Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93.703
Filter
1.
Biol Lett ; 20(7): 20240106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955226

ABSTRACT

Feather moulting is a crucial process in the avian life cycle, which evolved to maintain plumage functionality. However, moulting involves both energetic and functional costs. During moulting, plumage function temporarily decreases between the shedding of old feathers and the full growth of new ones. In flying taxa, a gradual and sequential replacement of flight feathers evolved to maintain aerodynamic capabilities during the moulting period. Little is known about the moult strategies of non-avian pennaraptoran dinosaurs and stem birds, before the emergence of crown lineage. Here, we report on two Early Cretaceous pygostylian birds from the Yixian Formation (125 mya), probably referable to Confuciusornithiformes, exhibiting morphological characteristics that suggest a gradual and sequential moult of wing flight feathers. Short primary feathers interpreted as immature are symmetrically present on both wings, as is typical among extant flying birds. Our survey of the enormous collection of the Tianyu Museum confirms previous findings that evidence of active moult in non-neornithine pennaraptorans is rare and likely indicates a moult cycle greater than one year. Documenting moult in Mesozoic feathered dinosaurs is critical for understanding their ecology, locomotor ability and the evolution of this important life-history process in birds.


Subject(s)
Biological Evolution , Birds , Feathers , Fossils , Molting , Animals , Feathers/anatomy & histology , Fossils/anatomy & histology , Birds/physiology , Birds/anatomy & histology , Molting/physiology , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Flight, Animal , China , Wings, Animal/anatomy & histology
2.
Proc Biol Sci ; 291(2026): 20240804, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955230

ABSTRACT

The evolution of nuptial gifts has traditionally been considered a harmonious affair, providing benefits to both mating partners. There is growing evidence, however, that receiving a nuptial gift can be actively detrimental to the female. In decorated crickets (Gryllodes sigillatus), males produce a gelatinous spermatophylax that enhances sperm transfer but provides little nutritional benefit and hinders female post-copulatory mate choice. Here, we examine the sexually antagonistic coevolution of the spermatophylax and the female feeding response to this gift in G. sigillatus maintained in experimental populations with either a male-biased or female-biased adult sex ratio. After 25 generations, males evolving in male-biased populations produced heavier spermatophylaxes with a more manipulative combination of free amino acids than those evolving in female-biased populations. Moreover, when the spermatophylax originated from the same selection regime, females evolving in male-biased populations always had shorter feeding durations than those evolving in female-biased populations, indicating the evolution of greater resistance. Across populations, female feeding duration increased with the mass and manipulative combination of free amino acids in the spermatophylax, suggesting sexually antagonistic coevolution. Collectively, our work demonstrates a key role for interlocus sexual conflict and sexually antagonistic coevolution in the mating system of G. sigillatus.


Subject(s)
Feeding Behavior , Gryllidae , Sexual Behavior, Animal , Animals , Gryllidae/physiology , Male , Female , Biological Coevolution , Biological Evolution , Sex Ratio
3.
Biol Lett ; 20(7): 20240171, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38955224

ABSTRACT

Arboreality has evolved in all major vertebrate lineages and is often associated with morphological adaptations and increased diversification concomitant with accessing novel niche space. In squamate reptiles, foot, claw, and tail morphology are well-studied adaptations shown to be associated with transitions to arboreality. Here, we examined a less well understood trait-the keeled scale-in relation to microhabitat, climate, and diversification dynamics across a diverse lizard radiation, Agamidae. We found that the ancestral agamid had keeled dorsal but not ventral scales; further, dorsal and ventral keels are evolutionarily decoupled. Ventral keeled scales evolved repeatedly in association with arboreality and may be advantageous in reducing wear or by promoting interlocking when climbing. We did not find an association between keeled scales and diversification, suggesting keels do not allow finer-scale microhabitat partitioning observed in other arboreal-associated traits. We additionally found a relationship between keeled ventral scales and precipitation in terrestrial species where we posit that the keels may function to reduce scale degradation. Our results suggest that keeled ventral scales facilitated transitions to arboreality across agamid lizards, and highlight a need for future studies that explore their biomechanical function in relation to microhabitat and climate.


