Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.958
Filter
1.
Environ Monit Assess ; 196(7): 598, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842618

ABSTRACT

Rudrasagar Lake, a vital habitat for diverse flora and fauna, supports over 2000 households to sustain their daily livelihoods. The current study attempts to examine the impact of human activities on spatio-temporal variation in the water quality of the study area. The study integrates extensive field surveys, sample processing, and statistical analysis to assess the recent status of wetland health. Latin Square Matrix (LSM) was employed to select the sampling sites while the Inverse Distance Weighting (IDW) interpolation technique was used for spatial variation mapping. Modified Weighted Arithmetic Water Quality Index (MWAWQI) and Comprehensive Pollution Index (CPI) were utilized for assessing seasonal variation water quality and pollution loads, respectively. The results showed that dissolved oxygen (DO) was strongly influenced by the tributaries, and recreational activities have substantially influenced the highest concentrations of biochemical oxygen demand (BOD), and total suspended solids (TSS). The central portion of the lake is particularly susceptible to pollution from extensive fishing and recreational activities while peripheral sites are strongly influenced by agricultural run-offs, seepages from brick industries, and municipal wastes characterized by high concentrations of pH, total hardness (TH), oxidation-reduction potential (ORP). The findings reveal remarkable spatio-temporal fluctuations and highlight the areas within the lake susceptible to anthropogenic activities. The study proposed a sustainable management model to ameliorate anthropogenic threats. Moreover, the study contributes to the scientific understanding of the challenges and ensures the long-term viability of wetland health as a vital ecological and socio-economic resource.


Subject(s)
Environmental Monitoring , Lakes , Water Quality , Lakes/chemistry , India , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Spatio-Temporal Analysis , Biological Oxygen Demand Analysis , Wetlands , Anthropogenic Effects , Water Pollution, Chemical/statistics & numerical data
2.
BMC Biotechnol ; 24(1): 29, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720285

ABSTRACT

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.


Subject(s)
Abattoirs , Biofuels , Bioreactors , Sewage , Wastewater , Animals , Cattle , Sewage/microbiology , Wastewater/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Methane/metabolism , Biological Oxygen Demand Analysis
3.
J Environ Manage ; 361: 121194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820794

ABSTRACT

This study provides a comprehensive analysis of the potential impact of hydrothermal pretreatment (HTP) on municipal thickened waste-activated sludge (TWAS) and its integration with anaerobic digestion (AD). The research demonstrates that HTP conditions (170 °C, 3 bars for 30 min) can increase the solubilization of macromolecular organic compounds by 41%, which enhances biodegradability in semicontinuous bioreactors. This treatment also results in a 50% reduction in chemical oxygen demand (COD) and a 63% increase in the destruction of volatile solids (VS). The combination of HTP with AD significantly boosts methane yields by 51%, reaching 176 ml/g COD, and improves the digestate dewaterability, doubling the solid content in the dewatered cake. However, a higher polymer dose is required compared to conventional AD. Microbial community analysis correlates the observed performance and alterations; it indicates that HTP enhances resilience to stress conditions such as ammonia toxicity. This comprehensive study provides valuable insights into the transition from wastewater treatment plants (WWTPs) to resource recovery facilities (RRF) in line with circular economy principles.


Subject(s)
Bioreactors , Sewage , Waste Disposal, Fluid , Anaerobiosis , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Biodegradation, Environmental , Methane , Wastewater/chemistry
4.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785698

