Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.432
Filter
1.
J Helminthol ; 98: e47, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828707

ABSTRACT

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Subject(s)
Life Cycle Stages , Phylogeny , Schistosomatidae , Animals , Schistosomatidae/genetics , Schistosomatidae/classification , Schistosomatidae/isolation & purification , Schistosomatidae/growth & development , Schistosomatidae/anatomy & histology , Chile , Argentina , Birds/parasitology , Bird Diseases/parasitology , RNA, Ribosomal, 28S/genetics , Snails/parasitology , South America , Electron Transport Complex IV/genetics
2.
Article in English | MEDLINE | ID: mdl-38701808

ABSTRACT

A captive 15-year-old male common raven (Corvus corax) was presented for post-mortem examination. It had been previously presented to a local veterinarian due to a 3-4 weeks long history of abnormal respiratory sounds. Upon admission, the bird demonstrated severe dyspnea and a massive amount of mucous in the oropharynx. After symptomatic treatment, dyspnea deteriorated dramatically, and euthanasia was elicited because of poor prognosis. The necropsy revealed a 2.65 x 2.15 x 2.18 cm expansile and poorly delineated cauliflower-shaped mass around the glottis and extending inside the tracheal lumen. Additionally, a dilated salivary gland in the adjacent tissue and multifocal reddish-fleshy areas in the lung parenchyma were detected. Histopathological examination identified the mass as moderately differentiated, tubular adenocarcinoma with invasive growth and moderate to marked cellular atypia and numerous mitoses. The presumptive origin of the neoplasia was one of the salivary glands. Multiple metastases were identified in the lung both macroscopically and histologically. Bacterial culture and molecular testing for West Nile and Usutu viruses were negative. To the authors' knowledge, this is the first report of metastatic laryngeal and oropharyngeal adenocarcinoma in a common raven.


Subject(s)
Adenocarcinoma , Bird Diseases , Laryngeal Neoplasms , Lung Neoplasms , Oropharyngeal Neoplasms , Animals , Male , Lung Neoplasms/veterinary , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Adenocarcinoma/veterinary , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Bird Diseases/pathology , Oropharyngeal Neoplasms/veterinary , Oropharyngeal Neoplasms/pathology , Laryngeal Neoplasms/veterinary , Laryngeal Neoplasms/pathology , Fatal Outcome
3.
Sci Rep ; 14(1): 10263, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704425

ABSTRACT

We report the first detection and prevalence of Beak and feather disease virus (BFDV) in Australia's Red Goshawk (Erythrotriorchis radiatus). This is a new host for this pervasive pathogen amongst a growing list of non-psittacine species including birds of prey from the orders Accipitriformes (hawks, eagles, kites), Falconiformes (falcons and caracas), and Strigiformes (owls). The Red Goshawk is the first non-psittacine species listed as Endangered to be diagnosed with BFDV. We report an initial case of infection discovered post-mortem in a dead nestling and subsequent surveillance of birds from across northern Australia. We reveal BFDV prevalence rates in a wild raptor population for the first time, with detections in 25% (n = 7/28) of Red Goshawks sampled. Prevalence appears higher in juveniles compared to adults, although not statistically significant, but is consistent with studies of wild psittacines. BFDV genotypes were associated with the Loriinae (lorikeets, budgerigar, and fig parrots), Cacatuini (Cockatoos), and Polytelini (long-tailed parrots) tribes; species which are preyed upon by Red Goshawks. A positive BFDV status may be associated with lower body mass but small sample sizes precluded robust statistical analysis. We postulate the possible impacts of the virus on Red Goshawks and discuss future research priorities given these preliminary observations.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Endangered Species , Animals , Bird Diseases/virology , Bird Diseases/epidemiology , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circovirus/genetics , Circovirus/isolation & purification , Hawks/virology , Australia/epidemiology , Phylogeny , Prevalence , Genotype
4.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793686