Subject(s)
Biological Evolution , Ecosystem , Lizards , Animals , Lizards/physiology , Lizards/anatomy & histology , Animal Scales/anatomy & histology , Animal Scales/physiology , Phylogeny , Climate
4.
Proc Biol Sci ; 291(2026): 20240778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955231

ABSTRACT

Mammals influence nearly all aspects of energy flow and habitat structure in modern terrestrial ecosystems. However, anthropogenic effects have probably altered mammalian community structure, raising the question of how past perturbations have done so. We used functional diversity (FD) to describe how the structure of North American mammal palaeocommunities changed over the past 66 Ma, an interval spanning the radiation following the K/Pg and several subsequent environmental disruptions including the Palaeocene-Eocene Thermal Maximum (PETM), the expansion of grassland, and the onset of Pleistocene glaciation. For 264 fossil communities, we examined three aspects of ecological function: functional evenness, functional richness and functional divergence. We found that shifts in FD were associated with major ecological and environmental transitions. All three measures of FD increased immediately following the extinction of the non-avian dinosaurs, suggesting that high degrees of ecological disturbance can lead to synchronous responses both locally and continentally. Otherwise, the components of FD were decoupled and responded differently to environmental changes over the last ~56 Myr.


Subject(s)
Biodiversity , Fossils , Mammals , Animals , Mammals/physiology , North America , Ecosystem , Biological Evolution
5.
Proc Biol Sci ; 291(2026): 20240514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955232

ABSTRACT

Caddisflies (Trichoptera) are among the most diverse groups of freshwater animals with more than 16 000 described species. They play a fundamental role in freshwater ecology and environmental engineering in streams, rivers and lakes. Because of this, they are frequently used as indicator organisms in biomonitoring programmes. Despite their importance, key questions concerning the evolutionary history of caddisflies, such as the timing and origin of larval case making, remain unanswered owing to the lack of a well-resolved phylogeny. Here, we estimated a phylogenetic tree using a combination of transcriptomes and targeted enrichment data for 207 species, representing 48 of 52 extant families and 174 genera. We calibrated and dated the tree with 33 carefully selected fossils. The first caddisflies originated approximately 295 million years ago in the Permian, and major suborders began to diversify in the Triassic. Furthermore, we show that portable case making evolved in three separate lineages, and shifts in diversification occurred in concert with key evolutionary innovations beyond case making.


Subject(s)
Biological Evolution , Fossils , Insecta , Phylogeny , Animals , Insecta/genetics , Transcriptome
6.
J Comp Neurol ; 532(7): e25648, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958676

ABSTRACT

In this study, we investigated recurrent copy number variations (CNVs) in the 19p12 locus, which are associated with neurodevelopmental disorders. The two genes in this locus, ZNF675 and ZNF681, arose via gene duplication in primates, and their presence in several pathological CNVs in the human population suggests that either or both of these genes are required for normal human brain development. ZNF675 and ZNF681 are members of the Krüppel-associated box zinc finger (KZNF) protein family, a class of transcriptional repressors important for epigenetic silencing of specific genomic regions. About 170 primate-specific KZNFs are present in the human genome. Although KZNFs are primarily associated with repressing retrotransposon-derived DNA, evidence is emerging that they can be co-opted for other gene regulatory processes. We show that genetic deletion of ZNF675 causes developmental defects in cortical organoids, and our data suggest that part of the observed neurodevelopmental phenotype is mediated by a gene regulatory role of ZNF675 on the promoter of the neurodevelopmental gene Hes family BHLH transcription factor 1 (HES1). We also find evidence for the recently evolved regulation of genes involved in neurological disorders, microcephalin 1 and sestrin 3. We show that ZNF675 interferes with HES1 auto-inhibition, a process essential for the maintenance of neural progenitors. As a striking example of how some KZNFs have integrated into preexisting gene expression networks, these findings suggest the emergence of ZNF675 has caused a change in the balance of HES1 autoregulation. The association of ZNF675 CNV with human developmental disorders and ZNF675-mediated regulation of neurodevelopmental genes suggests that it evolved into an important factor for human brain development.


