Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.825
Filter
1.
Int J Nanomedicine ; 19: 6999-7014, 2024.
Article in English | MEDLINE | ID: mdl-39011386

ABSTRACT

Introduction: Glioblastoma multiforme (GBM), a highly invasive and prognostically challenging brain cancer, poses a significant hurdle for current treatments due to the existence of the blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Methods: We present a biomimetic nanoplatform with angiopep-2-modified macrophage membrane, loaded with indocyanine green (ICG) templated self-assembly of SN38 (AM-NP), facilitating active tumor targeting and effective blood-brain barrier penetration through specific ligand-receptor interaction. Results: Upon accumulation at tumor sites, these nanoparticles achieved high drug concentrations. Subsequent combination of laser irradiation and release of chemotherapy agent SN38 induced a synergistic chemo-photothermal therapy. Compared to bare nanoparticles (NPs) lacking cell membrane encapsulation, AM-NPs significantly suppressed tumor growth, markedly enhanced survival rates, and exhibited excellent biocompatibility with minimal side effects. Conclusion: This NIR-activatable biomimetic camouflaging macrophage membrane-based nanoparticles enhanced drug delivery targeting ability through modifications of macrophage membranes and specific ligands. It simultaneously achieved synergistic chemo-photothermal therapy, enhancing treatment effectiveness. Compared to traditional treatment modalities, it provided a precise, efficient, and synergistic method that might have contributed to advancements in glioblastoma therapy.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Drug Liberation , Glioblastoma , Indocyanine Green , Nanoparticles , Photothermal Therapy , Glioblastoma/therapy , Glioblastoma/drug therapy , Glioblastoma/metabolism , Animals , Indocyanine Green/chemistry , Indocyanine Green/pharmacokinetics , Indocyanine Green/pharmacology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Humans , Cell Line, Tumor , Mice , Nanoparticles/chemistry , Photothermal Therapy/methods , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Irinotecan/pharmacokinetics , Irinotecan/chemistry , Irinotecan/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/pharmacokinetics , Infrared Rays , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Drug Delivery Systems/methods , Macrophages/drug effects , Macrophages/metabolism , Mice, Nude , Combined Modality Therapy/methods
2.
ACS Appl Bio Mater ; 7(7): 4270-4292, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38950103

ABSTRACT

Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.


Subject(s)
Biomimetic Materials , Bone Regeneration , Microspheres , Nanofibers , Tissue Engineering , Humans , Bone Regeneration/drug effects , Nanofibers/chemistry , Biomimetic Materials/chemistry , Osteogenesis/drug effects , Animals , Particle Size , Bone and Bones , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Tissue Scaffolds/chemistry
3.
Biomed Phys Eng Express ; 10(5)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38959869

ABSTRACT

Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.


Subject(s)
Phantoms, Imaging , Photoacoustic Techniques , Polymers , Photoacoustic Techniques/methods , Polymers/chemistry , Mineral Oil/chemistry , Ink , Biomimetic Materials/chemistry , Humans , Turpentine/chemistry , Oils/chemistry
4.
ACS Appl Mater Interfaces ; 16(27): 34783-34797, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38949260

ABSTRACT

Trauma is the leading cause of death for adults under the age of 44. Internal bleeding remains a significant challenge in medical emergencies, necessitating the development of effective hemostatic materials that could be administered by paramedics before a patient is in the hospital and treated by surgeons. In this study, we introduce a graphene oxide (GO)-based PEGylated synthetic hemostatic nanomaterial with an average size of 211 ± 83 nm designed to target internal bleeding by mimicking the role of fibrinogen. Functionalization of GO-g-PEG with peptides derived from the α-chain of fibrinogen, such as GRGDS, or the γ-chain of fibrinogen, such as HHLGGAKQAGDV:H12, was achieved with peptide loadings of 72 ± 6 and 68 ± 15 µM, respectively. In vitro studies with platelet-rich plasma (PRP) under confinement demonstrated aggregation enhancement of 39 and 24% for GO-g-PEG-GRGDS and GO-g-PEG-H12, respectively, compared to buffer, while adenosine diphosphate (ADP) alone induced a 5% aggregation. Compared to the same materials in the absence of ADP, GO-g-PEG-GRGDS achieved a 47% aggregation enhancement, while GO-g-PEG-H12 a 25% enhancement. This is particularly important for injectable hemostats and highlights the fact that our nanographene-based materials can only act as hemostats in the presence of agonists, reducing the possibility of unwanted clotting during circulation. Further studies on collagen-coated wells under dynamic flow revealed statistically significant augmentation of PRP fluorescence signal using GRGDS- or H12-coated GO-g-PEG compared to controls. Hemolysis studies showed <1% lysis of red blood cells (RBCs) at the highest PEGylated nanographene concentration. Finally, whole human blood coagulation studies reveal faster and more pronounced clotting using our nanohemostats vs PBS control from 3 min and below (blood is clotted with 10% CaCl2 within 4-5 min), with the biggest differences to be shown at 2 and 1 min. At 1 min, the clot weight was found to be ∼45% of that between 4 and 5 min, while no clot was formed in PBS-treated blood. Reduction of CaCl2 to 5 and 3%, or utilization of prostaglandin E1, an anticoagulant, still leads to clots but of smaller weight. The findings highlight the potential of our fibrinogen-mimic PEGylated nanographene as a promising non-hemolytic injectable scaffold for targeting internal bleeding, offering insights into its platelet aggregation capabilities under confinement and under dynamic flow as well as its pronounced coagulation abilities.


