Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.663
Filter
1.
Sci Rep ; 14(1): 12864, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834664

ABSTRACT

Natural polymer-based hydrogels have demonstrated great potential as wound-healing dressings. They help to maintain a moist wound environment as well as promote faster healing. In this work, a multifunctional hydrogel was prepared using keratin, sodium alginate, and carboxymethyl chitosan with tannic acid modification. Micro-morphology of hydrogels has been performed by scanning electron microscopy. Fourier Transform Infrared Spectroscopy reveals the presence of hydrogen bonding. The mechanical properties of the hydrogels were examined using a universal testing machine. Furthermore, we investigated several properties of the modified hydrogel. These properties include swelling rate, water retention, anti-freezing properties, antimicrobial and antioxidant properties, hemocompatibility evaluation and cell viability test in vitro. The modified hydrogel has a three-dimensional microporous structure, the swelling rate was 1541.7%, the elastic modulus was 589.74 kPa, the toughness was 211.74 kJ/m3, and the elongation at break was 75.39%, which was similar to the human skin modulus. The modified hydrogel also showed inhibition of S. aureus and E. coli, as well as a DPPH scavenging rate of 95%. In addition, the modified hydrogels have good biological characteristics. Based on these findings, the K/SA/CCS hydrogel holds promise for applications in biomedical engineering.


Subject(s)
Alginates , Chitosan , Hydrogels , Keratins , Tannins , Chitosan/chemistry , Chitosan/analogs & derivatives , Tannins/chemistry , Alginates/chemistry , Hydrogels/chemistry , Humans , Keratins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Escherichia coli/drug effects , Wound Healing/drug effects , Cell Survival/drug effects , Spectroscopy, Fourier Transform Infrared , Elastic Modulus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
2.
J Oleo Sci ; 73(6): 857-863, 2024.
Article in English | MEDLINE | ID: mdl-38825539

ABSTRACT

The hybridization of lipids with graphene is expected to produce a promising, novel biomaterial. However, there are limited examples of the covalent introduction of lipid molecules, especially the immobilization of lipid molecules, onto graphene on a substrate. Therefore, we investigated the hybridization of a silane coupling agent having phospholipid moieties with graphene oxide on substrates prepared by photo-oxidation using chlorine dioxide. Three silane coupling agents with different carbon chain lengths (C4, C6, C8) were synthesized and phospholipid molecules were introduced onto graphene on a substrate. Phospholipid-immobilized graphene on a grid for TEM (transmission electron microscope) was used for EM analysis of proteins (glyceraldehyde 3-phosphate dehydrogenase and ß-galactosidase), enabling the observation of sufficient particles compared to the conventional graphene grid.


Subject(s)
Graphite , Phospholipids , Silanes , Graphite/chemistry , Phospholipids/chemistry , Silanes/chemistry , beta-Galactosidase/metabolism , Microscopy, Electron, Transmission , Oxidation-Reduction , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
3.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823918

ABSTRACT

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Subject(s)
Biocompatible Materials , Chondrocytes , Disulfides , Hyaluronic Acid , Hydrogels , Rheology , Tissue Engineering , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Disulfides/chemistry , Chondrocytes/drug effects , Chondrocytes/cytology , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration
4.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823920

ABSTRACT

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Subject(s)
Acrylic Resins , Hydrogels , Spheroids, Cellular , beta-Cyclodextrins , Spheroids, Cellular/drug effects , Humans , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , HeLa Cells , Animals , Mice , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Methacrylates/chemistry , Coculture Techniques , Neoplasms/pathology
5.
Biol Pharm Bull ; 47(6): 1072-1078, 2024.
Article in English | MEDLINE | ID: mdl-38825460

ABSTRACT

In previous studies, my group developed cell-adhesive peptide-polysaccharide complexes as biomaterials for tissue engineering. Having a wide variety of cell-adhesive peptides is important as the biological functions of peptide-polysaccharide complexes are highly dependent on the biological activity of peptides. This paper reviews the biological activities of two types of recently characterized cell-adhesive peptides. The first is peptides rich in basic amino acids originating from octaarginine. We analyzed the relationships between the amino acid composition of basic peptides and cell adhesion, elongation, and proliferation and identified the most suitable peptide for cell culture. The second was arginine-glycine-aspartic acid (RGD)-containing peptides that promote the adhesion of induced pluripotent stem cells (iPSCs). We identified the RGD-surrounding sequences necessary for iPSC adhesion, clarified the underlying mechanism, and improved cell adhesion by modifying the structure-activity relationships. The novel cell-adhesive peptides identified in our previous studies may aid in the development of novel peptide-based biomaterials.