Subject(s)
Primates , Transcription Factor HES-1 , Humans , Animals , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism , Primates/genetics , Homeostasis/physiology , Homeostasis/genetics , DNA Copy Number Variations/genetics , Mice , Biological Evolution , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
7.
NPJ Syst Biol Appl ; 10(1): 70, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951549

ABSTRACT

Bow-tie architecture is a layered network structure that has a narrow middle layer with multiple inputs and outputs. Such structures are widely seen in the molecular networks in cells, suggesting that a universal evolutionary mechanism underlies the emergence of bow-tie architecture. The previous theoretical studies have implemented evolutionary simulations of the feedforward network to satisfy a given input-output goal and proposed that the bow-tie architecture emerges when the ideal input-output relation is given as a rank-deficient matrix with mutations in network link intensities in a multiplicative manner. Here, we report that the bow-tie network inevitably appears when the link intensities representing molecular interactions are small at the initial condition of the evolutionary simulation, regardless of the rank of the goal matrix. Our dynamical system analysis clarifies the mechanisms underlying the emergence of the bow-tie structure. Further, we demonstrate that the increase in the input-output matrix reduces the width of the middle layer, resulting in the emergence of bow-tie architecture, even when evolution starts from large link intensities. Our data suggest that bow-tie architecture emerges as a side effect of evolution rather than as a result of evolutionary adaptation.


Subject(s)
Signal Transduction , Signal Transduction/physiology , Signal Transduction/genetics , Computer Simulation , Biological Evolution , Models, Biological , Algorithms , Evolution, Molecular , Systems Biology/methods , Mutation/genetics
8.
Commun Biol ; 7(1): 774, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951581

ABSTRACT

Machine learning (ML) newly enables tests for higher inter-species diversity in visible phenotype (disparity) among males versus females, predictions made from Darwinian sexual selection versus Wallacean natural selection, respectively. Here, we use ML to quantify variation across a sample of > 16,000 dorsal and ventral photographs of the sexually dimorphic birdwing butterflies (Lepidoptera: Papilionidae). Validation of image embedding distances, learnt by a triplet-trained, deep convolutional neural network, shows ML can be used for automated reconstruction of phenotypic evolution achieving measures of phylogenetic congruence to genetic species trees within a range sampled among genetic trees themselves. Quantification of sexual disparity difference (male versus female embedding distance), shows sexually and phylogenetically variable inter-species disparity. Ornithoptera exemplify high embedded male image disparity, diversification of selective optima in fitted multi-peak OU models and accelerated divergence, with cases of extreme divergence in allopatry and sympatry. However, genus Troides shows inverted patterns, including comparatively static male embedded phenotype, and higher female than male disparity - though within an inferred selective regime common to these females. Birdwing shapes and colour patterns that are most phenotypically distinctive in ML similarity are generally those of males. However, either sex can contribute majoritively to observed phenotypic diversity among species.


Subject(s)
Butterflies , Animals , Female , Butterflies/genetics , Butterflies/physiology , Butterflies/anatomy & histology , Male , Phenotype , Phylogeny , Sex Characteristics , Biological Evolution , Machine Learning , Wings, Animal/anatomy & histology , Wings, Animal/physiology
9.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959451

ABSTRACT

Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.


Subject(s)
Genetic Variation , Meiosis , Recombination, Genetic , Meiosis/genetics , Animals , Evolution, Molecular , Biological Evolution
10.
Curr Biol ; 34(13): R607-R608, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981420

ABSTRACT

Interview with Andrea Graham, who studies the ecological and evolutionary causes of immunological heterogeneity in mammals at Princeton University.