Subject(s)
Fibrinogen , Graphite , Hemostatics , Graphite/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Humans , Fibrinogen/chemistry , Fibrinogen/metabolism , Polyethylene Glycols/chemistry , Blood Coagulation/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Hemorrhage/drug therapy
5.
PLoS One ; 19(7): e0306142, 2024.
Article in English | MEDLINE | ID: mdl-38954698

ABSTRACT

Developing T1-weighted magnetic resonance imaging (MRI) contrast agents with enhanced biocompatibility and targeting capabilities is crucial owing to concerns over current agents' potential toxicity and suboptimal performance. Drawing inspiration from "biomimetic camouflage," we isolated cell membranes (CMs) from human glioblastoma (T98G) cell lines via the extrusion method to facilitate homotypic glioma targeting. At an 8:1 mass ratio of ferric chloride hexahydrate to gallic acid (GA), the resulting iron (Fe)-GA nanoparticles (NPs) proved effective as a T1-weighted MRI contrast agent. T98G CM-coated Fe-GA NPs demonstrated improved homotypic glioma targeting, validated through Prussian blue staining and in vitro MRI. This biomimetic camouflage strategy holds promise for the development of targeted theranostic agents in a safe and effective manner.


Subject(s)
Contrast Media , Gallic Acid , Magnetic Resonance Imaging , Gallic Acid/chemistry , Humans , Magnetic Resonance Imaging/methods , Cell Line, Tumor , Contrast Media/chemistry , Iron/chemistry , Biomimetic Materials/chemistry , Glioblastoma/drug therapy , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Nanoparticles/chemistry , Ferric Compounds/chemistry , Cell Membrane/metabolism
6.
Mikrochim Acta ; 191(8): 444, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38955823

ABSTRACT

Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.


Subject(s)
Biosensing Techniques , Boronic Acids , Gold , Spectrum Analysis, Raman , Boronic Acids/chemistry , Biosensing Techniques/methods , Gold/chemistry , Humans , Spectrum Analysis, Raman/methods , Silver/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Transferrin/analysis , Transferrin/chemistry , Molecular Imprinting , Molecularly Imprinted Polymers/chemistry , Glycoproteins/blood , Glycoproteins/chemistry , Biomimetic Materials/chemistry , Dopamine/blood , Dopamine/analysis , Sulfhydryl Compounds
7.
ACS Appl Mater Interfaces ; 16(28): 36106-36116, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38955781

ABSTRACT

Accurate detection of heterogeneous circulating tumor cells (CTCs) is critical as they can make tumor cells more aggressive, drug-resistant, and metastasizing. Although the leukocyte membrane coating strategy is promising in meeting the challenge of detecting heterogeneous CTCs due to its inherent antiadhesive properties, it is still limited by the reduction or loss of expression of known markers. Bioorthogonal glycol-metabolic engineering is expected to break down this barrier by feeding the cells with sugar derivatives with a unique functional group to establish artificial targets on the surface of tumor cells. Herein, an engineered leukocyte biomimetic colorimetric sensor was accordingly fabricated for high-efficient detection of heterogeneous CTCs. Compared with conventional leukocyte membrane coating, the sensor could covalently bound to the heterogeneous CTCs models fed with Ac4ManNAz in vitro through the synergy of bioorthogonal chemistry and metabolic glycoengineering, ignoring the phenotypic changes of heterogeneous CTCs. Meanwhile, a sandwich structure composed of leukocyte biomimetic layer/CTCs/MoS2 nanosheet was formed for visual detection of HeLa cells as low as 10 cells mL-1. Overall, this approach can overcome the dependence of conventional cell membrane biomimetic technology on specific cell phenotypes and provide a new viewpoint to highly efficiently detect heterogeneous CTCs.