ABSTRACT

Wastewater pipelines are present everywhere in urban areas. Wastewater is a preferable fuel for renewable electricity generation from microbial fuel cells. Here, we created an integrated microbial fuel cell pipeline (MFCP) that could be connected to wastewater pipelines and work as an organic content biosensor and energy harvesting device at domestic waste-treatment plants. The MFCP used a pipeline-like terracotta-based membrane, which provided structural support for the MFCP. In addition, the anode and cathode were attached to the inside and outside of the terracotta membrane, respectively. Co-MnO2 was used as a catalyst to improve the performance of the MFCP cathode. The experimental data showed a good linear relationship between wastewater chemical oxygen demand (COD) concentration and the MFCP output voltage in a COD range of 200-1900 mg/L. This result implies the potential of using the MFCP as a sensor to detect the organic content of the wastewater inside the wastewater pipeline. Furthermore, the MFCP can be used as a long-lasting sustainable energy harvester with a maximum power density of 400 mW/m2 harvested from 1900 mg/L COD wastewater at 25 °C.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Electrodes , Wastewater , Biological Oxygen Demand Analysis , Electricity , Oxides/chemistry , Manganese Compounds/chemistry
5.
Biosensors (Basel) ; 14(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38785713

ABSTRACT

Biofilms based on bacteria Pseudomonas veronii (Ps. veronii) and Escherichia coli (E. coli) and yeast Saccharomyces cerevisiae (S. cerevisiae) were used for novel biosensor creation for rapid biochemical oxygen demand (BOD) monitoring. Based on the electrochemical measurement results, it was shown that the endogenous mediator in the matrix of E. coli and Ps. veronii biofilms and ferrocene form a two-mediator system that improves electron transport in the system. Biofilms based on Ps. veronii and E. coli had a high biotechnological potential for BOD assessment; bioreceptors based on such biofilms had high sensitivity (the lower limits of detectable BOD5 concentrations were 0.61 (Ps. veronii) and 0.87 (E. coli) mg/dm3) and high efficiency of analysis (a measurement time 5-10 min). The maximum biosensor response based on bacterial biofilms has been observed in the pH range of 6.6-7.2. The greatest protective effect was found for biofilms based on E. coli, which has high long-term stability (151 days for Ps. veronii and 163 days for E. coli). The results of the BOD5 analysis of water samples obtained using the developed biosensors had a high correlation with the results of the standard 5-day method (R2 = 0.9820, number of tested samples is 10 for Ps. veronii, and R2 = 0.9862, number of tested samples is 10 for E. coli). Thus, biosensors based on Ps. veronii biofilms and E. coli biofilms could be a novel analytical system to give early warnings of pollution.


Subject(s)
Biofilms , Biosensing Techniques , Electrodes , Escherichia coli , Graphite , Saccharomyces cerevisiae , Pseudomonas , Biological Oxygen Demand Analysis
6.
Article in English | MEDLINE | ID: mdl-38733115

ABSTRACT

Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O3) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm3. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.


Subject(s)
Ozone , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Ozone/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Xylenes/chemistry , Xylenes/analysis , Petroleum/analysis , South Africa , Biological Oxygen Demand Analysis , Oil and Gas Industry , Benzene Derivatives/analysis , Toluene/analysis , Industrial Waste/analysis
7.
Sci Rep ; 14(1): 10723, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730012

ABSTRACT

Our study investigates the effects of iron oxide (Fe3O4) nanoparticles combined microwave pretreatment on the anaerobic digestibility and soluble chemical oxygen demand (SCOD) of meat industry sludge. One of our main objectives was to see whether the different microwave-based pretreatment procedures can enhance biogas production by improving the biological availability of organic compounds. Results demonstrated that combining microwave irradiation with magnetic iron oxide nanoparticles considerably increased SCOD (enhancement ratio was above 1.5), the rate of specific biogas production, and the total cumulative specific biogas volume (more than a threefold increment), while having no negative effect on the biomethane content. Furthermore, the assessment of the sludge samples' dielectric properties (dielectric constant and loss factor measured at the frequency of 500 MHz) showed a strong correlation with SCOD changes (r = 0.9942, R2 = 0.99), offering a novel method to evaluate pretreatment efficiency.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Microwaves , Sewage , Sewage/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Anaerobiosis , Meat/analysis , Biological Oxygen Demand Analysis , Biofuels/analysis , Food Industry , Industrial Waste
8.
Chemosphere ; 358: 142265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719121

