Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.723
Filter
1.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692247

ABSTRACT

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Subject(s)
Biosensing Techniques , Equipment Design , Food Analysis , Limit of Detection , Molybdenum , Nitrites , Molybdenum/chemistry , Biosensing Techniques/instrumentation , Nitrites/analysis , Food Analysis/instrumentation , Humans , Dimethylpolysiloxanes/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis
2.
Biosens Bioelectron ; 258: 116340, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718633

ABSTRACT

The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Escherichia coli , Gold , Metal Nanoparticles , Staphylococcus aureus , Biosensing Techniques/instrumentation , Gold/chemistry , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Escherichia coli/isolation & purification , Escherichia coli/genetics , Metal Nanoparticles/chemistry , Silver/chemistry , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Electrochemical Techniques/methods , Humans , Nanostructures/chemistry , DNA, Single-Stranded/chemistry , Electrodes , Printing , Bacterial Proteins/genetics , Endodeoxyribonucleases , CRISPR-Associated Proteins
3.
Biosens Bioelectron ; 258: 116376, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38739999

ABSTRACT

The capacitive immunosensor, known for its label-free simplicity, has great potential for point-of-care diagnostics. However, the interaction between insulation and recognition layers on the sensing electrode greatly affects its performance. This study introduces a pioneering dual-layer strategy, implementing a novel combination of acrylic resin (AR) and nitrocellulose (NC) coatings on screen-printed carbon electrodes (SPCEs). This innovative approach not only enhances the dielectric properties of the capacitive sensor but also streamlines the immobilization of recognizing elements. Particularly noteworthy is the superior reliability and insulation offered by the AR coating, surpassing the limitations of traditional self-assembled monolayer (SAM) modifications. This dual-layer methodology establishes a robust foundation for constructing capacitive sensors optimized specifically for liquid medium-based biosensing applications. The NC coating in this study represents a breakthrough in effectively immobilizing BSA, unraveling the capacitive response intricately linked to the quantity of adsorbed recognizing elements. The results underscore the prowess of the proposed immunosensor, showcasing a meticulously defined linear calibration curve for anti-BSA (ranging from 0 to 25 µg/ml). Additionally, specific interactions with anti-HAS and anti-TNF-α further validate the versatility and efficacy of the developed immunosensor. This work presents a streamlined and highly efficient protocol for developing label-free immunosensors for antibody determination and introduces a paradigm shift by utilizing readily available electrodes and sensing systems. The findings are poised to catalyze a significant acceleration in the advancement of biosensor technology, opening new avenues for innovative applications in point-of-care diagnostics.


Subject(s)
Acrylic Resins , Biosensing Techniques , Carbon , Collodion , Electrodes , Serum Albumin, Bovine , Biosensing Techniques/instrumentation , Carbon/chemistry , Acrylic Resins/chemistry , Immunoassay/instrumentation , Immunoassay/methods , Collodion/chemistry , Serum Albumin, Bovine/chemistry , Humans , Electric Capacitance , Limit of Detection , Electrochemical Techniques/methods , Antibodies, Immobilized/chemistry , Animals
4.
Anal Chem ; 96(21): 8713-8720, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38745346

ABSTRACT

Ketogenic diets have attracted substantial interest in the treatment of chronic diseases, but there are health risks with long-term regimes. Despite the advancements in diagnostic and therapeutic methods in modern medicine, there is a huge gap in personalized health management of this dietary strategy. Hence, we present a wearable microneedle biosensor for real-time ketone and glucose monitoring. The microneedle array possesses excellent mechanical properties, allowing for consistent sampling of interstitial biomarkers while reducing the pain associated with skin puncture. Vertical graphene with outstanding electrical conductivity provides the resulting sensor with a high sensitivity of 234.18 µA mM-1 cm-2 and a low limit detection of 1.21 µM. When this fully integrated biosensor was used in human volunteers, it displayed an attractive analytical capability for tracking the dynamic metabolite levels. Moreover, the results of the on-body evaluation established a significant correlation with commercial blood measurements. Overall, this cost-effective and efficient sensing platform can accelerate the application of a ketogenic diet in personal nutrition and wellness management.