Subject(s)
Biological Evolution , Animals , Humans , History, 20th Century , History, 21st Century , Mammals
11.
Curr Biol ; 34(13): R635-R637, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981431

ABSTRACT

Speciation is a complex process sparked by multitudes of environmental stressors and culminating in adaptive, and perhaps novel, phenotypic traits. A new study presents evidence supporting spectral niche-partitioning in a cyanobacterial clade specializing in far-red photosynthesis.


Subject(s)
Biological Evolution , Cyanobacteria , Genetic Speciation , Photosynthesis , Cyanobacteria/genetics , Cyanobacteria/physiology
12.
Proc Biol Sci ; 291(2026): 20240693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981518

ABSTRACT

The evolution of separate sexes from cosexuality requires at least two mutations: a feminizing allele to cause female development and a masculinizing allele to cause male development. Classically, the double mutant is assumed to be sterile, which leads to two-factor sex determination where male and female sex chromosomes differ at two loci. However, several species appear to have one-factor sex determination where sexual development depends on variation at a single locus. We show that one-factor sex determination evolves when the double mutant develops as a male or a female. The feminizing allele fixes when the double mutant is male, and the masculinizing allele fixes when the double mutant is female. The other locus then gives XY or ZW sex determination based on dominance: for example, a dominant masculinizer becomes a Y chromosome. Although the resulting sex determination system differs, the conditions required for feminizers and masculinizers to spread are the same as in classical models, with the important difference that the two alleles do not need to be linked. Thus, we reveal alternative pathways for the evolution of sex determination and discuss how they can be distinguished using new data on the genetics of sex determination.


Subject(s)
Mutation , Sex Determination Processes , Male , Female , Animals , Sex Chromosomes , Biological Evolution , Models, Genetic , Alleles , Genetic Linkage
13.
Proc Biol Sci ; 291(2026): 20241214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981524

ABSTRACT

Obligatory ant-plant symbioses often appear to be single evolutionary shifts within particular ant lineages; however, convergence can be revealed once natural history observations are complemented with molecular phylogenetics. Here, we describe a remarkable example of convergent evolution in an ant-plant symbiotic system. Exclusively arboreal, Myrmelachista species can be generalized opportunists nesting in several plant species or obligately symbiotic, live-stem nesters of a narrow set of plant species. Instances of specialization within Myrmelachista are known from northern South America and throughout Middle America. In Middle America, a diverse radiation of specialists occupies understory treelets of lowland rainforests. The morphological and behavioural uniformity of specialists suggests that they form a monophyletic assemblage, diversifying after a single origin of specialization. Using ultraconserved element phylogenomics and ancestral state reconstructions, we show that shifts from opportunistic to obligately symbiotic evolved independently in South and Middle America. Furthermore, our analyses support a remarkable case of convergence within the Middle American radiation, with two independently evolved specialist clades, arising nearly simultaneously from putative opportunistic ancestors during the late Pliocene. This repeated evolution of a complex phenotype suggests similar mechanisms behind trait shifts from opportunists to specialists, generating further questions about the selective forces driving specialization.


Subject(s)
Ants , Biological Evolution , Phylogeny , Symbiosis , Ants/physiology , Ants/genetics , Animals , South America , Central America , Myrmecophytes
14.
Proc Biol Sci ; 291(2026): 20240980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981521

ABSTRACT

Ecological and evolutionary predictions are being increasingly employed to inform decision-makers confronted with intensifying pressures on biodiversity. For these efforts to effectively guide conservation actions, knowing the limit of predictability is pivotal. In this study, we provide realistic expectations for the enterprise of predicting changes in ecological and evolutionary observations through time. We begin with an intuitive explanation of predictability (the extent to which predictions are possible) employing an easy-to-use metric, predictive power PP(t). To illustrate the challenge of forecasting, we then show that among insects, birds, fishes and mammals, (i) 50% of the populations are predictable at most 1 year in advance and (ii) the median 1-year-ahead predictive power corresponds to a prediction R 2 of only 20%. Predictability is not an immutable property of ecological systems. For example, different harvesting strategies can impact the predictability of exploited populations to varying degrees. Moreover, incorporating explanatory variables, accounting for time trends and considering multivariate time series can enhance predictability. To effectively address the challenge of biodiversity loss, researchers and practitioners must be aware of the information within the available data that can be used for prediction and explore efficient ways to leverage this knowledge for environmental stewardship.


