Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709416

ABSTRACT

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Subject(s)
Air Pollutants , Environmental Monitoring , Metals, Heavy , Air Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Biological Monitoring/methods , Cities , Bryophyta/chemistry , Industry , Air Pollution/statistics & numerical data , Turkey
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230103, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705174

ABSTRACT

None of the global targets for protecting nature are currently met, although humanity is critically dependent on biodiversity. A significant issue is the lack of data for most biodiverse regions of the planet where the use of frugal methods for biomonitoring would be particularly important because the available funding for monitoring is insufficient, especially in low-income countries. We here discuss how three approaches to insect biomonitoring (computer vision, lidar, DNA sequences) could be made more frugal and urge that all biomonitoring techniques should be evaluated for global suitability before becoming the default in high-income countries. This requires that techniques popular in high-income countries should undergo a phase of 'innovation through simplification' before they are implemented more broadly. We predict that techniques that acquire raw data at low cost and are suitable for analysis with AI (e.g. images, lidar-signals) will be particularly suitable for global biomonitoring, while techniques that rely heavily on patented technologies may be less promising (e.g. DNA sequences). We conclude the opinion piece by pointing out that the widespread use of AI for data analysis will require a global strategy for providing the necessary computational resources and training. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Biological Monitoring , Insecta , Animals , Artificial Intelligence , Biodiversity , Biological Monitoring/methods , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Insecta/physiology , Remote Sensing Technology/methods
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230101, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705179

ABSTRACT

Insects are the most diverse group of animals on Earth, yet our knowledge of their diversity, ecology and population trends remains abysmally poor. Four major technological approaches are coming to fruition for use in insect monitoring and ecological research-molecular methods, computer vision, autonomous acoustic monitoring and radar-based remote sensing-each of which has seen major advances over the past years. Together, they have the potential to revolutionize insect ecology, and to make all-taxa, fine-grained insect monitoring feasible across the globe. So far, advances within and among technologies have largely taken place in isolation, and parallel efforts among projects have led to redundancy and a methodological sprawl; yet, given the commonalities in their goals and approaches, increased collaboration among projects and integration across technologies could provide unprecedented improvements in taxonomic and spatio-temporal resolution and coverage. This theme issue showcases recent developments and state-of-the-art applications of these technologies, and outlines the way forward regarding data processing, cost-effectiveness, meaningful trend analysis, technological integration and open data requirements. Together, these papers set the stage for the future of automated insect monitoring. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Biodiversity , Insecta , Insecta/physiology , Animals , Remote Sensing Technology/methods , Remote Sensing Technology/instrumentation , Biological Monitoring/methods
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230121, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705183

ABSTRACT

Aquatic macroinvertebrates, including many aquatic insect orders, are a diverse and ecologically relevant organismal group yet they are strongly affected by anthropogenic activities. As many of these taxa are highly sensitive to environmental change, they offer a particularly good early warning system for human-induced change, thus leading to their intense monitoring. In aquatic ecosystems there is a plethora of biotic monitoring or biomonitoring approaches, with more than 300 assessment methods reported for freshwater taxa alone. Ultimately, monitoring of aquatic macroinvertebrates is used to calculate ecological indices describing the state of aquatic systems. Many of the methods and indices used are not only hard to compare, but especially difficult to scale in time and space. Novel DNA-based approaches to measure the state and change of aquatic environments now offer unprecedented opportunities, also for possible integration towards commonly applicable indices. Here, we first give a perspective on DNA-based approaches in the monitoring of aquatic organisms, with a focus on aquatic insects, and how to move beyond traditional point-based biotic indices. Second, we demonstrate a proof-of-concept for spatially upscaling ecological indices based on environmental DNA, demonstrating how integration of these novel molecular approaches with hydrological models allows an accurate evaluation at the catchment scale. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Aquatic Organisms , DNA, Environmental , Insecta , Animals , Aquatic Organisms/genetics , Biodiversity , Biological Monitoring/methods , DNA, Environmental/analysis , Ecosystem , Environmental Monitoring/methods , Insecta/genetics
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230113, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705181

