Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.240
Filter
1.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822942

ABSTRACT

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Subject(s)
Bone Regeneration , Graphite , Osteoprotegerin , RANK Ligand , Rats, Wistar , Graphite/pharmacology , Animals , Bone Regeneration/drug effects , Rats , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Humans , Biocompatible Materials/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Signal Transduction/drug effects
2.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823920

ABSTRACT

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Subject(s)
Acrylic Resins , Hydrogels , Spheroids, Cellular , beta-Cyclodextrins , Spheroids, Cellular/drug effects , Humans , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , HeLa Cells , Animals , Mice , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Culture Techniques, Three Dimensional/methods , Methacrylates/chemistry , Coculture Techniques , Neoplasms/pathology
3.
Int J Nanomedicine ; 19: 3773-3804, 2024.
Article in English | MEDLINE | ID: mdl-38708181

ABSTRACT

Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.


Subject(s)
Exosomes , Hydrogels , Stem Cells , Exosomes/chemistry , Humans , Hydrogels/chemistry , Aged , Aging/physiology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Geriatrics
4.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731542

ABSTRACT

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Subject(s)
Biocompatible Materials , Cell Proliferation , Polyesters , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Animals , Mice , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Tensile Strength , Membranes, Artificial , Cell Line , Materials Testing , Polymers/chemistry , Cell Adhesion/drug effects
5.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
6.
J Nanobiotechnology ; 22(1): 217, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725012

ABSTRACT

Excess free radicals at the wound site can cause an inflammatory response, which is not conducive to wound healing. Hydrogels with antioxidant properties can prevent inflammatory storms by scavenging free radicals from the wound site and inhibiting the release of inflammatory factors. In this study, we prepared the carboxymethyl chitosan (CMCS)/polyvinyl pyrrolidone (PVP)/Molybdenum (IV) Selenide (MoSe2), and platelet-rich plasma (PRP) (CMCS/PVP/MoSe2/PRP) hydrogels for accelerating the repair of wounds. In the hydrogels, the MoSe2 can scavenge various free radicals to reduce oxidative stress at the site of inflammation, endowed the hydrogels with antioxidant properties. Interestingly, growth factors released by PRP assisted the tissue repair by promoting the formation of new capillaries. CMCS as a backbone not only showed good biocompatibility and biodegradability but also played a significant role in maintaining the sustained release of growth factors. In addition, incorporating PVP enhanced the tissue adhesion and mechanical properties. The multifunctional composite antioxidant hydrogels have good swelling properties and biodegradability, which is completely degraded within 28 days. Thus, the antioxidant CMCS/PVP/MoSe2/PRP hydrogels provide a new idea for designing ideal multifunctional wound dressings.


Subject(s)
Antioxidants , Bandages , Chitosan , Hydrogels , Platelet-Rich Plasma , Povidone , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Wound Healing/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Povidone/chemistry , Povidone/analogs & derivatives , Hydrogels/chemistry , Hydrogels/pharmacology , Platelet-Rich Plasma/chemistry , Animals , Mice , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Oxidative Stress/drug effects , Humans
7.
ACS Appl Mater Interfaces ; 16(19): 25317-25332, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38706308

ABSTRACT

This investigation aimed to construct a bilayer scaffold integrating alginate and gelatin with nanobioactive glass (BG), recognized for their efficacy in tissue regeneration and drug delivery. Scaffolds, namely, alginate/gelatin (AG), alginate-/actonel gelatin (AGD), alginate actenol/gelatin-45S5 BG (4AGD), and alginate-actonel/gelatin-59S BG (5AGD), were assembled using a cost-effective freeze-drying method, followed by detailed structural investigation via powder X-ray diffraction as well as morphological characterization using field emission scanning electron microscopy (FESEM). FESEM revealed a honeycomb-like morphology with distinct pore sizes for nutrient, oxygen, and drug transport. The scaffolds evidently exhibited hemocompatibility, high porosity, good swelling capacity, and biodegradability. In vitro studies demonstrated sustained drug release, particularly for scaffolds containing actonel. In vivo tests showed that the bilayer scaffold promoted new bone formation, surpassing the control group in bone area increase. The interaction of the scaffold with collagen and released ions improved the osteoblastic function and bone volume fraction. The findings suggest that this bilayer scaffold could be beneficial for treating critical-sized bone defects, especially in the mandibular and femoral regions.


