Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93.363
Filter
1.
Bull Math Biol ; 86(7): 84, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847946

ABSTRACT

Recent developments of eco-evolutionary models have shown that evolving feedbacks between behavioral strategies and the environment of game interactions, leading to changes in the underlying payoff matrix, can impact the underlying population dynamics in various manners. We propose and analyze an eco-evolutionary game dynamics model on a network with two communities such that players interact with other players in the same community and those in the opposite community at different rates. In our model, we consider two-person matrix games with pairwise interactions occurring on individual edges and assume that the environmental state depends on edges rather than on nodes or being globally shared in the population. We analytically determine the equilibria and their stability under a symmetric population structure assumption, and we also numerically study the replicator dynamics of the general model. The model shows rich dynamical behavior, such as multiple transcritical bifurcations, multistability, and anti-synchronous oscillations. Our work offers insights into understanding how the presence of community structure impacts the eco-evolutionary dynamics within and between niches.


Subject(s)
Biological Evolution , Game Theory , Mathematical Concepts , Population Dynamics , Population Dynamics/statistics & numerical data , Humans , Models, Biological , Ecosystem , Computer Simulation , Feedback , Animals , Environment
2.
PLoS One ; 19(6): e0302794, 2024.
Article in English | MEDLINE | ID: mdl-38848435

ABSTRACT

The structure of communities is influenced by many ecological and evolutionary processes, but the way these manifest in classic biodiversity patterns often remains unclear. Here we aim to distinguish the ecological footprint of selection-through competition or environmental filtering-from that of neutral processes that are invariant to species identity. We build on existing Massive Eco-evolutionary Synthesis Simulations (MESS), which uses information from three biodiversity axes-species abundances, genetic diversity, and trait variation-to distinguish between mechanistic processes. To correctly detect and characterise competition, we add a new and more realistic form of competition that explicitly compares the traits of each pair of individuals. Our results are qualitatively different to those of previous work in which competition is based on the distance of each individual's trait to the community mean. We find that our new form of competition is easier to identify in empirical data compared to the alternatives. This is especially true when trait data are available and used in the inference procedure. Our findings hint that signatures in empirical data previously attributed to neutrality may in fact be the result of pairwise-acting selective forces. We conclude that gathering more different types of data, together with more advanced mechanistic models and inference as done here, could be the key to unravelling the mechanisms of community assembly and question the relative roles of neutral and selective processes.


Subject(s)
Biodiversity , Selection, Genetic , Ecosystem , Biological Evolution , Genetic Variation , Computer Simulation
3.
Nat Commun ; 15(1): 4872, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849331

ABSTRACT

Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that, to our knowledge, has not been investigated in these species-the connections between projection neurons and the Kenyon cells of the mushroom body-and identify species-specific connectivity patterns. We found that neurons encoding food odors connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific connectivity differences reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.


Subject(s)
Biological Evolution , Drosophila , Mushroom Bodies , Species Specificity , Animals , Mushroom Bodies/physiology , Mushroom Bodies/cytology , Mushroom Bodies/anatomy & histology , Drosophila/physiology , Drosophila/anatomy & histology , Neurons/physiology , Drosophila melanogaster/physiology , Drosophila melanogaster/anatomy & histology , Phylogeny , Smell/physiology , Odorants , Olfactory Pathways/physiology , Olfactory Pathways/anatomy & histology , Male , Female , Presynaptic Terminals/physiology
4.
Nat Commun ; 15(1): 4864, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849350

ABSTRACT

How do biological networks evolve and expand? We study these questions in the context of the plant collaborative-non-self recognition self-incompatibility system. Self-incompatibility evolved to avoid self-fertilization among hermaphroditic plants. It relies on specific molecular recognition between highly diverse proteins of two families: female and male determinants, such that the combination of genes an individual possesses determines its mating partners. Though highly polymorphic, previous models struggled to pinpoint the evolutionary trajectories by which new specificities evolved. Here, we construct a novel theoretical framework, that crucially affords interaction promiscuity and multiple distinct partners per protein, as is seen in empirical findings disregarded by previous models. We demonstrate spontaneous self-organization of the population into distinct "classes" with full between-class compatibility and a dynamic long-term balance between class emergence and decay. Our work highlights the importance of molecular recognition promiscuity to network evolvability. Promiscuity was found in additional systems suggesting that our framework could be more broadly applicable.