ABSTRACT

In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs 'species population', 'species traits', 'community composition' and 'ecosystem function'. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Biodiversity , Insecta , Radar , Insecta/physiology , Animals , Remote Sensing Technology/methods , Remote Sensing Technology/instrumentation , Biological Monitoring/methods , Flight, Animal
6.
J Agric Food Chem ; 72(20): 11663-11671, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718292

ABSTRACT

The appropriate use of human biomonitoring data to model population chemical exposures is challenging, especially for rapidly metabolized chemicals, such as agricultural chemicals. The objective of this study is to demonstrate a novel approach integrating model predicted dietary exposures and biomonitoring data to potentially inform regulatory risk assessments. We use lambda-cyhalothrin as a case study, and for the same representative U.S. population in the National Health and Nutrition Examination Survey (NHANES), an integrated exposure and pharmacokinetic model predicted exposures are calibrated to measurements of the urinary metabolite 3-phenoxybenzoic acid (3PBA), using an approximate Bayesian computing (ABC) methodology. We demonstrate that the correlation between modeled urinary 3PBA and the NHANES 3PBA measurements more than doubled as ABC thresholding narrowed the acceptable tolerance range for predicted versus observed urinary measurements. The median predicted urinary concentrations were closer to the median measured value using ABC than using current regulatory Monte Carlo methods.


Subject(s)
Biological Monitoring , Dietary Exposure , Nitriles , Pyrethrins , Humans , Pyrethrins/urine , Pyrethrins/metabolism , Nitriles/urine , Nitriles/metabolism , Dietary Exposure/analysis , Biological Monitoring/methods , Adult , Bayes Theorem , Male , Female , Middle Aged , Insecticides/urine , Insecticides/metabolism , Young Adult , Adolescent , Nutrition Surveys , Benzoates
7.
J Chromatogr A ; 1725: 464944, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38703459

ABSTRACT

Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert­butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 µg/L to 0.04 µg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 µg/L for boys and 4.90 µg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biological Monitoring , Oxidative Stress , Pesticides , Tandem Mass Spectrometry , Humans , Child, Preschool , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Female , Male , Biological Monitoring/methods , Pesticides/urine , Pesticides/metabolism , 8-Hydroxy-2'-Deoxyguanosine/urine , Limit of Detection , Biomarkers/urine , Liquid-Liquid Extraction/methods , Child
8.
Article in English | MEDLINE | ID: mdl-38821677

ABSTRACT

The article by Ceppi and colleagues, Genotoxic Effects of Occupational Exposure to, Glass Fibres - A Human Biomonitoring Study, published in Mutation Research -Genetic Toxicology and Environmental Mutagenesis in 2023 was reviewed with great interest. The authors undertook a novel approach to conducting a biomonitoring study of genotoxicity markers among a population of glass fibre manufacturing workers in Slovakia. On the surface, the Ceppi et al. (2023) study provides an interesting application of genotoxicity markers among a human population of workers to explore potential markers of effect (DNA strand breaks) and potential risk of susceptibility (e.g., genetic damage, disease, death). However, limited data for exposure reconstruction, uncertain influences from smoking history, and lack of consideration of decades of human epidemiology research showing no increased risk of malignant or non-malignant respiratory disease and mortality among glass fibre manufacturing workers, reveals that the conclusions of the authors are overreaching and inconsistent with the existing science. The limitations of this study preclude the ability to draw causal inferences or conclusions about DNA strand breaks as a marker of exposure, effect, or susceptibility within this population of Slovakian glass fibre workers. Further longitudinal research is required (e.g., more robust temporal assessment of occupational exposures - fibres and other compounds - and smoking history) to support the study conclusions.