Subject(s)
Femur , Glass , Mandible , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Glass/chemistry , Mandible/diagnostic imaging , Mandible/surgery , Mandible/drug effects , Femur/drug effects , Femur/diagnostic imaging , Femur/pathology , Gelatin/chemistry , Bone Regeneration/drug effects , Alginates/chemistry , Porosity , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Engineering
8.
Mil Med Res ; 11(1): 29, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741175

ABSTRACT

Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.


Subject(s)
Biocompatible Materials , Dental Implants , Peri-Implantitis , Peri-Implantitis/therapy , Peri-Implantitis/prevention & control , Peri-Implantitis/drug therapy , Humans , Dental Implants/standards , Biocompatible Materials/therapeutic use , Biocompatible Materials/pharmacology , Biofilms/drug effects , Surface Properties , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology
9.
Stem Cell Res Ther ; 15(1): 135, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715130

ABSTRACT

BACKGROUND: Biomaterials used in bone tissue engineering must fulfill the requirements of osteoconduction, osteoinduction, and osseointegration. However, biomaterials with good osteoconductive properties face several challenges, including inadequate vascularization, limited osteoinduction and barrier ability, as well as the potential to trigger immune and inflammatory responses. Therefore, there is an urgent need to develop guided bone regeneration membranes as a crucial component of tissue engineering strategies for repairing bone defects. METHODS: The mZIF-8/PLA membrane was prepared using electrospinning technology and simulated body fluid external mineralization method. Its ability to induce biomimetic mineralization was evaluated through TEM, EDS, XRD, FT-IR, zeta potential, and wettability techniques. The biocompatibility, osteoinduction properties, and osteo-immunomodulatory effects of the mZIF-8/PLA membrane were comprehensively evaluated by examining cell behaviors of surface-seeded BMSCs and macrophages, as well as the regulation of cellular genes and protein levels using PCR and WB. In vivo, the mZIF-8/PLA membrane's potential to promote bone regeneration and angiogenesis was assessed through Micro-CT and immunohistochemical staining. RESULTS: The mineralized deposition enhances hydrophilicity and cell compatibility of mZIF-8/PLA membrane. mZIF-8/PLA membrane promotes up-regulation of osteogenesis and angiogenesis related factors in BMSCs. Moreover, it induces the polarization of macrophages towards the M2 phenotype and modulates the local immune microenvironment. After 4-weeks of implantation, the mZIF-8/PLA membrane successfully bridges critical bone defects and almost completely repairs the defect area after 12-weeks, while significantly improving the strength and vascularization of new bone. CONCLUSIONS: The mZIF-8/PLA membrane with dual osteoconductive and immunomodulatory abilities could pave new research paths for bone tissue engineering.


Subject(s)
Bone Regeneration , Bone Regeneration/drug effects , Animals , Osteogenesis/drug effects , Tissue Engineering/methods , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Membranes, Artificial , Guided Tissue Regeneration/methods , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Rats
10.
J Mech Behav Biomed Mater ; 155: 106579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749266

ABSTRACT

Silicon nitride is utilized clinically as a bioceramic for spinal fusion cages, owing to its high strength, osteoconductivity, and antibacterial effects. Nevertheless, silicon nitride exhibits suboptimal damping properties, a critical factor in mitigating traumatic bone injuries and fractures. In fact, there is a scarcity of spinal implants that simultaneously demonstrate proficient damping performance and support osteogenesis. In our study, we fabricated a novel sodium alginate-silicon nitride/poly(vinyl alcohol) (SA-SiN/PVA) composite scaffold, enabling enhanced energy absorption and rapid elastic recovery under quasi-static and impact loading scenarios. Furthermore, the study demonstrated that the incorporation of physical and chemical cross-linking significantly improved stiffness and recoverable energy dissipation. Concerning the interaction between cells and materials, our findings suggest that the addition of silicon nitride stimulated osteogenic differentiation while inhibiting Staphylococcus aureus growth. Collectively, the amalgamation of ceramics and tough hydrogels facilitates the development of advanced composites for spinal implants, manifesting superior damping, osteogenic potential, and antibacterial properties. This approach holds broader implications for applications in bone tissue engineering.