Subject(s)
Biosensing Techniques , Diet, Ketogenic , Graphite , Needles , Wearable Electronic Devices , Graphite/chemistry , Humans , Biosensing Techniques/instrumentation , Ketones
5.
Opt Lett ; 49(10): 2821-2824, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748170

ABSTRACT

Waveguide Bragg grating (WBG) blood glucose sensing, as a biological sensing technology with broad application prospects, plays an important role in the fields of health management and medical treatment. In this work, a polymer-based cascaded WBG is applied to glucose detection. We investigated photonic devices with two different grating structures cascaded-a crossed grating and a bilateral grating-and analyzed the effects of the crossed grating period, bilateral grating period, and number of grating periods on the sensing performance of the glucose sensor. Finally, the spectral reflectance characteristics, response time, and sensing specificity of the cascaded WBG were evaluated. The experimental results showed that the glucose sensor has a sensitivity of 175 nm/RIU in a glucose concentration range of 0-2 mg/ml and has the advantages of high integration, a narrow bandwidth, and low cost.


Subject(s)
Blood Glucose , Polymers , Polymers/chemistry , Blood Glucose/analysis , Biosensing Techniques/instrumentation
6.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691423

ABSTRACT

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Subject(s)
Allergens , Arachis , Peptides , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Arachis/chemistry , Arachis/immunology , Peptides/chemistry , Peptides/immunology , Allergens/analysis , Allergens/immunology , Allergens/chemistry , Biofouling/prevention & control , Food Contamination/analysis , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Adsorption
7.
J Nanobiotechnology ; 22(1): 239, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735951

ABSTRACT

Widespread distribution of porcine epidemic diarrhea virus (PEDV) has led to catastrophic losses to the global pig farming industry. As a result, there is an urgent need for rapid, sensitive and accurate tests for PEDV to enable timely and effective interventions. In the present study, we develop and validate a floating gate carbon nanotubes field-effect transistor (FG CNT-FET)-based portable immunosensor for rapid identification of PEDV in a sensitive and accurate manner. To improve the affinity, a unique PEDV spike protein-specific monoclonal antibody is prepared by purification, and subsequently modified on FG CNT-FET sensor to recognize PEDV. The developed FET biosensor enables highly sensitive detection (LoD: 8.1 fg/mL and 100.14 TCID50/mL for recombinant spike proteins and PEDV, respectively), as well as satisfactory specificity. Notably, an integrated portable platform consisting of a pluggable FG CNT-FET chip and a portable device can discriminate PEDV positive from negative samples and even identify PEDV and porcine deltacoronavirus within 1 min with 100% accuracy. The portable sensing platform offers the capability to quickly, sensitively and accurately identify PEDV, which further points to a possibility of point of care (POC) applications of large-scale surveillance in pig breeding facilities.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Porcine epidemic diarrhea virus , Porcine epidemic diarrhea virus/isolation & purification , Animals , Swine , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Limit of Detection , Immunoassay/methods , Immunoassay/instrumentation , Antibodies, Monoclonal/immunology , Transistors, Electronic , Swine Diseases/diagnosis , Swine Diseases/virology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/analysis , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Antibodies, Viral/immunology , Equipment Design
8.
Food Chem ; 451: 139461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701733

ABSTRACT

Copper as a widely applied element in food supply chain can cause serious contamination issues that threats food safety. In this research, we present a quick and visible method for trace copper ion (Cu2+) quantification in practical food samples. Polymer dots (Pdots) were firstly conjugated with a copper-specific DNA aptamer and then tailored with rhodamine B (RhB) to extinguish the electrochemiluminescence (ECL) signal through a resonance energy transfer process. The selective release of RhB leads to signal restoration when exposed to trace Cu2+ levels, achieving remarkable linearity with the logarithm of Cu2+ concentration within the range of 1 ng/L to 10 µg/L with an impressively low limit of detection at 11.8 pg/L. Most notably, our device was also applicable on visualizing and quantifying trace Cu2+ (∼0.2 µg/g) in practical Glycyrrhiza uralensis Fisch. samples, underscoring its potential as a tool for the early prevention of potential copper contamination in food samples.