ABSTRACT

Parrot bornavirus (PaBV) is an infectious disease linked with proventricular dilatation disease (PDD) with severe digestive and neurological symptoms affecting psittacine birds. Despite its detection in 2008, PaBV prevalence in Taiwan remains unexplored. Taiwan is one of the leading psittacine bird breeders; hence, understanding the distribution of PaBV aids preventive measures in controlling spread, early disease recognition, epidemiology, and transmission dynamics. Here, we aimed to detect the prevalence rate of PaBV and assess its genetic variation in Taiwan. Among 124 psittacine birds tested, fifty-seven were PaBV-positive, a prevalence rate of 45.97%. Most of the PaBV infections were adult psittacine birds, with five birds surviving the infection, resulting in a low survival rate (8.77%). A year of parrot bornavirus surveillance presented a seasonal pattern, with peak PaBV infection rates occurring in the spring season (68%) and the least in the summer season (25%), indicating the occurrence of PaBV infections linked to seasonal factors. Histopathology reveals severe meningoencephalitis in the cerebellum and dilated cardiomyopathy of the heart in psittacine birds who suffered from PDD. Three brain samples underwent X/P gene sequencing, revealing PaBV-2 and PaBV-4 viral genotypes through phylogenetic analyses. This underscores the necessity for ongoing PaBV surveillance and further investigation into its pathophysiology and transmission routes.


Subject(s)
Bird Diseases , Bornaviridae , Mononegavirales Infections , Phylogeny , Psittaciformes , Animals , Taiwan/epidemiology , Bornaviridae/genetics , Bornaviridae/classification , Bornaviridae/isolation & purification , Mononegavirales Infections/veterinary , Mononegavirales Infections/virology , Mononegavirales Infections/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Prevalence , Psittaciformes/virology , Seasons , Genetic Variation , Parrots/virology , Epidemiological Monitoring/veterinary
5.
Arch Virol ; 169(6): 120, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753261

ABSTRACT

Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.


Subject(s)
Bird Diseases , Circoviridae Infections , Genome, Viral , Gyrovirus , Phylogeny , Animals , Arizona , Genome, Viral/genetics , Gyrovirus/genetics , Gyrovirus/classification , Gyrovirus/isolation & purification , Bird Diseases/virology , Circoviridae Infections/virology , Circoviridae Infections/veterinary , Anseriformes/virology , Ducks/virology , DNA, Viral/genetics
6.
Front Cell Infect Microbiol ; 14: 1385599, 2024.
Article in English | MEDLINE | ID: mdl-38741893

ABSTRACT

Avian haemosporidian parasites are useful model organisms to study the ecology and evolution of parasite-host interactions due to their global distribution and extensive biodiversity. Detection of these parasites has evolved from microscopic examination to PCR-based methods, with the mitochondrial cytochrome b gene serving as barcoding region. However, standard PCR protocols used for screening and identification purposes have limitations in detecting mixed infections and generating phylogenetically informative data due to short amplicon lengths. To address these issues, we developed a novel genus-specific nested PCR protocol targeting avian haemosporidian parasites. The protocol underwent rigorous testing utilizing a large dataset comprising blood samples from Malagasy birds of three distinct Passeriformes families. Furthermore, validation was done by examining smaller datasets in two other laboratories employing divergent master mixes and different bird species. Comparative analyses were conducted between the outcomes of the novel PCR protocol and those obtained through the widely used standard nested PCR method. The novel protocol enables specific identification of Plasmodium, Haemoproteus (Parahaemoproteus), and Leucocytozoon parasites. The analyses demonstrated comparable sensitivity to the standard nested PCR with notable improvements in detecting mixed infections. In addition, phylogenetic resolution is improved by amplification of longer fragments, leading to a better understanding of the haemosporidian biodiversity and evolution. Overall, the novel protocol represents a valuable addition to avian haemosporidian detection methodologies, facilitating comprehensive studies on parasite ecology, epidemiology, and evolution.