Subject(s)
Biodiversity , Biological Evolution , Conservation of Natural Resources , Animals , Birds/physiology , Fishes/physiology , Insecta/physiology , Forecasting , Mammals , Population Dynamics , Models, Biological
15.
Proc Biol Sci ; 291(2026): 20240525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981522

ABSTRACT

Sexual selection is known to play a major role in the evolution of insect sperm size, whereas natural selection is thought to be a major driver of insect egg size. Despite these differing forms of selection operating, it is possible coevolution between male and female gametes can occur owing to their vital interactions during fertilization. We tested egg-sperm coevolution in insects and found that longer sperm correlated to longer and wider eggs. Moreover, the size of the entry point of sperm into insect eggs (micropyles), was positively related to the diameter of sperm, on average being approximately three times the diameter of the sperm. This suggests a function in reducing and channelling sperm entry, but potentially still leaving space for movement. Our work suggests that greater attention needs to be paid to egg-sperm interactions prior to the point of fertilization as they may influence the evolution of gametes.


Subject(s)
Biological Evolution , Insecta , Ovum , Spermatozoa , Animals , Male , Spermatozoa/physiology , Ovum/physiology , Female , Insecta/physiology , Fertilization , Sperm-Ovum Interactions/physiology
16.
Proc Biol Sci ; 291(2026): 20240820, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981526

ABSTRACT

Unravelling the functional steps that underlie major transitions in the fossil record is a significant challenge for biologists owing to the difficulties of interpreting functional capabilities of extinct organisms. New computational modelling approaches provide exciting avenues for testing function in the fossil record. Here, we conduct digital bending experiments to reconstruct vertebral function in non-mammalian synapsids, the extinct forerunners of mammals, to provide insights into the functional underpinnings of the synapsid-mammal transition. We estimate range of motion and stiffness of intervertebral joints in eight non-mammalian synapsid species alongside a comparative sample of extant tetrapods, including salamanders, reptiles and mammals. We show that several key aspects of mammalian vertebral function evolved outside crown Mammalia. Compared to early diverging non-mammalian synapsids, cynodonts stabilized the posterior trunk against lateroflexion, while evolving axial rotation in the anterior trunk. This was later accompanied by posterior sagittal bending in crown mammals, and perhaps even therians specifically. Our data also support the prior hypothesis that functional diversification of the mammalian trunk occurred via co-option of existing morphological regions in response to changing selective demands. Thus, multiple functional and evolutionary steps underlie the origin of remarkable complexity in the mammalian backbone.


Subject(s)
Biological Evolution , Fossils , Mammals , Spine , Animals , Mammals/physiology , Fossils/anatomy & histology , Spine/anatomy & histology , Spine/physiology , Biomechanical Phenomena , Range of Motion, Articular , Reptiles/physiology , Reptiles/anatomy & histology
17.
Proc Biol Sci ; 291(2026): 20240632, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981529