Subject(s)
Copper , Electrochemical Techniques , Food Contamination , Luminescent Measurements , Copper/analysis , Copper/chemistry , Food Contamination/analysis , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Electrochemical Techniques/instrumentation , Limit of Detection , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Analysis/methods , Aptamers, Nucleotide/chemistry , Quantum Dots/chemistry
9.
ACS Nano ; 18(20): 12808-12819, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717026

ABSTRACT

Considerable progress has already been made in sweat sensors based on electrochemical methods to realize real-time monitoring of biomarkers. However, realizing long-term monitoring of multiple targets at the atomic level remains extremely challenging, in terms of designing stable solid contact (SC) interfaces and fully integrating multiple modules for large-scale applications of sweat sensors. Herein, a fully integrated wristwatch was designed using mass-manufactured sensor arrays based on hierarchical multilayer-pore cross-linked N-doped porous carbon coated by reduced graphene oxide (NPCs@rGO-950) microspheres with high hydrophobicity as core SC, and highly selective monitoring simultaneously for K+, Na+, and Ca2+ ions in human sweat was achieved, exhibiting near-Nernst responses almost without forming an interfacial water layer. Combined with computed tomography, solid-solid interface potential diffusion simulation results reveal extremely low interface diffusion potential and high interface capacitance (598 µF), ensuring the excellent potential stability, reversibility, repeatability, and selectivity of sensor arrays. The developed highly integrated-multiplexed wristwatch with multiple modules, including SC, sensor array, microfluidic chip, signal transduction, signal processing, and data visualization, achieved reliable real-time monitoring for K+, Na+, and Ca2+ ion concentrations in sweat. Ingenious material design, scalable sensor fabrication, and electrical integration of multimodule wearables lay the foundation for developing reliable sweat-sensing systems for health monitoring.


Subject(s)
Electrolytes , Graphite , Sweat , Wearable Electronic Devices , Sweat/chemistry , Humans , Graphite/chemistry , Electrolytes/chemistry , Ions/analysis , Calcium/analysis , Sodium/analysis , Sodium/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Potassium/analysis
10.
Sci Rep ; 14(1): 11526, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773136

ABSTRACT

This paper reports on the development of a flexible-wearable potentiometric sensor for real-time monitoring of sodium ion (Na+), potassium ion (K+), and pH in human sweat. Na0.44MnO2, polyaniline, and K2Co[Fe(CN)6] were used as sensing materials for Na+, H+ and K+ monitoring, respectively. The simultaneous potentiometric Na+, K+, and pH sensing were carried out by the developed sensor, which enables signal collection and transmission in real-time to the smartphone via a Wi-Fi access point. Then, the potentiometric responses were evaluated by a designed android application. Na+, K+, and pH sensors illustrated high sensitivity (59.7 ± 0.8 mV/decade for Na+, 57.8 ± 0.9 mV/decade for K+, and 54.7 ± 0.6 mV/pH for pH), excellent stability, and good batch-to-batch reproducibility. The results of on-body experiments demonstrated that the proposed platform is capable of real-time monitoring of the investigated ions.


Subject(s)
Potassium , Potentiometry , Sodium , Sweat , Wearable Electronic Devices , Humans , Hydrogen-Ion Concentration , Potentiometry/methods , Potentiometry/instrumentation , Sodium/analysis , Sweat/chemistry , Potassium/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Wireless Technology/instrumentation , Smartphone , Reproducibility of Results
11.
Article in English | MEDLINE | ID: mdl-38723798

ABSTRACT

Wearable and implantable sensing of biomechanical signals such as pressure, strain, shear, and vibration can enable a multitude of human-integrated applications, including on-skin monitoring of vital signs, motion tracking, monitoring of internal organ condition, restoration of lost/impaired mechanoreception, among many others. The mechanical conformability of such sensors to the human skin and tissue is critical to enhancing their biocompatibility and sensing accuracy. As such, in the recent decade, significant efforts have been made in the development of soft mechanical sensors. To satisfy the requirements of different wearable and implantable applications, such sensors have been imparted with various additional properties to make them better suited for the varied contexts of human-integrated applications. In this review, focusing on the four major types of soft mechanical sensors for pressure, strain, shear, and vibration, we discussed the recent material and device design innovations for achieving several important properties, including flexibility and stretchability, bioresorbability and biodegradability, self-healing properties, breathability, transparency, wireless communication capabilities, and high-density integration. We then went on to discuss the current research state of the use of such novel soft mechanical sensors in wearable and implantable applications, based on which future research needs were further discussed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Implantable Materials and Surgical Technologies > Nanomaterials and Implants.