Subject(s)
Alginates , Biocompatible Materials , Materials Testing , Polyvinyl Alcohol , Silicon Compounds , Staphylococcus aureus , Alginates/chemistry , Alginates/pharmacology , Polyvinyl Alcohol/chemistry , Silicon Compounds/chemistry , Silicon Compounds/pharmacology , Staphylococcus aureus/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Osteogenesis/drug effects , Mechanical Phenomena , Tissue Scaffolds/chemistry , Humans
11.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693878

ABSTRACT

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Subject(s)
Acetylcysteine , Anti-Bacterial Agents , Biofilms , Escherichia coli , Nitric Oxide , Staphylococcus aureus , Acetylcysteine/chemistry , Acetylcysteine/pharmacology , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Polyvinyl Chloride/chemistry , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology
12.
ACS Appl Mater Interfaces ; 16(19): 24261-24273, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709741

ABSTRACT

In this work, bioactive glass (BG) particles obtained by three different methods (melt-quenching, sol-gel, and sol-gel-EISA) were used as modifiers of polyphenol-loaded PCL-based composites. The composites were loaded with polyphenolic compounds (PPh) extracted from sage (Salvia officinalis L.). It was hypothesized that BG particles, due to their different textural properties (porosity, surface area) and surface chemistry (content of silanol groups), would act as an agent to control the release of polyphenols from PCL/BG composite films and other significant properties associated with and affected by the presence of PPh. The polyphenols improved the hydrophilicity, apatite-forming ability, and mechanical properties of the composites and provided antioxidant and anticancer activity. As the BG particles had different polyphenol-binding capacities, they modulated the kinetics of polyphenol release from the composites and the aforementioned properties to a great extent. Importantly, the PPh-loaded materials exhibited multifaceted and selective anticancer activity, including ROS-mediated cell cycle arrest and apoptosis of osteosarcoma (OS) cells (Saos-2) via Cdk2-, GADD45G-, and caspase-3/7-dependent pathways. The materials showed a cytotoxic and antiproliferative effect on cancerous osteoblasts but not on normal human osteoblasts. These results suggest that the composites have great potential as biomaterials for treating bone defects, particularly following surgical removal of OS tumors.


Subject(s)
Antineoplastic Agents , Glass , Polyphenols , Polyphenols/chemistry , Polyphenols/pharmacology , Humans , Glass/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Polyesters/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology
13.
Food Chem ; 451: 139469, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703727

ABSTRACT

Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.


Subject(s)
Antioxidants , Euphausiacea , Phospholipids , Euphausiacea/chemistry , Animals , Phospholipids/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Colloids/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antarctic Regions , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology
14.
Carbohydr Polym ; 338: 122204, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763712

ABSTRACT

This study presents the development and characterization of a novel double-network self-healing hydrogel based on N-carboxyethyl chitosan (CEC) and oxidized dextran (OD) with the incorporation of crosslinked collagen (CEC-OD/COL-GP) to enhance its biological and physicochemical properties. The hydrogel formed via dynamic imine bond formation exhibited efficient self-healing within 30 min, and a compressive modulus recovery of 92 % within 2 h. In addition to its self-healing ability, CEC-OD/COL-GP possesses unique physicochemical characteristics including transparency, injectability, and adhesiveness to various substrates and tissues. Cell encapsulation studies confirmed the biocompatibility and suitability of the hydrogel as a cell-culture scaffold, with the presence of a collagen network that enhances cell adhesion, spreading, long-term cell viability, and proliferation. Leveraging their unique properties, we engineered assemblies of self-healing hydrogel modules for controlled spatiotemporal drug delivery and constructed co-culture models that simulate angiogenesis in tumor microenvironments. Overall, the CEC-OD/COL-GP hydrogel is a versatile and promising material for biomedical applications, offering a bottom-up approach for constructing complex structures with self-healing capabilities, controlled drug release, and support for diverse cell types in 3D environments. This hydrogel platform has considerable potential for advancements in tissue engineering and therapeutic interventions.


Subject(s)
Cell Adhesion , Chitosan , Dextrans , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Dextrans/chemistry , Humans , Cell Adhesion/drug effects , Cell Survival/drug effects , Collagen/chemistry , Animals , Drug Liberation , Cell Proliferation/drug effects , Cell Encapsulation/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice , Biomimetics/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry
15.
Carbohydr Polym ; 338: 122173, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763720