Subject(s)
Ribonucleases , Self-Incompatibility in Flowering Plants , Ribonucleases/metabolism , Ribonucleases/genetics , Self-Incompatibility in Flowering Plants/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Plants/genetics , Plants/metabolism , Biological Evolution
5.
Planta ; 260(1): 14, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829418

ABSTRACT

MAIN CONCLUSION: Significant past, present, and potential future research into the organellar (plastid and mitochondrial) genomes of gymnosperms that can provide insight into the unknown origin and evolution of plants is highlighted. Gymnosperms are vascular seed plants that predominated the ancient world before their sister clade, angiosperms, took over during the Late Cretaceous. The divergence of gymnosperms and angiosperms took place around 300 Mya, with the latter evolving into the diverse group of flowering plants that dominate the plant kingdom today. Although gymnosperms have reportedly made some evolutionary innovations, the literature on their genome advances, particularly their organellar (plastid and mitochondrial) genomes, is relatively scattered and fragmented. While organellar genomes can shed light on plant origin and evolution, they are frequently overlooked, due in part to their limited contribution to gene expression and lack of evolutionary dynamics when compared to nuclear genomes. A better understanding of gymnosperm organellar genomes is critical because they reveal genetic changes that have contributed to their unique adaptations and ecological success, potentially aiding in plant survival, enhancement, and biodiversity conservation in the face of climate change. This review reveals significant information and gaps in the existing knowledge base of organellar genomes in gymnosperms, as well as the challenges and research needed to unravel their complexity.


Subject(s)
Cycadopsida , Genome, Mitochondrial , Genome, Plant , Cycadopsida/genetics , Genome, Plant/genetics , Genome, Mitochondrial/genetics , Genome, Plastid/genetics , Evolution, Molecular , Phylogeny , Biological Evolution
6.
PeerJ ; 12: e17365, 2024.
Article in English | MEDLINE | ID: mdl-38827314

ABSTRACT

The saturniid moth genus Automeris includes 145 described species. Their geographic distribution ranges from the eastern half of North America to as far south as Peru. Automeris moths are cryptically colored, with forewings that resemble dead leaves, and conspicuously colored, elaborate eyespots hidden on their hindwings. Despite their charismatic nature, the evolutionary history and relationships within Automeris and between closely related genera, remain poorly understood. In this study, we present the most comprehensive phylogeny of Automeris to date, including 80 of the 145 described species. We also incorporate two morphologically similar hemileucine genera, Pseudautomeris and Leucanella, as well as a morphologically distinct genus, Molippa. We obtained DNA data from both dry-pinned and ethanol-stored museum specimens and conducted Anchored Hybrid Enrichment (AHE) sequencing to assemble a high-quality dataset for phylogenetic analysis. The resulting phylogeny supports Automeris as a paraphyletic genus, with Leucanella and Pseudautomeris nested within, with the most recent common ancestor dating back to 21 mya. This study lays the foundation for future research on various aspects of Automeris biology, including geographical distribution patterns, potential drivers of speciation, and ecological adaptations such as antipredator defense mechanisms.


Subject(s)
Moths , Phylogeny , Animals , Moths/genetics , Moths/classification , Moths/anatomy & histology , Biological Evolution
8.
J R Soc Interface ; 21(215): 20230594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835245

ABSTRACT

The speed of evolution on structured populations is crucial for biological and social systems. The likelihood of invasion is key for evolutionary stability. But it makes little sense if it takes long. It is far from known what population structure slows down evolution. We investigate the absorption time of a single neutral mutant for all the 112 non-isomorphic undirected graphs of size 6. We find that about three-quarters of the graphs have an absorption time close to that of the complete graph, less than one-third are accelerators, and more than two-thirds are decelerators. Surprisingly, determining whether a graph has a long absorption time is too complicated to be captured by the joint degree distribution. Via the largest sojourn time, we find that echo-chamber-like graphs, which consist of two homogeneous graphs connected by few sparse links, are likely to slow down absorption. These results are robust for large graphs, mutation patterns as well as evolutionary processes. This work serves as a benchmark for timing evolution with complex interactions, and fosters the understanding of polarization in opinion formation.