Subject(s)
Biocompatible Materials , Cell Adhesion , Peptides , Cell Adhesion/drug effects , Biocompatible Materials/chemistry , Humans , Peptides/pharmacology , Peptides/chemistry , Animals , Oligopeptides/chemistry , Oligopeptides/pharmacology , Tissue Engineering/methods , Induced Pluripotent Stem Cells/cytology
6.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825717

ABSTRACT

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Subject(s)
Actinium , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Actinium/chemistry , Humans , Cell Line, Tumor , Animals , Alpha Particles/therapeutic use , Mice , Female , Biocompatible Materials/chemistry , Breast Neoplasms/drug therapy , Radioimmunotherapy/methods
7.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836669

ABSTRACT

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Subject(s)
Biocompatible Materials , Cell Differentiation , Cell Proliferation , Dental Pulp , Durapatite , Odontoblasts , Osteoblasts , Stem Cells , Tissue Scaffolds , Dental Pulp/cytology , Humans , Cell Differentiation/drug effects , Odontoblasts/cytology , Odontoblasts/drug effects , Odontoblasts/metabolism , Tissue Scaffolds/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Survival/drug effects , Cells, Cultured , Tissue Engineering/methods
8.
Nat Commun ; 15(1): 4720, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830847

ABSTRACT

Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.


Subject(s)
Tissue Adhesives , Wound Healing , Animals , Humans , Elasticity , Mesenchymal Stem Cells/cytology , Mice , Fibrin Tissue Adhesive , Male , Biocompatible Materials/chemistry
9.
Sci Rep ; 14(1): 12721, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830871

ABSTRACT

Surface structure plays a crucial role in determining cell behavior on biomaterials, influencing cell adhesion, proliferation, differentiation, as well as immune cells and macrophage polarization. While grooves and ridges stimulate M2 polarization and pits and bumps promote M1 polarization, these structures do not accurately mimic the real bone surface. Consequently, the impact of mimicking bone surface topography on macrophage polarization remains unknown. Understanding the synergistic sequential roles of M1 and M2 macrophages in osteoimmunomodulation is crucial for effective bone tissue engineering. Thus, exploring the impact of bone surface microstructure mimicking biomaterials on macrophage polarization is critical. In this study, we aimed to sequentially activate M1 and M2 macrophages using Poly-L-Lactic acid (PLA) membranes with bone surface topographical features mimicked through the soft lithography technique. To mimic the bone surface topography, a bovine femur was used as a model surface, and the membranes were further modified with collagen type-I and hydroxyapatite to mimic the bone surface microenvironment. To determine the effect of these biomaterials on macrophage polarization, we conducted experimental analysis that contained estimating cytokine release profiles and characterizing cell morphology. Our results demonstrated the potential of the hydroxyapatite-deposited bone surface-mimicked PLA membranes to trigger sequential and synergistic M1 and M2 macrophage polarizations, suggesting their ability to achieve osteoimmunomodulatory macrophage polarization for bone tissue engineering applications. Although further experimental studies are required to completely investigate the osteoimmunomodulatory effects of these biomaterials, our results provide valuable insights into the potential advantages of biomaterials that mimic the complex microenvironment of bone surfaces.


Subject(s)
Macrophages , Polyesters , Surface Properties , Animals , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Cattle , Polyesters/chemistry , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering/methods , Durapatite/chemistry , Cytokines/metabolism , Bone and Bones/cytology , Cell Differentiation/drug effects , Macrophage Activation/drug effects , Cell Adhesion/drug effects , RAW 264.7 Cells , Cell Polarity/drug effects , Femur , Collagen Type I/metabolism
10.
J Mater Sci Mater Med ; 35(1): 28, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833196

ABSTRACT

AIM: This study aimed to comprehensively assess the biocompatibility and toxicity profiles of poly(methyl methacrylate) (PMMA) and its monomeric unit, methyl methacrylate (MMA), crucial components in dental materials for interim prosthetic restorations. METHODOLOGY: Molecular docking was employed to predict the binding affinities, energetics, and steric features of MMA and PMMA with selected receptors involved in bone metabolism and tissue development, including RANKL, Fibronectin, BMP9, NOTCH2, and other related receptors. The HADDOCK standalone version was utilized for docking calculations, employing a Lamarckian genetic algorithm to explore the conformational space of ligand-receptor interactions. Furthermore, molecular dynamics (MD) simulations over 100 nanoseconds were conducted using the GROMACS package to evaluate dynamic actions and structural stability. The LigandScout was utilized for pharmacophore modeling, which employs a shape-based screening approach to identify potential ligand binding sites on protein targets. RESULTS: The molecular docking studies elucidated promising interactions between PMMA and MMA with key biomolecular targets relevant to dental applications. MD simulation results provided strong evidence supporting the structural stability of PMMA complexes over time. Pharmacophore modeling highlighted the significance of carbonyl and hydroxyl groups as pharmacophoric features, indicating compounds with favorable biocompatibility profiles. CONCLUSION: This study underscores the potential of PMMA in dental applications, emphasizing its structural stability, molecular interactions, and safety considerations. These findings lay a foundation for future advancements in dental biomaterials, guiding the design and optimization of materials for enhanced biocompatibility. Future directions include experimental validation of computational findings and the development of PMMA-based dental materials with improved biocompatibility and clinical performance.


