Sepsis/blood , Humans , Materials Testing , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Molecular Imprinting , Titanium/chemistry , Cerium/chemistry , Colorimetry
8.
ACS Appl Bio Mater ; 7(5): 3506-3514, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38696441

ABSTRACT

Horseradish peroxidase (HRP)-mediated hydrogelation, caused by the cross-linking of phenolic groups in polymers in the presence of hydrogen peroxide (H2O2), is an effective route for bioink solidification in 3D bioprinting. Sugar beet pectin (SBP) naturally has cross-linkable phenols through the enzymatic reaction. Therefore, chemical modifications are not required, unlike the various polymers that have been used in the enzymatic cross-linking system. In this study, we report the application of SBP in extrusion-based bioprinting including HRP-mediated bioink solidification. In this system, H2O2 necessary for the solidification of inks is supplied in the gas phase. Cell-laden liver lobule-like constructs could be fabricated using bioinks consisting of 10 U/mL HRP, 4.0 and 6.0 w/v% SBP, and 6.0 × 106 cells/mL human hepatoblastoma (HepG2) cells exposed to air containing 16 ppm of H2O2 concurrently during printing and 10 min postprinting. The HepG2 cells enclosed in the printed constructs maintained their viability, metabolic activity, and hepatic functions from day 1 to day 7 of the culture, which indicates the cytocompatibility of this system. Taken together, this result demonstrates the potential of SBP and HRP cross-linking systems for 3D bioprinting, which can be applied in tissue engineering applications.


Subject(s)
Beta vulgaris , Biocompatible Materials , Bioprinting , Horseradish Peroxidase , Materials Testing , Pectins , Printing, Three-Dimensional , Horseradish Peroxidase/metabolism , Horseradish Peroxidase/chemistry , Beta vulgaris/chemistry , Humans , Pectins/chemistry , Hep G2 Cells , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Hydrogen Peroxide/chemistry , Particle Size , Cell Survival/drug effects , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/chemical synthesis , Tissue Engineering
9.
ACS Appl Bio Mater ; 7(5): 3431-3440, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38697834

ABSTRACT

Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Light , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/chemical synthesis , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Molecular Structure , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cisplatin/chemistry , Particle Size , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Photochemical Processes , Density Functional Theory
10.
ACS Appl Bio Mater ; 7(5): 2862-2871, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38699864

ABSTRACT

Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.


Subject(s)
Antiviral Agents , Heparitin Sulfate , Polymers , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Heparitin Sulfate/chemistry , Heparitin Sulfate/pharmacology , Animals , Humans , Polymers/chemistry , Polymers/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Culicidae/drug effects , Culicidae/virology , Microbial Sensitivity Tests , Materials Testing , Particle Size , Cell Line , Molecular Structure , Chlorocebus aethiops , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Zika Virus/drug effects
11.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38700956

ABSTRACT

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Subject(s)
Doxorubicin , Drug Liberation , Drug Screening Assays, Antitumor , Materials Testing , Nanoparticles , Particle Size , Photothermal Therapy , Rhenium , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Rhenium/chemistry , Rhenium/pharmacology , Disulfides/chemistry , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , HeLa Cells
12.
ACS Appl Bio Mater ; 7(5): 3452-3459, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38723150

ABSTRACT

A two-photon nanoparticle probe was designed and developed based on the principle of intermolecular interaction of the aggregation-induced locally excited emission luminescence mechanism. The probe has the advantages of simple synthesis, convenient use, strong atomic economy, good biocompatibility, and photobleaching resistance. It can produce a specific and sensitive response to formaldehyde, help detect FA in normal cells and cancer cells, and is expected to become a specific detection probe for FA in vitro and in vivo.


Subject(s)
Biocompatible Materials , Formaldehyde , Materials Testing , Nanoparticles , Particle Size , Photons , Formaldehyde/chemistry , Formaldehyde/analysis , Humans , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Luminescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Molecular Structure
13.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791127

ABSTRACT

Due to their biocompatibility and non-toxic nature, biomedical polymer materials have found widespread applications and significantly propelled the progress of the biomedical field [...].