ABSTRACT

Electro-dewatering of sewage sludge with pulsating voltage was conducted under the two different wave shapes (square wave (SQW) and half-sine wave (HSW)) to investigate the influence of wave shape and duty cycle on sludge dewatering performance. The results indicated that, under the same average voltage, the moisture content of dewatered sludge with HSW was 10.3%-35.4% lower than that with SQW, suggesting the better dewatering performance of HSW. The optimal dewatering performance was achieved at duty cycle of 80% for SQW and 60% for SHW. The chemical oxygen demand of filtrate from HSW could be 13% higher than that from SQW, indicating the higher capacity of HSW in breaking sludge cells/floc structure. The applied voltage during electrochemical treatment promoted the hydrolysis of protein in filtrate, and the main components in the electro-dewatered filtrate were fulvic acid- and humic acid-like substances. The specific energy consumption for sludge electro-dewatering were 0.015-0.269 kWh/(kg removed water), and it was almost in linear relationship with duty cycle. By overall considering the energy consumption and electro-dewatering performance, the condition of 60% duty cycle with HSW was obviously better than other conditions, which provides a meaningful guidance for future application of sludge electro-dewatering technology with pulsating voltage.


Subject(s)
Sewage , Waste Disposal, Fluid , Sewage/chemistry , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Electrochemical Techniques/methods , Humic Substances/analysis , Water/chemistry , Benzopyrans
9.
Waste Manag ; 183: 143-152, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38754182

ABSTRACT

In the present study, press mud (PM), a major waste by-product from sugar industries, was subjected to hydrothermal pretreatment (HTP) to create resource recovery opportunities. The HTP process was performed with the PM samples in a laboratory scale high pressure batch reactor (capacity = 0.7 L) at 160 °C and 200 °C temperatures (solids content = 5 % and 30 %). The pretreatment resulted in separation of solid and liquid phases which are termed as solid hydrochar (HC) and process water (PW), respectively. High heating value (HHV) of HC was âˆ¼14-18 MJ kg-1, slightly higher than that of PM (14 MJ kg-1). The thermogravimetric analysis showed about 1.5-1.7 times higher heat release from HC burning compared to that observed from combustion of PM. Apart from this, the HC and PM showed no phytotoxicity during germination of mung bean (Vigna radiata). Moreover, the biochemical methane potential test on the PW showed a generation of 167-245 mL biogas per gram of chemical oxygen demand added. Hence, the HTP offers several resource recovery opportunities from PM which may also reduce the risks of environmental degradation.


Subject(s)
Hot Temperature , Water/chemistry , Industrial Waste/analysis , Biofuels/analysis , Biological Oxygen Demand Analysis , Thermogravimetry
10.
Bioresour Technol ; 402: 130771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701981

ABSTRACT

A full-scale high-rate cascade anaerobic digestion (CAD) system was evaluated for its ability to enhance enzymatic sludge hydrolysis. The system included a newly built digester, innovatively divided into three pie-shaped compartments (500 m3 each), followed by an existing, larger digester (1500 m3). The system treated a mixture of waste activated sludge and primary sludge, achieving a stable total chemical oxygen demand reduction efficiency (56.1 ± 6.8 %), and enhanced sludge hydrolytic enzyme activities at a 14.5-day total solids retention time (SRT). High-throughput sequencing data revealed a consistent microbial community across reactors, dominated by consortia that govern hydrolysis and acidogenesis. Despite relatively short SRTs in the initial reactors of the CAD system, acetoclastic methanogens belonging to Methanosaeta became the most abundant archaea. ‬‬‬‬‬‬‬‬‬‬‬‬‬ This study proves that the CAD system achieves stable sludge reduction, accelerates enzymatic hydrolysis at full-scale, and paves the way for its industrialization in municipal waste sewage sludge treatment.