Subject(s)
Prostheses and Implants , Wearable Electronic Devices , Humans , Equipment Design , Biosensing Techniques/instrumentation , Monitoring, Physiologic/instrumentation
12.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732893

ABSTRACT

An abnormal level of dopamine (DA), a kind of neurotransmitter, correlates with a series of diseases, including Parkinson's disease, Willis-Ekbom disease, attention deficit hyperactivity disorder, and schizophrenia. Hence, it is imperative to achieve a precise, rapid detection method in clinical medicine. In this study, we synthesized nanocomposite carbon aerogels (CAs) doped with iron and iron carbide, based on algae residue-derived biomass materials, using Fe(NO3)3 as the iron source. The modified glassy carbon electrode (GCE) for DA detection, denoted as CAs-Fe/GCE, was prepared through surface modification with this composite material. X-ray photoelectron spectroscopy and X-ray diffraction characterization confirmed the successful doping of iron into the as-prepared CAs. Additionally, the electrochemical behavior of DA on the modified electrode surface was investigated and the results demonstrate that the addition of the CAs-Fe promoted the electron transfer rate, thereby enhancing their sensing performance. The fabricated electrochemical DA biosensor exhibits an accurate detection of DA in the concentration within the range of 0.01~200 µM, with a detection limit of 0.0033 µM. Furthermore, the proposed biosensor is validated in real samples, showing its high applicability for the detection of DA in beverages.


Subject(s)
Biosensing Techniques , Carbon , Dopamine , Electrochemical Techniques , Electrodes , Iron , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Dopamine/analysis , Dopamine/chemistry , Carbon/chemistry , Iron/chemistry , Electrochemical Techniques/methods , Gels/chemistry , Limit of Detection , Photoelectron Spectroscopy , Nanocomposites/chemistry
13.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732977

ABSTRACT

Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. Escherichia coli B and Escherichia coli K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of E. coli cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.


Subject(s)
Escherichia coli , Flow Cytometry , Microwaves , Flow Cytometry/methods , Escherichia coli/isolation & purification , Biosensing Techniques/methods , Biosensing Techniques/instrumentation
14.
Sensors (Basel) ; 24(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38733011

ABSTRACT

Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.


Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Neoplasms , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Electrochemical Techniques/methods , Nanotechnology/trends , Nanotechnology/methods , Nanotechnology/instrumentation , Microfluidics/methods , Microfluidics/instrumentation , Microfluidics/trends
15.
Sensors (Basel) ; 24(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38733009

ABSTRACT

Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors. This review provides a comprehensive overview of the principles of LbL self-assembly, the role of polymers in sensor fabrication, and the various types of LbL-fabricated wearable sensors for physical, chemical, and biological sensing. The applications of these sensors in continuous health monitoring, disease diagnosis, and management are discussed in detail, highlighting their potential to revolutionize personalized healthcare. Despite significant progress, challenges related to long-term stability, biocompatibility, data acquisition, and large-scale manufacturing are still to be addressed, providing insights into future research directions. With continued advancements in polymer-assisted LbL fabrication and related fields, wearable sensors are poised to improve the quality of life for individuals worldwide.


Subject(s)
Biosensing Techniques , Polymers , Wearable Electronic Devices , Polymers/chemistry , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
16.
ACS Appl Mater Interfaces ; 16(21): 27952-27960, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808703

ABSTRACT

Capable of directly capturing various physiological signals from human skin, skin-interfaced bioelectronics has emerged as a promising option for human health monitoring. However, the accuracy and reliability of the measured signals can be greatly affected by body movements or skin deformations (e.g., stretching, wrinkling, and compression). This study presents an ultraconformal, motion artifact-free, and multifunctional skin bioelectronic sensing platform fabricated by a simple and user-friendly laser patterning approach for sensing high-quality human physiological data. The highly conductive membrane based on the room-temperature coalesced Ag/Cu@Cu core-shell nanoparticles in a mixed solution of polymers can partially dissolve and locally deform in the presence of water to form conformal contact with the skin. The resulting sensors to capture improved electrophysiological signals upon various skin deformations and other biophysical signals provide an effective means to monitor health conditions and create human-machine interfaces. The highly conductive and stretchable membrane can also be used as interconnects to connect commercial off-the-shelf chips to allow extended functionalities, and the proof-of-concept demonstration is highlighted in an integrated pulse oximeter. The easy-to-remove feature of the resulting device with water further allows the device to be applied on delicate skin, such as the infant and elderly.