Subject(s)
Biological Evolution , Mutation , Models, Genetic
9.
Proc Biol Sci ; 291(2024): 20232791, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835273

ABSTRACT

Sociality underpins major evolutionary transitions and significantly influences the structure and function of complex ecosystems. Social insects, seen as the pinnacle of sociality, have traits like obligate sterility that are considered 'master traits', used as single phenotypic measures of this complexity. However, evidence is mounting that completely aligning both phenotypic and evolutionary social complexity, and having obligate sterility central to both, is erroneous. We hypothesize that obligate and functional sterility are insufficient in explaining the diversity of phenotypic social complexity in social insects. To test this, we explore the relative importance of these sterility traits in an understudied but diverse taxon: the termites. We compile the largest termite social complexity dataset to date, using specimen and literature data. We find that although functional and obligate sterility explain a significant proportion of variance, neither trait is an adequate singular proxy for the phenotypic social complexity of termites. Further, we show both traits have only a weak association with the other social complexity traits within termites. These findings have ramifications for our general comprehension of the frameworks of phenotypic and evolutionary social complexity, and their relationship with sterility.


Subject(s)
Isoptera , Social Behavior , Isoptera/physiology , Animals , Biological Evolution , Phenotype , Behavior, Animal
10.
Proc Biol Sci ; 291(2024): 20240446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835275

ABSTRACT

Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.


Subject(s)
Genetic Pleiotropy , Signal Transduction , Animals , Biological Evolution , Host-Parasite Interactions , Genetic Fitness , Resource Allocation
11.
Elife ; 122024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832493

ABSTRACT

Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual 'swimming personality', and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.


Subject(s)
Behavior, Animal , Biological Evolution , Characidae , Smell , Animals , Smell/physiology , Characidae/physiology , Behavior, Animal/physiology , Odorants , Personality/physiology , Swimming/physiology , Olfactory Perception/physiology , Caves , Larva/physiology
12.
PLoS One ; 19(6): e0304772, 2024.
Article in English | MEDLINE | ID: mdl-38829848

ABSTRACT

Unisexual hybrids that reproduce either clonally or hemiclonally are considered to be evolutionarily short-lived as they lack the ability to reduce deleterious mutations and increase genetic diversity. In the greenling (Teleostei: Hexagrammidae, genus Hexagrammos), unisexual hybrids that produce haploid eggs containing only the H. octogrammus (maternal species) genome generate hemiclonal offspring by fertilization with haploid sperm of H. agrammus (paternal species). When hemiclonal hybrids are backcrossed to a male of the maternal species, the offspring (BC-Hoc) are phenotypically similar to the maternal species and produce recombinant gametes through conventional meiosis. BC-Hoc (recombinant generation) individuals referred to as carriers harbor the genetic factor for hybridogenesis, thereby facilitating the production of new hemiclonal lineages through hybridization. Previous studies based on field research have suggested that the carriers produced by two-way backcrossing (mating pattern in which hemiclonal hybrids are backcrossed with both parental species) may overcome the evolutionary dead end imposed by the lack of recombination. The present study verified this hypothesis by regenerating a newly hemiclonal lineage through artificial hybridization. To clarify the genetic mode of hybrids produced by crosses between BC-Hoc and Hag, mature eggs were obtained from 16 individuals and fertilized with either Hag or Hoc sperm. Hybridogenesis was confirmed in one of the 16 individuals. Based on the low occurrence rate, these findings suggest that hemiclonal lineages can be regenerated, and that the hemiclonal factors are likely distributed across multiple genes on different chromosomes. The findings provide important evidence for the retention of a robust system for increasing genetic variability and maintaining evolutionary succession in unisexual hybrids that reproduce hemiclonally.


Subject(s)
Genetic Variation , Hybridization, Genetic , Animals , Male , Female , Biological Evolution , Regeneration/genetics
13.
Ecol Lett ; 27(6): e14457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844349

ABSTRACT

Interspecific competition can hinder populations from evolutionarily adapting to abiotic environments, particularly by reducing population size and niche space; and feedback may arise between competitive ability and evolutionary adaptation. Here we studied populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, that evolved in monocultures and cocultures for approximately 2400 generations at three temperatures. The two species showed a reversal in competitive dominance in cocultures along the temperature gradient. Populations from cocultures where they had been competitively dominant showed the same magnitude of fitness gain as those in monocultures. However, competitively inferior populations in cocultures showed limited abiotic adaptation compared with those in monocultures. The inferior populations in cocultures were also more likely to evolve weaker interspecific competitive ability, or go extinct. The possible competitive ability-adaptation feedback may have crucial consequences for population persistence.


Subject(s)
Adaptation, Physiological , Biological Evolution , Escherichia coli , Pseudomonas fluorescens , Pseudomonas fluorescens/physiology , Pseudomonas fluorescens/genetics , Escherichia coli/physiology , Temperature
14.
Science ; 384(6700): 1111-1117, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843333

ABSTRACT

Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials.