Subject(s)
Bioreactors , Sewage , Sewage/microbiology , Bioreactors/microbiology , Hydrolysis , Biological Oxygen Demand Analysis , Anaerobiosis , Archaea/metabolism , Archaea/genetics
11.
Bioresour Technol ; 402: 130827, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734258

ABSTRACT

In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.


Subject(s)
Biodegradation, Environmental , Ecosystem , Nitrogen , Oligochaeta , Phosphorus , Animals , Oligochaeta/metabolism , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Rain
12.
Water Res ; 257: 121670, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723347

ABSTRACT

In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.


Subject(s)
Bioreactors , Coke , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Hydrolysis , Biological Oxygen Demand Analysis , Water Pollutants, Chemical , Anaerobiosis , Catalysis
13.
Water Res ; 257: 121703, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723354

ABSTRACT

Hydrothermal liquefaction (HTL) is a promising thermo-chemical technology for municipal sludge treatment due to its potential for biocrude oil recovery and minimizing biosolids management costs. However, the process generates a high volume of an aqueous byproduct that needs to be treated due to its high chemical oxygen demand (COD) and various organic and inorganic compounds. Although the aqueous phase is known to contain recalcitrant and potentially inhibitory substances that may affect its biological treatment, their molecular weight distribution (MwD) and its impact on anaerobic biodegradability are poorly understood. Ultrafiltration (UF) was conducted to fractionate HTL aqueous into different molecular weight (Mw) fractions using 300, 100, 10, and 1 kDa membranes. Mesophilic biochemical methane potential (BMP) assays were conducted to assess the anaerobic biodegradability of each fraction, and the first-order model was used to calculate the degradation kinetics of potential inhibitory compounds. The highest percentage of organics (65 %) was found in the Mw<1 kDa range, whereas the 10>Mw>1 kDa had the lowest percentage (8 %). There was no significant difference in the cumulative specific methane produced from various Mw fractions (p>0.05). The Mw<1 kDa fraction had the highest first-order specific methane production rate (0.53 day-1), whereas the unfiltered HTL had the lowest (0.38 day-1). Although UF fractionation increased the rate of anaerobic degradation of HTL aqueous for the Mw<1 kDa fraction, the observed methane potential was only 55 % of the theoretical value. This implies that 45 % of COD remains undegraded even after permeation through the lowest Mw cut-off membrane. Therefore, further characterization of HTL aqueous is needed for compounds with molecular weights below 1 kDa to fully understand the nature of inhibitory organics and their impact on anaerobic digestion. Furthermore, pretreatments utilizing techniques such as adsorption and advanced oxidation may be necessary to enhance the specific methane yields from various HTL aqueous fractions, thereby bringing them closer to the theoretical yield.


Subject(s)
Methane , Sewage , Ultrafiltration , Sewage/chemistry , Anaerobiosis , Molecular Weight , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Biodegradation, Environmental
14.
Environ Sci Technol ; 58(21): 9350-9360, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743617

ABSTRACT

The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.


Subject(s)
Bioreactors , Iron , Wastewater , Wastewater/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Sewage/chemistry , Biological Oxygen Demand Analysis , Methane , Biofuels , Phosphorus , Membranes, Artificial
15.
Water Res ; 257: 121754, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38762929