Subject(s)
Haemosporida , Polymerase Chain Reaction , Protozoan Infections, Animal , Animals , Haemosporida/genetics , Haemosporida/isolation & purification , Haemosporida/classification , Polymerase Chain Reaction/methods , Protozoan Infections, Animal/diagnosis , Protozoan Infections, Animal/parasitology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Birds/parasitology , Phylogeny , Sensitivity and Specificity , Passeriformes/parasitology , DNA, Protozoan/genetics
7.
Ticks Tick Borne Dis ; 15(4): 102350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723399

ABSTRACT

Wild animals in general, birds in particular, play a key role in transporting ticks and propagating tick-borne pathogens. Several studies have confirmed the infection of birds with Anaplasma phagocytophilum, with overall prevalence varying widely from country to country and/or study to study. This zoonotic bacterium, transmitted mainly by ticks of the genus Ixodes, is responsible for granulocytic anaplasmosis in humans (HGA) and domestic animals (cats, dogs, horses). The disease is also called tick-borne fever (TBF) in ruminants. Extremely rare in the USA, TBF is very common in Europe, where it causes economic losses in livestock. Conversely, HGA is well established in the USA whereas only a few less severe cases have been observed in Europe. Current typing techniques support the existence of multiple variants with differences in virulence/pathogenicity and tropism for certain tick and host species. However, epidemiological cycles remain difficult to characterize in Europe. Several studies describe a cycle apparently involving only birds in Europe, but no such study has been conducted in mainland France. Our objectives were to search for A. phagocytophilum in passerine birds in the Ile-de-France region and to explore their diversity using groEL and ankA gene typing and multilocus sequence typing (MLST). Various tissues (spleen, liver, and skin) were collected from cadavers of 680 passerines between March and December 2021. The presence of A. phagocytophilum was detected by qPCR Taqman targeting the msp2 gene. Three blackbirds (Turdus merula) were found positive, representing detection rates of 0.4 % in all birds tested and 3.3 % in blackbirds. The higher frequency of detection in blackbirds could be at least partially explained by their lifestyle, as they feed on the ground. Analysis of the results of groEL and ankA typing and MLST from positive blackbirds support the hypothesis that the avian A. phagocytophilum strains in Ile-de-France are distinct from those found in mammals, and that they form their own cluster in Europe.


Subject(s)
Anaplasma phagocytophilum , Bird Diseases , Ehrlichiosis , Animals , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Bird Diseases/epidemiology , Bird Diseases/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Passeriformes , Phylogeny , France/epidemiology , Prevalence
8.
Vet Parasitol Reg Stud Reports ; 51: 101035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772641

ABSTRACT

The current investigation was carried out during the period from July 2022 to March 2023, aiming to investigate the prevalence of gastrointestinal helminths in domestic birds collected from traditional markets in Guilan province. One hundred forty-eight domestic birds, including chickens (Gallus gallus domesticus), domestic ducks (Anas platyrhynchos domesticus), greylag geese (Anser anser), and domestic turkeys (Meleagris gallopavo domesticus) were examined. Totally, 42.56% of the investigated birds were positive for helminthic parasites. Morphological analysis revealed varying infection rates among birds: Echinostoma revolutum (5.40%), Hypoderaeum conoideum (2.02%), Cloacotaenia megalops (0.67%), Hymenolepididae family (4.05%), Ascaridia galli (16.89%), and Heterakis gallinarum (4.72%). The investigation involved molecular analysis of the 18S and ITS1 + 5.8S + ITS2 rRNA gene regions. The findings indicated that the 18S region of nematode isolates exhibited a similarity of 92 to 100% with sequences in the GenBank, whereas trematode and cestode isolates showed a gene similarity ranging from 88 to 99%. The ITS regions of nematode, trematode, and cestode isolates exhibited genetic similarities ranging from 87 to 100%, 73-99%, and 75-99%, respectively. Furthermore, phylogenetic analysis confirmed the categorization of the identified species within the Ascaridiidae, Heterakidae, Hymenolepididae, and Echinostomatidae families, indicating their close affinity with previously documented species. Implementing precise control measures such as consistent monitoring, adequate sanitation protocols, and administering anthelmintic treatments is crucial for effectively managing parasitic infections in free-range and backyard poultry farms. Additionally, conducting further surveys is advisable to assess the impact of these parasites on the health and productivity of poultry in the investigated area.