Subject(s)
Adipose Tissue, Brown , Marsupialia , Thermogenesis , Uncoupling Protein 1 , Thermogenesis/genetics , Animals , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Adipose Tissue, Brown/metabolism , Marsupialia/genetics , Marsupialia/physiology , Biological Evolution , Eutheria/genetics , Transcriptome , Evolution, Molecular , Phylogeny , Adipose Tissue, Beige/metabolism , Humans
15.
Science ; 384(6700): 1065-1066, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843350

ABSTRACT

Comparative genomics elucidates the steps enabling heat production in fat tissue.


Subject(s)
Adipose Tissue, Brown , Biological Evolution , Mammals , Thermogenesis , Animals , Mammals/genetics , Mammals/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/physiology , Humans , Genomics
16.
Commun Biol ; 7(1): 690, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839937

ABSTRACT

Evolutionary biology faces the important challenge of determining how to interpret the relationship between selection pressures and evolutionary radiation. The lack of morphological evidence on cross-species research adds to difficulty of this challenge. We proposed a new paradigm for evaluating the evolution of branches through changes in characters on continuous spatiotemporal scales, for better interpreting the impact of biotic/abiotic drivers on the evolutionary radiation. It reveals a causal link between morphological changes and selective pressures: consistent deformation signals for all tested characters on timeline, which provided strong support for the evolutionary hypothesis of relationship between scarabs and biotic/abiotic drivers; the evolutionary strategies under niche differentiation, which were manifested in the responsiveness degree of functional morphological characters with different selection pressure. This morphological information-driven integrative approach sheds light on the mechanism of macroevolution under different selection pressures and is applicable to more biodiversity research.


Subject(s)
Biological Evolution , Phylogeny , Animals , Coleoptera/anatomy & histology , Coleoptera/genetics , Selection, Genetic
17.
Curr Biol ; 34(11): R549-R551, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834031

ABSTRACT

Anglerfish are creatures of the deep ocean, featuring glowing lures, huge, toothy mouths and parasitic males physically attached to females. A new study finds that genomic degradation of the immune system facilitated the origin of parasitic males as anglerfishes invaded the deep zone where they experienced an adaptive radiation.


Subject(s)
Biological Evolution , Animals , Male , Fishes/genetics , Fishes/parasitology , Genetic Speciation , Female , Oceans and Seas
18.
Curr Biol ; 34(11): R533-R536, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834025

ABSTRACT

The diversification and taxonomy of modern giraffe lineages have been a riddle for more than 200 years. A new genomic study shows that divergence with gene flow has played a significant role in the history of this zoological icon.


Subject(s)
Biological Evolution , Genome , Giraffes , Animals , Giraffes/genetics , Gene Flow , Phylogeny
19.
Environ Microbiol ; 26(6): e16664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830671

ABSTRACT

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.


Subject(s)
Microbiota , Milk , Nutrients , RNA, Ribosomal, 16S , Animals , Milk/microbiology , Nutrients/metabolism , RNA, Ribosomal, 16S/genetics , Macaca mulatta/microbiology , Female , Cercopithecidae/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biological Evolution
20.
Evol Psychol ; 22(2): 14747049241258355, 2024.
Article in English | MEDLINE | ID: mdl-38840335

ABSTRACT

On the surface, fear and humor seem like polar opposite states of mind, yet throughout our lives they continually interact. In this paper, we synthesize neurobiological, psychological, and evolutionary research on fear and humor, arguing that the two are deeply connected. The evolutionary origins of humor reside in play, a medium through which animals benignly explore situations and practice strategies, such as fight or flight, which would normally be accompanied by fear. Cognitively, humor retains the structure of play. Adopting a view of humor as requiring two appraisals, a violation appraisal and a benign appraisal, we describe how fear-inducing stimuli can be rendered benignly humorous through contextual cues, psychological distance, reframing, and cognitive reappraisal. The antagonistic relationship between humor and fear in terms of their neurochemistry and physiological effects in turn makes humor ideal for managing fear in many circumstances. We review five real-world examples of humor and fear intersecting, presenting new data in support of our account along the way. Finally, we discuss the possible therapeutic relevance of the deep connection between humor and fear.


Subject(s)
Fear , Laughter , Wit and Humor as Topic , Wit and Humor as Topic/psychology , Fear/psychology , Humans , Laughter/psychology , Cognition/physiology , Biological Evolution , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...