ABSTRACT

Algal-bacterial granular sludge (ABGS) system is promising in wastewater treatment for its potential in energy-neutrality and carbon-neutrality. However, traditional cultivation of ABGS poses significant challenges attributable to its long start-up period and high energy consumption. Extracellular polymeric substances (EPS), which could be stimulated as a self-defense strategy in cells under toxic contaminants stress, has been considered to contribute to the ABGS granulation process. In this study, photogranulation of ABGS by EPS regulation in response to varying loading rates of N-Methylpyrrolidone (NMP) was investigated for the first time. The results indicated the formation of ABGS with a maximum average diameter of ∼3.3 mm and an exceptionally low SVI5 value of 67 ± 2 mL g-1 under an NMP loading rate of 125 mg L-1 d-1, thereby demonstrating outstanding settleability. Besides, almost complete removal of 300 mg L-1 NMP could be achieved at hydraulic retention time of 48 h, accompanied by chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies higher than 90 % and 70 %, respectively. Moreover, possible degradation pathway and metabolism mechanism in the ABGS system for enhanced removal of NMP and nitrogen were proposed. In this ABGS system, the mycelium with network structure constituted by filamentous microorganisms was a prerequisite for photogranulation, instead of necessarily leading to granulation. Stress of 100-150 mg L-1 d-1 NMP loading rate stimulated tightly-bound EPS (TB-EPS) variation, resulting in rapid photogranulation. The crucial role of TB-EPS was revealed with the involved mechanisms being clarified. This study provides a novel insight into ABGS development based on the TB-EPS regulation by NMP, which is significant for achieving the manipulation of photogranules.


Subject(s)
Extracellular Polymeric Substance Matrix , Pyrrolidinones , Sewage , Sewage/microbiology , Extracellular Polymeric Substance Matrix/metabolism , Pyrrolidinones/metabolism , Waste Disposal, Fluid , Nitrogen , Bacteria/metabolism , Biological Oxygen Demand Analysis , Wastewater/chemistry
16.
Mar Pollut Bull ; 203: 116404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718546

ABSTRACT

This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.


Subject(s)
Nitrogen , Water Pollutants, Chemical , Anaerobiosis , Biofilms , Waste Disposal, Fluid/methods , Denitrification , Biological Oxygen Demand Analysis , Aquaculture , Biodegradation, Environmental , Water Purification/methods
17.
Chemosphere ; 359: 142377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768781

ABSTRACT

This study re-evaluated the role of anoxic and anaerobic zones during the enhanced biological phosphorus (P) removal process by investigating the potential effect of introducing an anoxic zone into a high-rate microaerobic activated sludge (MAS) system (1.60-1.70 kg chemical oxygen demand (COD) m-3 d-1), i.e., a high-rate anoxic/microaerobic (A/M) system for sewage treatment. In the absence of a pre-anaerobic zone, introducing an anoxic zone considerably reduced effluent NOx--N concentrations (7.2 vs. 1.5 mg L-1) and remarkably enhanced total nitrogen (75% vs. 89%) and total P (18% vs. 60%) removal and sludge P content (1.48% vs. 1.77% (dry weight)) due to further anoxic denitrifying P removal in the anoxic zone (besides simultaneous nitrification and denitrification in the microaerobic zone). High-throughput pyrosequencing demonstrated the niche differentiation of different polyphosphate accumulating organism (PAO) clades (including denitrifying PAO [DPAO] and non-DPAO) in both systems. Introducing an anoxic zone considerably reduced the total PAO abundance in sludge samples by 42% and modified the PAO community structure, including 17-19 detected genera. The change was solely confined to non-DPAOs, as no obvious change in total abundance or community structure of DPAOs including 7 detected genera was observed. Additionally, introducing an anoxic zone increased the abundance of ammonia-oxidizing bacteria by 39%. The high-rate A/M process provided less aeration, higher treatment capacity, a lower COD requirement, and a 75% decrease in the production of waste sludge than the conventional biological nutrient removal process.


Subject(s)
Bioreactors , Denitrification , Phosphorus , Sewage , Waste Disposal, Fluid , Phosphorus/metabolism , Phosphorus/analysis , Sewage/microbiology , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Nitrogen/metabolism , Anaerobiosis , Nitrification , Bacteria/metabolism , Aerobiosis , Biological Oxygen Demand Analysis
18.
Chemosphere ; 359: 142269, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719129