ABSTRACT

The dynamic interplay between cells and their native extracellular matrix (ECM) influences cellular behavior, imposing a challenge in biomaterial design. Dynamic covalent hydrogels are viscoelastic and show self-healing ability, making them a potential scaffold for recapitulating native ECM properties. We aimed to implement kinetically and thermodynamically distinct crosslinkers to prepare self-healing dynamic hydrogels to explore the arising properties and their effects on cellular behavior. To do so, aldehyde-substituted hyaluronic acid (HA) was synthesized to generate imine, hydrazone, and oxime crosslinked dynamic covalent hydrogels. Differences in equilibrium constants of these bonds yielded distinct properties including stiffness, stress relaxation, and self-healing ability. The effects of degree of substitution (DS), polymer concentration, crosslinker to aldehyde ratio, and crosslinker functionality on hydrogel properties were evaluated. The self-healing ability of hydrogels was investigated on samples of the same and different crosslinkers and DS to obtain hydrogels with gradient properties. Subsequently, human dermal fibroblasts were cultured in 2D and 3D to assess the cellular response considering the dynamic properties of the hydrogels. Moreover, assessing cell spreading and morphology on hydrogels having similar modulus but different stress relaxation rates showed the effects of matrix viscoelasticity with higher cell spreading in slower relaxing hydrogels.


Subject(s)
Cross-Linking Reagents , Fibroblasts , Hyaluronic Acid , Hydrogels , Schiff Bases , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Humans , Fibroblasts/drug effects , Fibroblasts/cytology , Schiff Bases/chemistry , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Cells, Cultured
16.
Carbohydr Polym ; 338: 122148, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763731

ABSTRACT

Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.


Subject(s)
Alginates , Gels , Hemostasis , Hemostatics , Alginates/chemistry , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Hemostasis/drug effects , Gels/chemistry , Porosity , Hemorrhage/drug therapy , Blood Coagulation/drug effects , Mice , Male , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
17.
ACS Appl Bio Mater ; 7(5): 3096-3109, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764432

ABSTRACT

Wire arc additive manufacturing (WAAM) holds promise for producing medium to large industrial components. Application of WAAM in the manufacturing of biomedical materials has not yet been evaluated. The current study addresses two key research questions: first, the suitability of the WAAMed Ti6Al4V alloy for biomedical applications, and second, the effect of Ti6Al4V's constituents (α and ß phases) on the cell viability. The WAAMed Ti6Al4V alloy was fabricated (as-deposited: AD) using a metal inert gas (MIG)-based wire arc system using an in-house designed shielding chamber filled with argon. Subsequently, samples were subjected to solution treatment (950 °C for 1 h), followed by aging at 480 °C (T1), 530 °C (T2), and 580 °C (T3) for 8 h and subsequent normalization to ambient conditions. Microstructural analysis revealed ∼45.45% of α'-Ti colonies in the as-deposited samples, reducing to 23.26% postaging at 580 °C (T3). The α-lath thickness and interstitial oxygen content in the sample were observed to be proportional to the aging temperature, peaking at 580 °C (T3). Remarkably, during tribocorrosion analysis in simulated body fluid, the 580 °C-aged T3 sample displayed the lowest corrosion rate (7.9 µm/year) and the highest coefficient of friction (CoF) at 0.58, showing the effect of increasing oxygen content in the alloy matrix. Cell studies showed significant growth at 530 and 580 °C by day 7, correlated with higher oxygen content, while other samples had declining cell density. Additionally, optimal metallurgical property ranges were identified to enhance the Ti6Al4V alloy's biocompatibility, providing crucial insights for biomedical implant development.


Subject(s)
Alloys , Biocompatible Materials , Cell Survival , Hot Temperature , Materials Testing , Titanium , Titanium/chemistry , Alloys/chemistry , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Particle Size , Mice , Surface Properties
18.
Sci Rep ; 14(1): 11093, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750188

ABSTRACT

A chronic nonhealing wound poses a significant risk for infection and subsequent health complications, potentially endangering the patient's well-being. Therefore, effective wound dressings must meet several crucial criteria, including: (1) eliminating bacterial pathogen growth within the wound, (2) forming a barrier against airborne microbes, (3) promoting cell proliferation, (4) facilitating tissue repair. In this study, we synthesized 8 ± 3 nm Ag NP with maleic acid and incorporated them into an electrospun polycaprolactone (PCL) matrix with 1.6 and 3.4 µm fiber sizes. The Ag NPs were anchored to the matrix via electrospraying water-soluble poly(vinyl) alcohol (PVA), reducing the average sphere size from 750 to 610 nm in the presence of Ag NPs. Increasing the electrospraying time of Ag NP-treated PVA spheres demonstrated a more pronounced antibacterial effect. The resultant silver-based material exhibited 100% inhibition of gram-negative Escherichia coli and gram-positive Staphylococcus aureus growth within 6 h while showing non-cytotoxic effects on the Vero cell line. We mainly discuss the preparation method aspects of the membrane, its antibacterial properties, and cytotoxicity, suggesting that combining these processes holds promise for various medical applications.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Escherichia coli , Polyesters , Polyvinyl Alcohol , Silver , Staphylococcus aureus , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Silver/chemistry , Silver/pharmacology , Polyesters/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Vero Cells , Animals , Chlorocebus aethiops , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Metal Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Microbial Sensitivity Tests
19.
J Nanobiotechnology ; 22(1): 258, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755644