Subject(s)
Biological Monitoring , Glass , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Slovakia/epidemiology , Biological Monitoring/methods , DNA Damage/drug effects , Mutagens/toxicity , Mutagenicity Tests
9.
Environ Int ; 187: 108707, 2024 May.
Article in English | MEDLINE | ID: mdl-38692149

ABSTRACT

Currently, natural and urban ecosystems are affected by different types of atmospheric deposition, which can compromise the balance of the environment. Plastic pollution represents one of the major threats for biota, including lichens. Epiphytic lichens have value as bioindicators of environmental pollution, climate change, and anthropic impacts. In this study, we aim to investigate the lichen bioaccumulation of airborne microplastics along an anthropogenic pollution gradient. We sampled lichens from the Genera Cladonia and Xanthoria to highlight the effectiveness of lichens as tools for passive biomonitoring of microplastics. We chose three sites, a "natural site" in Altipiani di Arcinazzo, a "protected site" in Castelporziano Presidential estate and an "urban site" in the centre of Rome. Overall, we sampled 90 lichens, observed for external plastic entrapment, melt in oxygen peroxide and analysed for plastic entrapment. To validate the method, we calculated recovery rates of microplastics in lichen. Particularly, 253 MPs particles were detected across the 90 lichen samples: 97 % were fibers, and 3 % were fragments. A gradient in the number of microplastic fibers across the sites emerged, with increasing accumulation of microplastics from the natural site (n = 58) to the urban site (n = 116), with a direct relationship between the length and abundance of airborne microplastic fibers. Moreover, we detected the first evidences of airborne mesoplastics entrapped by lichens. On average, the natural site experienced the shortest fibre length and the centre of Rome the longest. No differences in microplastics accumulation emerged from the two genera. Our results indicated that lichens can effectively be used for passive biomonitoring of microplastic deposition. In this scenario, the role of lichens in entrapping microplastics and protecting pristine areas must be investigated. Furthermore, considering the impact that airborne microplastics can have on human health and the effectiveness of lichens as airborne microplastic bioindicators, their use is encouraged.


Subject(s)
Air Pollutants , Environmental Monitoring , Lichens , Microplastics , Lichens/chemistry , Microplastics/analysis , Environmental Monitoring/methods , Air Pollutants/analysis , Biological Monitoring/methods , Cities
10.
Chemosphere ; 359: 142296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729440

ABSTRACT

While plant toxicity reduction remains the primary metric for judging the success of metal immobilization in soil, the suitability of microorganisms as universal indicators of its effectiveness in various contaminated soils remains a point of contention. This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia. Perennial ryegrass (Lolium perenne) was grown on nodule-amended and control soils. Plant responses in the smelter-impacted soils proved to be sensitive and robust indicators of successful metal immobilization. However, microbial responses exhibited a more complex story. Despite the observed reductions in soluble metal concentrations, shoot metal contents in ryegrass, and significant improvements in plant growth, certain microbial bioindicators were unresponsive to metal immobilization success brought about by the addition of Fe-Mn nodules. Among microbial bioindicators studied, community-level physiological profiling, microbial biomass carbon, and basal respiration were sensitive indicators of metal immobilization success, whereas the number of saprotrophic, oligotrophic, and Fe-oxidizing bacteria and fungi, the biomass of bacteria and fungi, and enzymatic activity were less robust indicators. Interestingly, the correlations between different microbial responses measured were weak or even negative. Some microbial responses also exhibited negative correlations with plant biomass. These findings underscore the need for further research on comparative evaluations of plants and microorganisms as reliable indicators of metal immobilization efficacy in polluted environments.