Subject(s)
Biocompatible Materials , Dental Materials , Materials Testing , Molecular Docking Simulation , Molecular Dynamics Simulation , Polymethyl Methacrylate , Biocompatible Materials/chemistry , Polymethyl Methacrylate/chemistry , Dental Materials/chemistry , Humans , Ligands , Computer Simulation , Binding Sites
11.
J Cell Mol Med ; 28(9): e18316, 2024 May.
Article in English | MEDLINE | ID: mdl-38722291

ABSTRACT

Tissue engineering includes the construction of tissue-organ scaffold. The advantage of three-dimensional scaffolds over two-dimensional scaffolds is that they provide homeostasis for a longer time. The microbial community in Symbiotic culture of bacteria and yeast (SCOBY) can be a source for kombucha (kombu tea) production. In this study, it was aimed to investigate the usage of SCOBY, which produces bacterial cellulose, as a biomaterial and 3D scaffold material. 3D printable biomaterial was obtained by partial hydrolysis of oolong tea and black tea kombucha biofilms. In order to investigate the usage of 3D kombucha biomaterial as a tissue scaffold, "L929 cell line 3D cell culture" was created and cell viability was tested in the biomaterial. At the end of the 21st day, black tea showed 51% and oolong tea 73% viability. The cytotoxicity of the materials prepared by lyophilizing oolong and black tea kombucha beverages in fibroblast cell culture was determined. Black tea IC50 value: 7.53 mg, oolong tea IC50 value is found as 6.05 mg. Fibroblast viability in 3D biomaterial + lyophilized oolong and black tea kombucha beverages, which were created using the amounts determined to these values, were investigated by cell culture Fibroblasts in lyophilized and 3D biomaterial showed viability of 58% in black tea and 78% in oolong tea at the end of the 7th day. In SEM analysis, it was concluded that fibroblast cells created adhesion to the biomaterial. 3D biomaterial from kombucha mushroom culture can be used as tissue scaffold and biomaterial.


Subject(s)
Biocompatible Materials , Cell Survival , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Animals , Mice , Cell Survival/drug effects , Fibroblasts/drug effects , Tissue Engineering/methods , Cell Line , Kombucha Tea
12.
J Nanobiotechnology ; 22(1): 217, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725012

ABSTRACT

Excess free radicals at the wound site can cause an inflammatory response, which is not conducive to wound healing. Hydrogels with antioxidant properties can prevent inflammatory storms by scavenging free radicals from the wound site and inhibiting the release of inflammatory factors. In this study, we prepared the carboxymethyl chitosan (CMCS)/polyvinyl pyrrolidone (PVP)/Molybdenum (IV) Selenide (MoSe2), and platelet-rich plasma (PRP) (CMCS/PVP/MoSe2/PRP) hydrogels for accelerating the repair of wounds. In the hydrogels, the MoSe2 can scavenge various free radicals to reduce oxidative stress at the site of inflammation, endowed the hydrogels with antioxidant properties. Interestingly, growth factors released by PRP assisted the tissue repair by promoting the formation of new capillaries. CMCS as a backbone not only showed good biocompatibility and biodegradability but also played a significant role in maintaining the sustained release of growth factors. In addition, incorporating PVP enhanced the tissue adhesion and mechanical properties. The multifunctional composite antioxidant hydrogels have good swelling properties and biodegradability, which is completely degraded within 28 days. Thus, the antioxidant CMCS/PVP/MoSe2/PRP hydrogels provide a new idea for designing ideal multifunctional wound dressings.