Subject(s)
Biomimetic Materials , Colorimetry , Leukocytes , Neoplastic Cells, Circulating , Humans , Colorimetry/methods , HeLa Cells , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Leukocytes/cytology , Leukocytes/metabolism , Biomimetic Materials/chemistry , Biomimetics/methods , Biosensing Techniques/methods
8.
ACS Appl Mater Interfaces ; 16(28): 36131-36141, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38979627

ABSTRACT

Cancer immunotherapy is developing as the mainstream strategy for treatment of cancer. However, the interaction between the programmed cell death protein-1 (PD-1) and the programmed death ligand 1 (PD-L1) restricts T cell proliferation, resulting in the immune escape of tumor cells. Recently, immune checkpoint inhibitor therapy has achieved clinical success in tumor treatment through blocking the PD-1/PD-L1 checkpoint pathway. However, the presence of M2 tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) will inhibit antitumor immune responses and facilitate tumor growth, which can weaken the effectiveness of immune checkpoint inhibitor therapy. The repolarization of M2 TAMs into M1 TAMs can induce the immune response to secrete proinflammatory factors and active T cells to attack tumor cells. Herein, hollow iron oxide (Fe3O4) nanoparticles (NPs) were prepared for reprogramming M2 TAMs into M1 TAMs. BMS-202, a small-molecule PD-1/PD-L1 inhibitor that has a lower price, higher stability, lower immunogenicity, and higher tumor penetration ability compared with antibodies, was loaded together with pH-sensitive NaHCO3 inside hollow Fe3O4 NPs, followed by wrapping with macrophage membranes. The formed biomimetic FBN@M could produce gaseous carbon dioxide (CO2) from NaHCO3 in response to the acidic TME, breaking up the macrophage membranes to release BMS-202. A series of in vitro and in vivo assessments revealed that FBN@M could reprogram M2 TAMs into M1 TAMs and block the PD-1/PD-L1 pathway, which eventually induced T cell activation and the secretion of TNF-α and IFN-γ to kill the tumor cells. FBN@M has shown a significant immunotherapeutic efficacy for tumor treatment.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Animals , Mice , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Tumor Microenvironment/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line, Tumor , Magnetic Iron Oxide Nanoparticles/chemistry , Female , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism
9.
Nano Lett ; 24(27): 8217-8231, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38848540

ABSTRACT

Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.


Subject(s)
Biomimetic Materials , Neoplasms , Photosensitizing Agents , Theranostic Nanomedicine , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Biomimetics , Nanomedicine/methods
10.
Adv Healthc Mater ; 13(18): e2304109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849130

ABSTRACT

Lipid vesicles are widely used for drug and gene delivery, but their structural instability reduces in vivo efficacy and requires specialized handling. To address these limitations, strategies like lipid cross-linking and polymer-lipid conjugation are suggested to enhance stability and biological efficacy. However, the in vivo metabolism of these altered lipids remains unclear, necessitating further studies. A new stabilization technique without chemical modification is urgently needed. Here, a bio-mimetic approach for fabricating robust multilamellar lipid vesicles to enhance in vivo delivery and stabilization of protein antigens is presented. This method leverages 1-O-acylceramide, a natural skin lipid, to facilitate the self-assembly of lipid nanovesicles. Incorporating 1-O-acylceramide, anchoring lipid bilayers akin to its role in the stratum corneum, provides excellent stability under environmental stresses, including freeze-thaw cycles. Encapsulating ovalbumin as a model antigen and the adjuvant monophosphoryl lipid A demonstrates the vesicle's potential as a nanovaccine platform. In vitro studies show enhanced immune responses with both unilamellar and multilamellar vesicles, but in vivo analyses highlight the superior efficiency of multilamellar vesicles in inducing higher antibody and cytokine levels. This work suggests ceramide-induced multilamellar lipid vesicles as an effective nanovaccine platform for enhanced antigen delivery and stability.