Subject(s)
Biocompatible Materials , Polymers , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Humans
14.
Carbohydr Polym ; 337: 122143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710552

ABSTRACT

Cyclodextrins (CDs) are essential in the pharmaceutical industry and have long been used as food and pharmaceutical additives. CD-based interlocked molecules, such as rotaxanes, polyrotaxanes, catenanes, and polycatenanes, have been synthesized and have attracted considerable attention in supramolecular chemistry. Among them, CD polyrotaxanes have been employed as slide-ring materials and biomaterials. CD polycatenanes are new materials; therefore, to date, no examples of applied research on CD polycatenanes have been reported. Consequently, we expect that applied research on CD polycatenanes will accelerate in the future. This review article summarizes the syntheses and structural analyses of CD polyrotaxanes and polycatenanes to facilitate their applications in the pharmaceutical industry. We believe that this review will promote further research on CD-based interlocked molecules.


Subject(s)
Cyclodextrins , Poloxamer , Rotaxanes , Rotaxanes/chemistry , Rotaxanes/chemical synthesis , Cyclodextrins/chemistry , Cyclodextrins/chemical synthesis , Catenanes/chemistry , Catenanes/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
15.
Int J Biol Macromol ; 270(Pt 2): 132501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763241

ABSTRACT

Development of outstanding, cost-effective and elastic hydrogels as bioadhesive using Thiol-Ene click chemistry was verified. The visible light photocrosslinkable hydrogels composed of methacrylated chitosan/2,2'-(Ethylenedioxy) diethanethiol formed in presence of eosin-Y photoinitiator. Such hydrogels hold great promise for wound healing applications due to their tunable properties. Main components of hydrogels were extensively characterized using spectroscopic techniques for chemical analysis, thermal analysis, and topologic nanostructure. Various optimization conditions for best gelation time were investigated. Mechanical properties of tensile strength and elongation at break (%) were verified for best wound healing applications. Optimum hydrogel was subjected to for cytotoxicity and microbial suppression evaluation and in-vivo wound healing test for efficient wound healing evaluations. Our results demonstrate the potential use of injectable hydrogels as valuable bioadhesives in bioengineering and biomedical applications, particularly in wound closure and patches.


Subject(s)
Click Chemistry , Hydrogels , Sulfhydryl Compounds , Wound Healing , Hydrogels/chemistry , Hydrogels/chemical synthesis , Click Chemistry/methods , Wound Healing/drug effects , Animals , Sulfhydryl Compounds/chemistry , Chitosan/chemistry , Mice , Humans , Adhesives/chemistry , Adhesives/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology
16.
J Mater Chem B ; 12(21): 5098-5110, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38700289

ABSTRACT

The tunable properties of stimuli-responsive copolymers or hydrogels enable their application in different fields such as biomedical engineering, tissue engineering, or even drug release. Here we introduce a new PNIPAM-based triblock copolymer material comprising a controlled amount of a novel hydrophobic crosslinker 2,4'-diacryloyloxy benzophenone (DABP) and acrylic acid (AAc) to achieve lower critical solution temperature (LCST) between ambient and body temperatures. The dual stimuli-responsive p(NIPAM-co-DABP-co-AAc) triblock copolymer material and hydrogel were synthesized, and their temperature and pH-responsive behaviors were systematically investigated. The hydrogel exhibited excellent temperature and pH-responsive properties with an LCST of around 30 °C. Moreover, the synthesized copolymer has been demonstrated to be nontoxic both in vitro and in vivo. When the hydrogel was preloaded with the model drug 5-fluorouracil (5-FU), the designed hydrogel released the drug in a temperature and pH-controlled fashion. It was observed that the prepared hydrogel has the ability to entrap 5-FU, and the loading is more than 85%. In the case of temperature-controlled release, we observed almost complete release of 5-FU at lower temperatures and sustained release behavior at higher temperatures. In addition, the hydrogel matrix was able to retard the release of 5-FU in an acidic environment and selectively release 5-FU in a basic environment. By realizing how the hydrogel properties influence the release of drugs from preloaded hydrogels, it is possible to design new materials with myriad applications in the drug delivery field.


Subject(s)
Biocompatible Materials , Fluorouracil , Hydrogels , Temperature , Fluorouracil/pharmacology , Fluorouracil/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Animals , Humans , Drug Liberation , Mice , Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Drug Delivery Systems
17.
ACS Appl Mater Interfaces ; 16(23): 30385-30395, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38816917

ABSTRACT

In the present work, we explored Lewis acid catalysis, via FeCl3, for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.