Subject(s)
Lolium , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Lolium/metabolism , Soil/chemistry , Metals/metabolism , Metals/analysis , Bacteria/metabolism , Biodegradation, Environmental , Russia , Fungi/metabolism , Environmental Monitoring/methods , Finland , Biological Monitoring/methods
11.
Sci Total Environ ; 934: 173021, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38740203

ABSTRACT

Persistent organic pollutants (POPs) pose a significant global threat to human health and the environment, and require continuous monitoring due to their ability to migrate long distances. Active biomonitoring using cloned mosses is an inexpensive but underexplored method to assess POPs, mainly due to the poor understanding of the loading mechanisms of these pollutants in mosses. In this work, Fontinalis antipyretica (aquatic moss) and Sphagnum palustre (terrestrial moss) were evaluated as potential biomonitors of hexachlorocyclohexanes (HCHs: α-, ß-, γ-, δ-HCH), crucial POPs. Moss clones, grown in photobioreactors and subsequently oven-dried, were used. Their lipid composition and distribution were characterized through molecular and histochemical studies. Adsorption experiments were carried out in the aqueous phase using the repeated additions method and in the gas phase using an active air sampling technique based on solid-phase extraction, a pioneering approach in moss research. F. antipyretica exhibited greater lipid content in the walls of most cells and higher adsorption capacity for all HCH isomers in both gaseous and liquid environments. These findings highlight the need for further investigation of POP loading mechanisms in mosses and open the door to explore other species based on their lipid content.


Subject(s)
Environmental Monitoring , Hexachlorocyclohexane , Hexachlorocyclohexane/analysis , Environmental Monitoring/methods , Adsorption , Bryophyta/chemistry , Environmental Pollutants/analysis , Biological Monitoring/methods , Sphagnopsida/chemistry
12.
J Chromatogr A ; 1722: 464863, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626538

ABSTRACT

Volatile organic compounds (VOCs) are a group of ubiquitous environment pollutants especially released into the workplace. Assessment of VOCs exposure in occupational populations is therefore a crucial issue for occupational health. However, simultaneous biomonitoring of a variety of VOCs is less studied. In this study, a simple and sensitive method was developed for the simultaneous determination of 51 prototype VOCs in urine by headspace-thermal desorption coupled to gas chromatography-mass spectrometry (HS-TD-GC-MS). The urinary sample was pretreated with only adding 0.50 g of sodium chloride to 2 mL of urine and 51 VOCs should be determined with limits of detection (LODs) between 13.6 ng/L and 24.5 ng/L. The method linearity ranged from 0.005 to 10 µg/L with correlation coefficients (r) of 0.991 to 0.999. The precision for intraday and inter-day, measured by the variation coefficient (CV) at three levels of concentration, was below 15 %, except for 4-isopropyl toluene, dichloromethane, and trichloromethane at low concentration. For medium and high levels, recoveries of all target VOCs were within the standard range, but 1,1-dichloropropene and styrene, which were slightly under 80 % at low levels. In addition, the proposed method has been used to determine urine samples collected in three times (before, during and after working) from 152 workers at four different factories. 41 types of prototype VOCs were detected in workers urine. Significant differences (Kruskal-Wallis chi-squared = 117.18, df = 1, P < 0.05) in the concentration levels of VOCs between the exposed and unexposed groups were observed, but not between the three sampling times (Kruskal-Wallis chi-squared = 3.39, df = 2, P = 0.183). The present study provides an alternative method for biomonitoring and assessing mixed exposures to VOCs in occupational populations.


Subject(s)
Gas Chromatography-Mass Spectrometry , Limit of Detection , Occupational Exposure , Volatile Organic Compounds , Humans , Volatile Organic Compounds/urine , Gas Chromatography-Mass Spectrometry/methods , Occupational Exposure/analysis , Reproducibility of Results , Adult , Biological Monitoring/methods , Male
13.
Sci Total Environ ; 928: 172393, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38608901