Subject(s)
Ovalbumin , Animals , Mice , Ovalbumin/chemistry , Ovalbumin/immunology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Vaccination/methods , Lipid A/chemistry , Lipid A/analogs & derivatives , Vaccines/chemistry , Vaccines/immunology , Ceramides/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Female , Mice, Inbred C57BL
11.
Int J Nanomedicine ; 19: 5157-5172, 2024.
Article in English | MEDLINE | ID: mdl-38855731

ABSTRACT

Background: Poly-L-lactic acid (PLLA) stents have broad application prospects in the treatment of cardiovascular diseases due to their excellent mechanical properties and biodegradability. However, foreign body reactions caused by stent implantation remain a bottleneck that limits the clinical application of PLLA stents. To solve this problem, the biocompatibility of PLLA stents must be urgently improved. Albumin, the most abundant inert protein in the blood, possesses the ability to modify the surface of biomaterials, mitigating foreign body reactions-a phenomenon described as the "stealth effect". In recent years, a strategy based on albumin camouflage has become a focal point in nanomedicine delivery and tissue engineering research. Therefore, albumin surface modification is anticipated to enhance the surface biological characteristics required for vascular stents. However, the therapeutic applicability of this modification has not been fully explored. Methods: Herein, a bionic albumin (PDA-BSA) coating was constructed on the surface of PLLA by a mussel-inspired surface modification technique using polydopamine (PDA) to enhance the immobilization of bovine serum albumin (BSA). Results: Surface characterization revealed that the PDA-BSA coating was successfully constructed on the surface of PLLA materials, significantly improving their hydrophilicity. Furthermore, in vivo and in vitro studies demonstrated that this PDA-BSA coating enhanced the anticoagulant properties and pro-endothelialization effects of the PLLA material surface while inhibiting the inflammatory response and neointimal hyperplasia at the implantation site. Conclusion: These findings suggest that the PDA-BSA coating provides a multifunctional biointerface for PLLA stent materials, markedly improving their biocompatibility. Further research into the diverse applications of this coating in vascular implants is warranted.


Subject(s)
Coated Materials, Biocompatible , Polyesters , Polymers , Serum Albumin, Bovine , Stents , Polyesters/chemistry , Animals , Serum Albumin, Bovine/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Polymers/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Indoles/chemistry , Indoles/pharmacology , Surface Properties , Humans , Materials Testing , Human Umbilical Vein Endothelial Cells/drug effects
12.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891788

ABSTRACT

In the process of tissue engineering, several types of stresses can influence the outcome of tissue regeneration. This outcome can be understood by designing hydrogels that mimic this process and studying how such hydrogel scaffolds and cells behave under a set of stresses. Here, a hydrogel formulation is proposed to create biomimetic scaffolds suitable for fibroblast cell culture. Subsequently, we examine the impact of external stresses on fibroblast cells cultured on both solid and porous hydrogels. These stresses included mechanical tension and altered-gravity conditions experienced during the 83rd parabolic flight campaign conducted by the European Space Agency. This study shows distinct cellular responses characterized by cell aggregation and redistribution in regions of intensified stress concentration. This paper presents a new biomimetic hydrogel that fulfills tissue-engineering requirements in terms of biocompatibility and mechanical stability. Moreover, it contributes to our comprehension of cellular biomechanics under diverse gravitational conditions, shedding light on the dynamic cellular adaptations versus varying stress environments.


Subject(s)
Fibroblasts , Hydrogels , Tissue Engineering , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/cytology , Hydrogels/chemistry , Tissue Engineering/methods , Cell Culture Techniques/methods , Stress, Mechanical , Biomimetics/methods , Animals , Tissue Scaffolds/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Humans , Mice
13.
J Mater Sci Mater Med ; 35(1): 31, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896291