ABSTRACT

Temperature is a significant operational parameter of denitrifying filter (DF), which affects the microbial activity and the pollutants removal efficiency. This study investigated the influence of temperature on performance of advanced synergistic nitrogen removal (ASNR) of partial-denitrification anammox (PDA) and denitrification, consuming the hydrolytic and oxidation products of refractory organics in the actual secondary effluent (SE) as carbon source. When the test water temperature (TWT) was around 25, 20, 15 and 10 °C, the filtered effluent total nitrogen (TN) was 1.47, 1.70, 2.79 and 5.52 mg/L with the removal rate of 93.38%, 92.25%, 87.33% and 74.87%, and the effluent CODcr was 8.12, 8.45, 10.86 and 12.29 mg/L with the removal rate of 72.41%, 66.17%, 57.35% and 51.87%, respectively. The contribution rate of PDA to TN removal was 60.44%∼66.48%, and 0.77-0.96 mg chemical oxygen demand (CODcr) was actually consumed to remove 1 mg TN. The identified functional bacteria, such as anammox bacteria, manganese oxidizing bacteria (MnOB), hydrolytic bacteria and denitrifying bacteria, demonstrated that TN was removed by the ASNR, and the variation of the functional bacteria along the DF layer revealed the mechanism of the TWT affecting the efficiency of the ASNR. This technique presented a strong adaptability to the variation of the TWT, therefore, it has broad application prospect and superlative application value in advanced nitrogen removal of municipal wastewater.


Subject(s)
Denitrification , Manganese Compounds , Nitrogen , Oxides , Temperature , Waste Disposal, Fluid , Nitrogen/metabolism , Oxides/chemistry , Manganese Compounds/chemistry , Waste Disposal, Fluid/methods , Filtration/methods , Bacteria/metabolism , Bioreactors/microbiology , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Oxidation-Reduction , Biological Oxygen Demand Analysis
19.
Chemosphere ; 359: 142323, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735496

ABSTRACT

Anoxygenic phototrophic bacteria is a promising catalyst for constructing bioanode, but the mixed culture with non-photosynthetic bacteria is inevitable in an open environment application. In this study, a Rhodopseudomonas-dominated mixed culture with other electrogenic bacteria was investigated for deciphering the differentiated performance on electricity generation in light or dark conditions. The kinetic study showed that reaction rate of OM degradation was 9 times higher than that under dark condition, demonstrating that OM degradation was enhanced by photosynthesis. However, CE under light condition was lower. It indicated that part of OM was used to provide hydrogen donors for the fixation of CO2 or hydrogen production in photosynthesis, decreasing the OM used for electron transfer. In addition, higher COD concentration was not conducive to electricity generation. EIS analysis demonstrated that higher OM concentration would increase Rct to hinder the transfer of electrons from bacteria to the electrode. Indirect and direct electron transfer were revealed by CV analysis for light and dark biofilm, respectively, and nanowires were also observed by SEM graphs, further revealing the differentiate performance. Microbial community analysis demonstrated Rhodopseudomonas was dominated in light and decreased in dark, but Geobacter increased apparently from light to dark, resulting in different power generation performance. The findings revealed the differentiated performance on electricity generation and pollutant removal by mixed culture of phototrophic bacteria in light or dark, which will improve the power generation from photo-microbial fuel cells.


Subject(s)
Bioelectric Energy Sources , Electricity , Rhodopseudomonas , Rhodopseudomonas/metabolism , Photosynthesis , Light , Electrodes , Biofilms/growth & development , Biological Oxygen Demand Analysis , Electron Transport , Geobacter/metabolism , Geobacter/physiology
20.
Water Sci Technol ; 89(6): 1512-1525, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557715

ABSTRACT

This study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS-) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons. The results reveal differences in waking up times and evening routines, commuting behaviour during weekends and holidays, and water consumption. The pollutant profiles contribute to a better understanding of pollution generation in households and catchment activities. Flows and COD correlate well at all stations, but there are differences in conductivity and HS- at the station level. The article concludes by discussing the operational experience of the monitoring stations.


Subject(s)
Environmental Monitoring , Wastewater , Environmental Monitoring/methods , Sewage/analysis , Rain , Biological Oxygen Demand Analysis , Cities
SELECTION OF CITATIONS
SEARCH DETAIL
...