ABSTRACT

The bioaccumulation of trace metals Cd, Cr, Cu, Fe, and Zn in soft tissues of the barnacle Pollicipes pollicipes was investigated seasonally along the Atlantic coast of northwestern Morocco. Average concentrations (µg g-1 dry weight) exhibited a decreasing order: Fe (548.15 ± 132.43) > Zn (430.80 ± 181.68) > Cd (17.46 ± 9.99) > Cu (7.72 ± 1.26) > Cr (3.12 ± 0.80), with the highest levels during wet seasons. The "Metal Pollution Index" and "Individual Multimetal Bioaccumulation Index" revealed a substantial barnacle contamination in industrialized areas. Additionally, Cd and Zn concentrations surpassed permissible guideline limits. While the "Target Hazard Quotient" and "Hazard Index" unveiled no significant health risks associated with barnacle consumption for humans, Cd posed potential risks, particularly for children consuming barnacles from polluted locations. Regarding the "Maximum Safe Consumption", Cd demonstrated potential harm across all sex and age groups. These findings contribute valuable data on the safety of barnacle consumption, marking the initial assessment of such risks in Morocco. The study offers evidence of metal pollution occurrence and proposes the barnacle species as a reliable biomonitor of trace metal bioavailabilities in marine coastal areas. To our knowledge, this investigation is the first comprehensive report of metal contamination biomonitoring using barnacles from Moroccan Atlantic waters.


Subject(s)
Biological Monitoring , Thoracica , Water Pollutants, Chemical , Morocco , Animals , Risk Assessment , Humans , Water Pollutants, Chemical/analysis , Biological Monitoring/methods , Environmental Monitoring/methods , Metals, Heavy/analysis , Food Contamination/analysis
14.
Environ Monit Assess ; 196(5): 465, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647723

ABSTRACT

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. In Part I, we presented a quantifiable, replicable method for assessing seasonally astatic wetlands, which would allow for direct comparison between individual wetlands, wetland sites, and wetland types. Here in Part II, we apply the method and present the results from more than a decade of a data on two disparate sites that support California vernal pool habitats. These habitats include natural, restored, and constructed vernal pools. Our results demonstrate that the method we present yields reliable, statistically useful, and actionable data and provides a better method for assessing astatic wetland ecological health and the persistence of federally listed vernal pool crustaceans than other methods so far employed.


Subject(s)
Ecosystem , Environmental Monitoring , Invertebrates , Seasons , Wetlands , Environmental Monitoring/methods , Animals , California , Conservation of Natural Resources/methods , Aquatic Organisms , Biological Monitoring/methods
15.
Food Chem Toxicol ; 188: 114650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599273

ABSTRACT

Pesticides and mycotoxins, prominent chemical hazards in the food chain, are commonly found in plant-based foods, contributing to their pervasive presence in the human body, as evidenced by biomonitoring programs. Despite this, there is limited knowledge about their co-occurrence patterns. While intervention studies have demonstrated that organic diets can significantly reduce pesticide levels, their impact on mycotoxin exposure has been overlooked. To address this gap, this study pursued two objectives: first, to characterize the simultaneous presence of mycotoxins and pesticides in human urine samples by means of the control of the biomarkers of exposure, and second, to investigate the influence of consuming organic foods on these co-exposure patterns. A pilot study involving 20 healthy volunteers was conducted, with participants consuming either exclusively organic or conventional foods during a 24-h diet intervention in autumn 2021 and spring 2022 to account for seasonal variability. Participants provided detailed 24-h dietary records, and their first-morning urine samples were collected, minimally treated and analysed using LC-Q-ToF-MS by means of a multitargeted method in order to detect the presence of these residues. Results indicated that among the 52 screened compounds, four mycotoxins and seven pesticides were detected in over 25% of the samples. Deoxynivalenol (DON) and the non-specific pesticide metabolite diethylphosphate (DEP) exhibited the highest frequency rates (100%) and concentration levels. Correlations were observed between urine levels of mycotoxins (DON, ochratoxin alpha [OTα], and enniatin B [ENNB]) and organophosphate pesticide metabolites DEP and 2-diethylamino-6-methyl-4-pyrimidinol (DEAMPY). The pilot intervention study suggested a reduction in ENNB and OTα levels and an increase in ß-zearalenol levels in urine after a short-term replacement with organic food. However, caution is advised due to the study's small sample size and short duration, emphasizing the need for further research to enhance understanding of the human chemical exposome and refine chemical risk assessment.