ABSTRACT

Orthopedic and dental implant failure continues to be a significant concern due to localized bacterial infections. Previous studies have attempted to improve implant surfaces by modifying their texture and roughness or coating them with antibiotics to enhance antibacterial properties for implant longevity. However, these approaches have demonstrated limited effectiveness. In this study, we attempted to engineer the titanium (Ti) alloy surface biomimetically at the nanometer scale, inspired by the cicada wing nanostructure using alkaline hydrothermal treatment (AHT) to simultaneously confer antibacterial properties and support the adhesion and proliferation of mammalian cells. The two modified Ti surfaces were developed using a 4 h and 8 h AHT process in 1 N NaOH at 230 °C, followed by a 2-hour post-calcination at 600 °C. We found that the control plates showed a relatively smooth surface, while the treatment groups (4 h & 8 h AHT) displayed nanoflower structures containing randomly distributed nano-spikes. The results demonstrated a statistically significant decrease in the contact angle of the treatment groups, which increased wettability characteristics. The 8 h AHT group exhibited the highest wettability and significant increase in roughness 0.72 ± 0.08 µm (P < 0.05), leading to more osteoblast cell attachment, reduced cytotoxicity effects, and enhanced relative survivability. The alkaline phosphatase activity measured in all different groups indicated that the 8 h AHT group exhibited the highest activity, suggesting that the surface roughness and wettability of the treatment groups may have facilitated cell adhesion and attachment and subsequently increased secretion of extracellular matrix. Overall, the findings indicate that biomimetic nanotextured surfaces created by the AHT process have the potential to be translated as implant coatings to enhance bone regeneration and implant integration.


Subject(s)
Biomimetic Materials , Dental Implants , Osteoblasts , Surface Properties , Titanium , Wettability , Osteoblasts/drug effects , Titanium/chemistry , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Adhesion/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing , Biomimetics , Humans , Cell Proliferation/drug effects , Alloys/chemistry , Prostheses and Implants , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Nanostructures/chemistry , Cell Survival/drug effects , Alkaline Phosphatase/metabolism , Hemiptera , Cell Line
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124559, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38830331

ABSTRACT

In this work, we present a novel colorimetric sensing platform for the sensitive detection of ethamsylate (ETM) usingultrathin MnO2 nanosheets with enhancedoxidase-mimicking activity. A facile template-free hydrothermal process was applied to synthesize the MnO2 nanosheets under mild conditions. The nanosheets exhibited oxidase-mimicking activity, facilitating the conversion of TMB into the blue-colored oxTMB in the absence of H2O2. However, the presence of ETM inhibited this activity, resulting in the conversion of oxTMB back to colorless TMB and a substantial decrease in the blue color intensity. The colorimetric response exhibited a linear relationship with ETM concentration over the range of 0.5 to 10.0 µg/mL and a detection limit of 0.156 µg/mL. To further elucidate the underlying mechanism, we performed extensive characterization and kinetic experiments. The findings demonstrated that this unique property is attributed to the remarkable capacity of the MnO2 nanosheets to absorb oxygen, producing superoxide radicals (O2-). The oxidase-mimicking activity of the nanosheets was further confirmed by the reaction kinetics, following Michaelis-Menten's behavior. Moreover, the applicability of the sensing platform was assessed by determining ETM concentrations in various real samples (different pharmaceuticals, human plasma, and environmental water). The well-established platform demonstrates the prospective role that nanomaterials-based sensing platforms may play in clinical diagnostics, pharmaceutical analysis, and other relevant fields.


Subject(s)
Colorimetry , Limit of Detection , Manganese Compounds , Nanostructures , Oxides , Oxidoreductases , Colorimetry/methods , Manganese Compounds/chemistry , Oxides/chemistry , Nanostructures/chemistry , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Kinetics , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Biomimetic Materials/chemistry , Benzidines/chemistry
15.
Colloids Surf B Biointerfaces ; 240: 113979, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823339

ABSTRACT

Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.


Subject(s)
Atherosclerosis , Biomimetics , Blood Platelets , Drug Carriers , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Humans , Blood Platelets/metabolism , Blood Platelets/drug effects , Drug Carriers/chemistry , Biomimetics/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Animals , Nanoparticles/chemistry , Drug Delivery Systems
16.
Lab Chip ; 24(13): 3276-3283, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38847088

ABSTRACT

Lipid nanoparticles often contain a phosphatidylcholine with a long chain fatty acid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). However, their preparation often encounters difficulties such as the inability to yield <20 nm nanoparticles due to the aggregation-prone behavior of DSPC. High-density lipoproteins (HDLs) are ∼10 nm protein-bound lipid nanoparticles in our body, and microfluidic preparations of HDL-mimicking nanoparticles (µHDL) have been reported. Herein, we report a new microfluidic mixing mode that enables preparation of µHDL with DSPC in high yield (≥90% on a protein basis). The critical mechanism of this mode is a spontaneous asymmetric distribution of the ethanol flow injected in a symmetric manner followed by turbulent mixing in a simple rectangular parallelepiped-shaped chip.