Subject(s)
Antioxidants , Bandages , Chitosan , Hydrogels , Platelet-Rich Plasma , Povidone , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Wound Healing/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Povidone/chemistry , Povidone/analogs & derivatives , Hydrogels/chemistry , Hydrogels/pharmacology , Platelet-Rich Plasma/chemistry , Animals , Mice , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Oxidative Stress/drug effects , Humans
13.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715130

ABSTRACT

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Subject(s)
Bone Regeneration , Bone Regeneration/drug effects , Animals , Osteogenesis/drug effects , Tissue Engineering/methods , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Membranes, Artificial , Guided Tissue Regeneration/methods , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Rats
14.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Article in English | MEDLINE | ID: mdl-38702952

ABSTRACT

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Subject(s)
Alloys , Magnesium , Materials Testing , Alloys/chemistry , Magnesium/chemistry , Tungsten Compounds/chemistry , Biocompatible Materials/chemistry , Humans , Tensile Strength , Hip Joint
15.
Int J Nanomedicine ; 19: 3773-3804, 2024.
Article in English | MEDLINE | ID: mdl-38708181

ABSTRACT

Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.


Subject(s)
Exosomes , Hydrogels , Stem Cells , Exosomes/chemistry , Humans , Hydrogels/chemistry , Aged , Aging/physiology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Geriatrics
16.
Mikrochim Acta ; 191(6): 302, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709346

ABSTRACT

A sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.0 × 10-7-9.0 × 10-7 mol/L) and low detection limit (72.6 nmol/L, 17.28 ppb) were achieved for the visual determination of uranium. The recognition mechanism, photophysical properties, analytical performance and cytotoxicity were systematically investigated, demonstrating high potential for fast risk assessment of uranium pollution in field and in vivo.


Subject(s)
Fluorescent Dyes , Uranium , Uranium/analysis , Uranium/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Humans , Limit of Detection , Biocompatible Materials/chemistry , HeLa Cells , Cell Survival/drug effects , Optical Imaging , Aniline Compounds/chemistry , Aniline Compounds/toxicity , Pyridines/chemistry
17.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731508

ABSTRACT

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Subject(s)
Citric Acid , Durapatite , Polyethylene Glycols , Citric Acid/chemistry , Durapatite/chemistry , Polyethylene Glycols/chemistry , Gold/chemistry , Biocompatible Materials/chemistry , Materials Testing , Chitosan/chemistry , Porosity , Metal Nanoparticles/chemistry , Chemical Phenomena , Compressive Strength , Surface Properties
18.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731542

ABSTRACT

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Subject(s)
Biocompatible Materials , Cell Proliferation , Polyesters , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Animals , Mice , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Tensile Strength , Membranes, Artificial , Cell Line , Materials Testing , Polymers/chemistry , Cell Adhesion/drug effects
19.
Sci Rep ; 14(1): 10798, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734777

ABSTRACT

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Subject(s)
Biocompatible Materials , Bone Substitutes , Durapatite , Nanocomposites , Silicates , Durapatite/chemistry , Nanocomposites/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Silicates/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Drug Liberation , Dexamethasone/chemistry , Dexamethasone/pharmacology , Polymers/chemistry , Humans , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared , Animals
20.
ACS Appl Bio Mater ; 7(5): 3096-3109, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764432

ABSTRACT

Wire arc additive manufacturing (WAAM) holds promise for producing medium to large industrial components. Application of WAAM in the manufacturing of biomedical materials has not yet been evaluated. The current study addresses two key research questions: first, the suitability of the WAAMed Ti6Al4V alloy for biomedical applications, and second, the effect of Ti6Al4V's constituents (α and ß phases) on the cell viability. The WAAMed Ti6Al4V alloy was fabricated (as-deposited: AD) using a metal inert gas (MIG)-based wire arc system using an in-house designed shielding chamber filled with argon. Subsequently, samples were subjected to solution treatment (950 °C for 1 h), followed by aging at 480 °C (T1), 530 °C (T2), and 580 °C (T3) for 8 h and subsequent normalization to ambient conditions. Microstructural analysis revealed ∼45.45% of α'-Ti colonies in the as-deposited samples, reducing to 23.26% postaging at 580 °C (T3). The α-lath thickness and interstitial oxygen content in the sample were observed to be proportional to the aging temperature, peaking at 580 °C (T3). Remarkably, during tribocorrosion analysis in simulated body fluid, the 580 °C-aged T3 sample displayed the lowest corrosion rate (7.9 µm/year) and the highest coefficient of friction (CoF) at 0.58, showing the effect of increasing oxygen content in the alloy matrix. Cell studies showed significant growth at 530 and 580 °C by day 7, correlated with higher oxygen content, while other samples had declining cell density. Additionally, optimal metallurgical property ranges were identified to enhance the Ti6Al4V alloy's biocompatibility, providing crucial insights for biomedical implant development.


Subject(s)
Alloys , Biocompatible Materials , Cell Survival , Hot Temperature , Materials Testing , Titanium , Titanium/chemistry , Alloys/chemistry , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Particle Size , Mice , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...