Subject(s)
Mycotoxins , Pesticides , Humans , Mycotoxins/urine , Pesticides/urine , Male , Adult , Spain , Female , Pilot Projects , Food, Organic , Food Contamination/analysis , Diet , Biological Monitoring/methods , Young Adult , Middle Aged
16.
J Chromatogr A ; 1725: 464949, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38688054

ABSTRACT

This study introduces an innovative needle trap device (NTD) featuring a molecularly imprinted polymer (MIP) surface-modified Zeolite Y. The developed NTD was integrated with gas chromatography-flame ionization detector (GC-FID) and employed for analysis of fuel ether oxygenates (methyl tert­butyl ether, MTBE, ethyl tert­butyl ether, ETBE, and tert­butyl formate, TBF) in urine samples. To optimize the key experimental variables including extraction temperature, extraction time, salt concentration, and stirring speed, a central composite design-response surface methodology (CCD-RSM) was employed. The optimal values for extraction in the study were found to be 51.2 °C extraction temperature, 46.2 min extraction time, 27 % salt concentration, and 620 rpm stirring speed. Under the optimized conditions, the calibration curves demonstrated excellent linearity within the range of 0.1-100 µg L-1, with correlation coefficients (R2) exceeding 0.99. The limits of detection (LODs) for MTBE, ETBE, and TBF were obtained 0.06, 0.08, and 0.09 µg L-1, respectively. Moreover, the limits of quantification (LOQs) for MTBE, ETBE, and TBF were obtained 0.18, 0.24, and 0.27 µg L-1, respectively. The enrichment factor was also found to be in the range of 98-129.The NTD-GC-FID procedure demonstrated a high extraction efficiency, making it a promising tool for urinary biomonitoring of fuel ether oxygenates with improved sensitivity and selectivity compared to current methods.


Subject(s)
Limit of Detection , Methyl Ethers , Zeolites , Zeolites/chemistry , Humans , Methyl Ethers/urine , Methyl Ethers/chemistry , Molecularly Imprinted Polymers/chemistry , Biological Monitoring/methods , Chromatography, Gas/methods , Ethyl Ethers/urine , Ethyl Ethers/chemistry
17.
Int J Hyg Environ Health ; 256: 114321, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244249

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a wide-ranging group of chemicals that have been used in a variety of polymer and surfactant applications. While 3M Cordova, Illinois was not one of 3M's primary manufacturing facilities for the legacy long-chain PFAS (PFOS, PFOA, PFHxS), it has been a major manufacturing site for short-chain PFAS (compounds that are or may degrade to PFBS or PFBA). The purpose of this research focused on: 1) an analysis of biomonitoring data of employees and retirees, and 2) an analysis of the cohort mortality of workers from 1970 to 2018. Employees had higher PFBS and PFBA serum concentrations than the retirees, while retirees had higher concentrations for PFOS, PFOA, and PFHxS. Compared to the 2017-2018 NHANES data, employees' PFOS and PFHxS concentrations in 2022 were two-fold higher, with PFOA levels comparable. These NHANES data did not include serum PFBS or PFBA. Cross-sectional trends of PFOS and PFOA levels from 1997 to 2022 showed PFOS declined from 151 ng/mL to 10.4 ng/mL. Similarly, PFOA decreased from 100 ng/mL to 1.5 ng/mL. A longitudinal analysis of 48 participants with measurements in both 2006 and 2022 showed concentrations decreased by 74% for PFOS and 90% for PFOA. In the mortality study, 1707 employees who worked 1 day or longer were followed for an average of 25.6 years and had 143 (8%) deaths. There were no significantly elevated risks for any specific cause of death, regardless of latency period (0 or 15 years). While no specific PFAS exposures were examined, worker mortality experience (1970-2018) was analyzed by major departments representing primary work areas. Employees and retirees at the Cordova facility continue to have elevated PFOS and PFHxS serum concentrations compared to the general population, however, their legacy PFAS concentrations have declined over time, consistent with the estimated serum elimination half-lives of these PFAS in humans assuming nominal ambient exposures. For PFBS and PFBA, the results indicated no long-term accumulation in the blood likely due to their short serum elimination half-lives. After nearly 50 years of follow-up, this Cordova workforce showed no increased risk of mortality from cancer or any other specific cause of death.