Subject(s)
Lipoproteins, HDL , Microfluidic Analytical Techniques , Nanoparticles , Phosphatidylcholines , Phosphatidylcholines/chemistry , Nanoparticles/chemistry , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Biomimetic Materials/chemistry
17.
Int J Nanomedicine ; 19: 6177-6199, 2024.
Article in English | MEDLINE | ID: mdl-38911498

ABSTRACT

Purpose: Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods: MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results: Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion: MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.


Subject(s)
Administration, Intranasal , Blood-Brain Barrier , Ginsenosides , Ischemic Stroke , Liposomes , Macrophages , Animals , Liposomes/chemistry , Ischemic Stroke/drug therapy , Rats , Male , Ginsenosides/pharmacokinetics , Ginsenosides/chemistry , Ginsenosides/administration & dosage , Ginsenosides/pharmacology , Blood-Brain Barrier/drug effects , Macrophages/drug effects , Drug Delivery Systems/methods , Rats, Sprague-Dawley , Tissue Distribution , Brain/drug effects , Brain/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/administration & dosage , Saponins/pharmacokinetics , Saponins/chemistry , Saponins/administration & dosage , Saponins/pharmacology , Mice
18.
J Nanobiotechnology ; 22(1): 362, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910259

ABSTRACT

Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Macrophages , Mice, Inbred C57BL , MicroRNAs , Nanoparticles , Sepsis , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Sepsis/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , MicroRNAs/metabolism , Mice , Nanoparticles/chemistry , Macrophages/metabolism , Macrophages/drug effects , Humans , Male , Lipopolysaccharides , Neutrophils/metabolism , Oxidative Stress/drug effects , Lung/metabolism , Lung/pathology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Multiomics
19.
Nanoscale ; 16(25): 11863-11878, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38841898

ABSTRACT

Red blood cells (RBCs), which function as material transporters in organisms, are rich in materials that are exchanged with metabolically active tumor cells. Recent studies have demonstrated that tumor cells can regulate biological changes in RBCs, including influencing differentiation, maturation, and morphology. RBCs play an important role in tumor development and immune regulation. Notably, the novel scientific finding that RBCs absorb fragments of tumor-carrying DNA overturns the conventional wisdom that RBCs do not contain nucleic acids. RBC membranes are excellent biomimetic materials with significant advantages in terms of their biocompatibility, non-immunogenicity, non-specific adsorption resistance, and biodegradability. Therefore, RBCs provide a new research perspective for the development of tumor liquid biopsies, molecular imaging, drug delivery, and other tumor precision diagnosis and treatment technologies.


Subject(s)
Erythrocytes , Neoplasms , Humans , Erythrocytes/metabolism , Neoplasms/therapy , Neoplasms/diagnosis , Neoplasms/pathology , Precision Medicine , Animals , Drug Delivery Systems , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Biomimetic Materials/chemistry
20.
Bioinspir Biomim ; 19(4)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38870926

ABSTRACT

In order to enhance energy absorption, this study draws inspiration from the diagonal bilinear robust square lattice structure found in deep-sea glass sponges, proposing a design for thin-walled structures with superior folding capabilities and high strength-to-weight ratio. Firstly, the crashworthiness of bionic glass sponge tube (BGSTO) is compared with that of equal-wall-thickness equal-mass four-X tube through both experiments and simulations, and it is obtained that the specific energy absorption of BGSTO is increased by 78.64%. And the crashworthiness of BGSTO is also most significant compared to that of multicellular tubes with the similar number of crystalline cells. Additionally, we found that the double-line spacing of the glass sponge can be freely adjusted without changing the material amount. Therefore, based on BGSTO, we designed two other double-line structures, BGSTA and BGSTB. Then with equal wall thickness and mass as a prerequisite, this study proceeds to design and compare the energy absorption properties of three bilinear thin-walled tubes in both axial and lateral cases. The deformation modes and crashworthiness of the three types of tubes with variable bilinear spacing (ßO/A/B) are comparatively analysed. The improved complex proportional assessment (COPRAS) synthesis decision is used to obtain that BGSTO exhibits superior crashworthiness over the remaining two kinds of tubes. Finally, a surrogate model is established to perform multi-objective optimization on the optimal bilinear configuration BGSTO selected by the COPRAS method.


Subject(s)
Bionics , Porifera , Porifera/chemistry , Animals , Biomimetic Materials/chemistry , Computer Simulation , Glass/chemistry , Biomimetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...