ABSTRACT

Conspicuous colours have fascinated biologists for centuries, leading to research on the evolution and functional significance of colour traits. In many cases, research suggests that conspicuous colours are adaptive and serve a function in sexual or aposematic signalling. In other cases, a lack of evidence for the adaptive value of conspicuous colours garners interest from biologists, such as when organisms that live underground and are rarely exposed to the surface are nevertheless colourful. Here, we use phylogenetic comparative methods to investigate colour evolution throughout freshwater crayfishes that vary in burrowing ability. Within the taxa we analysed, conspicuous colours have evolved independently over 50 times, and these colours are more common in semi-terrestrial crayfishes that construct extensive burrows. The intuitive but not evolutionarily justified assumption when presented with these results is to assume that these colours are adaptive. But contrary to this intuition, we discuss the hypothesis that colouration in crayfish is neutral. Supporting these ideas, the small population sizes and reduced gene flow within semi-terrestrial burrowing crayfishes may lead to the fixation of colour-phenotype mutations. Overall, our work brings into question the traditional view of animal colouration as a perfectly adapted phenotype.


Subject(s)
Astacoidea , Biological Evolution , Pigmentation , Animals , Astacoidea/physiology , Astacoidea/genetics , Color , Phylogeny , Phenotype
18.
Biol Lett ; 20(7): 20240136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982977

ABSTRACT

Recent studies suggest that both stem- and crown-group Archosauria encompassed high ecological diversity during their initial Triassic radiation. We describe a new pseudosuchian archosaur, Benggwigwishingasuchus eremicarminis gen. et sp. nov., from the Anisian (Middle Triassic) Fossil Hill Member of the Favret Formation (Nevada, USA), a pelagic setting in the eastern Panthalassan Ocean characterized by the presence of abundant ammonoids and large-bodied ichthyosaurs. Coupled with archosauriforms from the eastern and western Tethys Ocean, Benggwigwishingasuchus reveals that pseudosuchians were also components of Panthalassan ocean coastal settings, establishing that the group occupied these habitats globally during the Middle Triassic. However, Benggwigwishingasuchus, Qianosuchus, and Ticinosuchus (two other pseudosuchians known from marine sediments) are not recovered in a monophyletic group, demonstrating that a nearshore marine lifestyle occurred widely across Archosauriformes during this time. Benggwigwishingasuchus is recovered as part of an expanded Poposauroidea, including several taxa (e.g. Mandasuchus, Mambawakalae) from the Middle Triassic Manda Beds of Tanzania among its basally branching members. This implies a greater undiscovered diversity of poposauroids during the Early Triassic, and supports that the group, and pseudosuchians more broadly, diversified rapidly following the End-Permian mass extinction.


Subject(s)
Fossils , Animals , Fossils/anatomy & histology , Nevada , Phylogeny , Reptiles/anatomy & histology , Reptiles/classification , Biological Evolution , Ecosystem
19.
Commun Biol ; 7(1): 825, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971878

ABSTRACT

Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.


Subject(s)
Kluyveromyces , Kluyveromyces/genetics , Kluyveromyces/physiology , Saccharomyces cerevisiae/genetics , Genome, Fungal , Mutation , Evolution, Molecular , Adaptation, Physiological/genetics , Selection, Genetic , Biological Evolution , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genomics/methods
20.
Sci Adv ; 10(28): eadm8240, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996028

ABSTRACT

Island vertebrates have evolved a number of morphological, physiological, and life history characteristics that set them apart from their mainland relatives. However, to date, the evolution of metabolism and its impact on the vulnerability to extinction of insular vertebrates remains poorly understood. This study used metabolic data from 2813 species of tetrapod vertebrates, including 695 ectothermic and 2118 endothermic species, to reveal that island mammals and birds evolved convergent metabolic strategies toward a slow pace of life. Insularity was associated with shifts toward slower metabolic rates and greater generation lengths in endotherms, while insularity just drove the evolution of longer generation lengths in ectotherms. Notably, a slow pace of life has exacerbated the extinction of insular endemic species in the face of anthropogenic threats. These findings have important implications for understanding physiological adaptations associated with the island syndrome and formulating conservation strategies across taxonomic groups with different metabolic modes.


Subject(s)
Biological Evolution , Extinction, Biological , Islands , Animals , Birds/physiology , Mammals , Phylogeny , Anthropogenic Effects
SELECTION OF CITATIONS
SEARCH DETAIL
...