Subject(s)
Cellulose , Chlorides , Nanocomposites , Nanofibers , Cellulose/chemistry , Nanocomposites/chemistry , Humans , Catalysis , Nanofibers/chemistry , Chlorides/chemistry , Ferric Compounds/chemistry , Osteoblasts/drug effects , Osteoblasts/cytology , Polyethyleneimine/chemistry , Prostheses and Implants , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis
18.
Chem Commun (Camb) ; 60(45): 5790-5803, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38756076

ABSTRACT

Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.


Subject(s)
Proteins , Proteins/chemistry , Porosity , Crystallization , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Nanostructures/chemistry
19.
ACS Appl Mater Interfaces ; 16(22): 28134-28146, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768602

ABSTRACT

Vessel transplantation is currently considered the "gold standard" treatment for cardiovascular disease. However, ideal artificial vascular grafts should possess good biocompatibility and mechanical strength that match those of native autologous vascular tissue to promote in vivo tissue regeneration. In this study, a series of dynamic cross-linking double-network hydrogels and the resultant hydrogel tubes were prepared. The hydrogels (named PCO), composed of rigid poly(vinyl alcohol) (PVA), flexible carboxymethyl chitosan (CMCS), and a cross-linker of aldehyde-based ß-cyclodextrin (OCD), were formed in a double-network structure with multiple dynamical cross-linking including dynamic imine bonds, hydrogen bonds, and microcrystalline regions. The PCO hydrogels exhibited superior mechanical strength, good network stability, and fatigue resistance. Additionally, it demonstrated excellent cell and blood compatibility. The results showed that the introduction of CMCS/OCD led to a significant increase in the proliferation rate of endothelial cells seeded on the surface of the hydrogel. The hemolysis rate in the test was lower than 0.3%, and both protein adsorption and platelet adhesion were reduced, indicating an excellent anticoagulant function. The plasma recalcification time test results showed that endogenous coagulation was alleviated to some extent. When formed into blood vessels and incubated with blood, no thrombus formation was observed, and there was minimal red blood cell aggregation. Therefore, this novel hydrogel tube, with excellent mechanical properties, exhibits antiadhesive characteristics toward blood cells and proteins, as well as antithrombotic properties, making it hold tremendous potential for applications in the biomedical and engineering fields.


Subject(s)
Biocompatible Materials , Chitosan , Hydrogels , Polyvinyl Alcohol , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Humans , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Blood Vessel Prosthesis , Materials Testing , beta-Cyclodextrins/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects , Hemolysis/drug effects , Animals , Platelet Adhesiveness/drug effects , Cross-Linking Reagents/chemistry
20.
J Mater Chem B ; 12(22): 5496-5512, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742807

ABSTRACT

Bacterial infections in wounds significantly impair the healing process. The use of natural antibacterial products over synthetic antibiotics has emerged as a new trend to address antimicrobial resistance. An ideal tissue engineering scaffold to treat infected wounds should possess antibacterial properties, while simultaneously promoting tissue regrowth. Synthesis of hydrogel scaffolds with antibacterial properties using hemp shive (HT1/HT2) lignin, sugarcane bagasse (SCB) lignin and cellulose was carried out. All lignin samples had low molecular weights and were constituted of G-type ß-5 dimers, linked by ß-O-4 bonds, as determined by MALDI-TOF-MS. Hemp lignin was more cytotoxic to mouse fibroblasts (L929) compared to SCB lignin. All lignin samples demonstrated antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, with greater efficiency against Gram-negative strains. 3D hydrogels were engineered by crosslinking SCB lignin with SCB cellulose in varying weight ratios in the presence of epichlorohydrin. The stiffness of the hydrogels could be tailored by varying the lignin concentration. All hydrogels were biocompatible; however, better fibroblast adhesion was observed on the blended hydrogels compared to the 100% cellulose hydrogel, with the cellulose : lignin 70 : 30 hydrogel showing the highest L929 proliferation and best antibacterial properties with a 24-hour bacterial growth reduction ranging from 30.8 to 57.3%.


Subject(s)
Anti-Bacterial Agents , Cellulose , Lignin , Tissue Engineering , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Lignin/chemistry , Lignin/pharmacology , Animals , Mice , Tissue Scaffolds/chemistry , Microbial Sensitivity Tests , Fibroblasts/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...