Subject(s)
Wearable Electronic Devices , Humans , Skin/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Silver/chemistry , Copper/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Artifacts , Metal Nanoparticles/chemistry , Motion , Electric Conductivity
17.
Sci Rep ; 14(1): 12302, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811698

ABSTRACT

The correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH response within the range of 5.5-9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH (pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular microenvironments, where extracellular pH plays an important role.


Subject(s)
Fluorescent Dyes , Nanoparticles , Hydrogen-Ion Concentration , Humans , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Cell Membrane/metabolism , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Oxazines/chemistry , Polystyrenes/chemistry
18.
Food Chem ; 453: 139639, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759442

ABSTRACT

This study reports the fabrication of three-dimensional gold nanocrystals as sensing material in the presence of l-glutathion and high-performance aptamer with 20 bases of α-amanitin via truncation and optimization of along aptamer. The resulting maple leaf-like gold nanocrystal (ML-Au) exhibits an improved catalytic activity due to more exposed high-index facets. The use of truncated aptamer increases the sensitivity by 15 times and reduces the reaction time by two times compared with those of original aptamer. An α-amanitin electrochemical biosensor constructed by integrating ML-Au nanocrystals with truncated aptamer exhibits high sensitivity, selectivity and rapidity. An increase of the α-amanitin concentration in the range of 1 × 10-14-1 × 10-9 M causes a linear decrease in the amperometric current with a limit of detection of 2.9 × 10-15 M (S/N = 3). The proposed analytical method is satisfactorily used for electrochemical sensing of α-amanitin in urine and wild mushroom samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Metal Nanoparticles , Gold/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Agaricales/chemistry , Humans
19.
Food Chem ; 453: 139666, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759443

ABSTRACT

Pesticide residues in agricultural products pose a significant threat to human health. Herein, a sensitive fluorescence method employing upconversion nanoparticles was developed for detecting organophosphorus pesticides (OPs) based on the principle of enzyme inhibition and copper-triggered o-phenylenediamine (OPD) oxidation. Copper ions (Cu2+) oxidized the colorless OPD to a yellow 2,3-diaminophenazine (oxOPD). The yellow solution oxOPD quenched the fluorescence of upconversion nanoparticles due to the fluorescence resonance energy transfer. The high affinity of Cu2+ for thiocholine reduced the level of oxOPD, resulting in almost no fluorescence quenching. The addition of dimethoate led to the inhibition of acetylcholinesterase activity and thus prevented the formation of thiocholine. Subsequently, Cu2+ oxidized OPD to form oxOPD, which attenuated the fluorescence signal of the system. The detection system has a good linear range of 0.01 ng/mL to 50 ng/mL with a detection limit of 0.008 ng/mL, providing promising applications for rapid detection of dimethoate.


Subject(s)
Acetylcholinesterase , Copper , Dimethoate , Oxidation-Reduction , Pesticides , Phenylenediamines , Copper/chemistry , Phenylenediamines/chemistry , Dimethoate/chemistry , Dimethoate/analysis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Pesticides/chemistry , Pesticides/analysis , Nanoparticles/chemistry , Limit of Detection , Biosensing Techniques/instrumentation , Fluorescence , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/analysis
20.
Food Chem ; 453: 139635, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38759445

ABSTRACT

Aflatoxin B1 (AFB1) is a common mycotoxin that is of significant global concern due to its impact on food safety. Herein, we innovatively develop a sensing platform to detect AFB1 based on evaporation of surfactant solutions on the hydrophobic surface, resulting in dried patterns with varied sizes. The surfactant CTAB solution produces a relatively large dried pattern due to the surface wetting. However, the reduction in the dried pattern size is found when the mixture of CTAB and AFB1 aptamer is tested, because the formation of CTAB/aptamer complex. Moreover, the dried pattern size of the mixture of CTAB, aptamer, and AFB1 increases due to the specific binding of AFB1 to its aptamer. Using this innovative strategy, the AFB1 detection can be fulfilled with a detection limit of 0.77 pg/mL. As a simple, convenient, inexpensive, and label-free method, the surfactant-mediated surface droplet evaporation-based biosensor is very promising for various potential applications.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Food Contamination , Surface-Active Agents , Aflatoxin B1/analysis , Aflatoxin B1/chemistry , Surface-Active Agents/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Contamination/analysis , Limit of Detection , Aptamers, Nucleotide/chemistry , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...