ABSTRACT

Electrical stimulation (ES) is considered a promising therapy for chronic wounds via conductive dressing. However, the lack of a clinically suitable conductive dressing is a serious challenge. In this study, a suitable conductive biomaterial with favorable biocompatibility and conductivity was screened by means of an inherent structure derived from the body based on electrical conduction in vivo. Ions condensed around the surface of the microtubules (MTs) derived from the cell's cytoskeleton are allowed to flow in the presence of potential differences, effectively forming a network of biological electrical wires, which is essential to the bioelectrical communication of cells. We hypothesized that MT dressing could improve chronic wound healing via the conductivity of MTs applied by ES. We first developed an MT-MAA hydrogel by a double cross-linking method using UV and calcium chloride to improve chronic wound healing by ES. In vitro studies showed good conductivity, mechanical properties, biocompatibility, and biodegradability of the MT-MAA hydrogel, as well as an elevated secretion of growth factors with enhanced cell proliferation and migration ability in response to ES. The in vivo experimental results from a full-thickness diabetic wound model revealed rapid wound closure within 7d in C57BL/6J mice, and the wound bed dressed by the MT-MAA hydrogel was shown to have promoted re-epithelization, enhanced angiogenesis, accelerated nerve growth, limited inflammation phases, and improved antibacterial effect under the ES treatment. These preclinical findings suggest that the MT-MAA hydrogel may be an ideal conductive dressing for chronic wound healing. Furthermore, biomaterials based on MTs may be also promising for treating other diseases.


Subject(s)
Electric Conductivity , Hydrogels , Mice, Inbred C57BL , Microtubules , Wound Healing , Animals , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Microtubules/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Humans , Electric Stimulation , Cell Proliferation/drug effects , Cell Movement/drug effects , Bandages
20.
ACS Appl Bio Mater ; 7(5): 3316-3329, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38691017

ABSTRACT

Basic fibroblast growth factor (bFGF) plays an important role in active wound repair. However, the existing dosage forms in clinical applications are mainly sprays and freeze-dried powders, which are prone to inactivation and cannot achieve a controlled release. In this study, a bioactive wound dressing named bFGF-ATP-Zn/polycaprolactone (PCL) nanodressing with a "core-shell" structure was fabricated by emulsion electrospinning, enabling the sustained release of bFGF. Based on the coordination and electrostatic interactions among bFGF, ATP, and Zn2+, as well as their synergistic effect on promoting wound healing, a bFGF-ATP-Zn ternary combination system was prepared with higher cell proliferation activity and used as the water phase for emulsion electrospinning. The bFGF-ATP-Zn/PCL nanodressing demonstrated improved mechanical properties, sustained release of bFGF, cytocompatibility, and hemocompatibility. It increased the proliferation activity of human dermal fibroblasts (HDFs) and enhanced collagen secretion by 1.39 and 3.45 times, respectively, while reducing the hemolysis rate to 3.13%. The application of the bFGF-ATP-Zn/PCL nanodressing in mouse full-thickness skin defect repair showed its ability to accelerate wound healing and reduce wound scarring within 14 days. These results provide a research basis for the development and application of this bioactive wound dressing product.


Subject(s)
Adenosine Triphosphate , Biocompatible Materials , Cell Proliferation , Emulsions , Fibroblast Growth Factor 2 , Materials Testing , Wound Healing , Zinc , Wound Healing/drug effects , Emulsions/chemistry , Animals , Zinc/chemistry , Zinc/pharmacology , Humans , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/pharmacology , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Adenosine Triphosphate/metabolism , Particle Size , Fibroblasts/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Bandages
SELECTION OF CITATIONS
SEARCH DETAIL
...