Subject(s)
Biological Monitoring , Chemical Industry , Environmental Pollutants , Fluorocarbons , Occupational Exposure , Humans , Alkanesulfonic Acids/blood , Biological Monitoring/methods , Cross-Sectional Studies , Environmental Pollutants/adverse effects , Environmental Pollutants/blood , Fluorocarbons/adverse effects , Fluorocarbons/blood , Nutrition Surveys , Illinois , Workforce/statistics & numerical data , Occupational Exposure/adverse effects , Occupational Exposure/statistics & numerical data , Chemical Industry/statistics & numerical data
18.
Environ Sci Pollut Res Int ; 30(59): 123679-123693, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37991620

ABSTRACT

Biomonitoring methods can be used to measure exposure to antibiotics in the general population; however, epidemiological data on the associations between urinary antibiotic levels and the cardiac profiles of enzymes lactate dehydrogenase, creatine kinase, and creatine kinase isoenzyme in older adults remain sparse. We investigated these associations in 990 individuals from the Cohort of Elderly Health and Environment Controllable Factors. Antibiotic residues in urine samples were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Urinary levels of 34 antibiotics were measured. The participants' cardiac enzyme profiles were influenced by sex, age, marital status, education level, cohabitation status, physical activity, dietary structure, body mass index, depression presence and salt, sugar, and oil consumption (P < 0.05). Oxytetracycline, tetracycline, doxycycline, sulfaclozine, and, florfenicol concentrations were negatively associated with the risk of having an abnormal cardiac enzyme profile. Older adults exposed to higher concentrations of norfloxacin had a higher risk of LDH anomalies. After antibiotics were classified, we identified associations between exposure to chloramphenicols, sulfonamides, or veterinary antibiotics and a lower risk of having an abnormal cardiac enzyme profile. Obtaining an accurate epidemiological profile of antibiotic exposure is indispensable for the prevention and detection of cardiac enzyme profile abnormalities in older adults.


Subject(s)
Anti-Bacterial Agents , Biological Monitoring , Humans , Middle Aged , Aged , Anti-Bacterial Agents/analysis , Biological Monitoring/methods , Mass Spectrometry , Creatine Kinase , China
19.
Mar Pollut Bull ; 194(Pt A): 115347, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37517247

ABSTRACT

The 239+240Pu concentrations and 240Pu/239Pu atom ratios were determined to trace the temporal variability in concentration and atom ratio in liver of the Japanese common squid during 2003-2018. The differences in their concentrations and atom ratios and the dependency on the collection areas and migratory history were compared. The organ affinity of Pu in mantle, limb, liver, and internal organs except liver was also investigated. The average 239+240Pu concentrations were the highest in liver followed in order by internal organs except liver, limb, and mantle. The Pu accumulation in liver could be explained by a mechanism for foreign substance processing. A significant difference in the average 239+240Pu concentrations in liver was found among the sea areas for specimen collection during 2003-2018. In spite of a noticeable difference in the average 239+240Pu concentrations, the 240Pu/239Pu atom ratios showed no significant temporal variability around Japan; thus, they were continuously uniform during 2003-2018.


Subject(s)
Decapodiformes , Liver , Plutonium , Water Pollutants, Radioactive , Animals , Japan , Liver/chemistry , Plutonium/analysis , Radiation Monitoring , Seafood/analysis , Water Pollutants, Radioactive/analysis , Oceans and Seas , Biological Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...