Subject(s)
Helminthiasis, Animal , Animals , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Iran/epidemiology , One Health , Helminths/isolation & purification , Helminths/genetics , Helminths/classification , Prevalence , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Phylogeny , Bird Diseases/parasitology , Bird Diseases/epidemiology , Ducks/parasitology
9.
Parasit Vectors ; 17(1): 237, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797857

ABSTRACT

BACKGROUND: Louse flies (Diptera, Hippoboscidae) are important blood-sucking parasites of birds and mammals with a worldwide distribution. The aim of our study was to collect louse flies from birds across multiple sites in Hungary and evaluate the effects of avian traits on louse fly-host relationships. METHODS: Between 2015 and 2022, 237 louse flies were collected from birds at multiple locations in Hungary. The louse flies were identified to species level by morphological and molecular methods. Louse fly species and their seasonal dynamics were analyzed. RESULTS: Six louse fly species were identified: Ornithomya avicularia, Ornithomya fringillina, Ornithomya biloba, Ornithomya chloropus, Ornithoica turdi and Ornithoctona laticornis. Results of statistical analyses indicated that habitat, migration habits and the feeding places of birds have significant effects on their possible role as hosts of O. avicularia, O. fringillina and O. turdi. Analysis of the temporal distribution of avian louse flies showed different seasonal patterns according to species. Phylogenetic analyses highlighted that O. turdi clustered separately from other members of the subfamily Ornithomyinae which thus did not form a monophyletic group. CONCLUSIONS: This study presents one of the longest continuous collections of ornithophilic louse fly species in Europe so far. Avian traits were shown to influence louse-fly infestation. To our best knowledge, this is the first report on O. laticornis in Europe. The ability of this African louse fly species to survive in Europe, as demonstrated in the present study, may be an indication of its future establishment. Our findings, in accordance with previous reports, also indicated that the subfamily Ornithomyinae should be taxonomically revised.


Subject(s)
Bird Diseases , Birds , Diptera , Phylogeny , Seasons , Animals , Hungary , Birds/parasitology , Diptera/classification , Diptera/physiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Host-Parasite Interactions , Ecosystem , Male , Female
10.
Parasite ; 31: 28, 2024.
Article in English | MEDLINE | ID: mdl-38819296

ABSTRACT

Parasites and free-living amoebae (FLA) are common pathogens that pose threats to wildlife and humans. The black-necked crane (Grus nigricollis) is a near-threatened species and there is a shortage of research on its parasite diversity. Our study aimed to use noninvasive methods to detect intestinal parasites and pathogenic FLA in G. nigricollis using high-throughput sequencing (HTS) based on the 18S rDNA V9 region. A total of 38 fresh fecal samples were collected in Dashanbao, China, during the overwintering period (early-, middle I-, middle II-, and late-winter). Based on the 18S data, eight genera of parasites were identified, including three protozoan parasites: Eimeria sp. (92.1%) was the dominant parasite, followed by Tetratrichomonas sp. (36.8%) and Theileria sp. (2.6%). Five genera of helminths were found: Echinostoma sp. (100%), Posthodiplostomum sp. (50.0%), Euryhelmis sp. (26.3%), Eucoleus sp. (50.0%), and Halomonhystera sp. (2.6%). Additionally, eight genera of FLA were detected, including the known pathogens Acanthamoeba spp. (n = 13) and Allovahlkampfia spp. (n = 3). Specific PCRs were used to further identify the species of some parasites and FLA. Furthermore, the 18S data indicated significant changes in the relative abundance and genus diversity of the protozoan parasites and FLA among the four periods. These results underscore the importance of long-term monitoring of pathogens in black-necked cranes to protect this near-endangered species.


Title: Métabarcoding des protozoaires et des helminthes chez les grues à cou noir : forte prévalence de parasites et d'amibes libres. Abstract: Les parasites et les amibes libres sont des agents pathogènes courants qui constituent une menace pour la faune et les humains. La grue à cou noir (Grus nigricollis) est une espèce quasi menacée et les recherches sur sa diversité parasitaire sont insuffisantes. Notre étude visait à utiliser des méthodes non invasives pour détecter les parasites intestinaux et les amibes libres pathogènes chez G. nigricollis en utilisant le séquençage à haut débit basé sur la région V9 de l'ADNr 18S. Au total, 38 échantillons de matières fécales fraîches ont été collectés à Dashanbao, en Chine, au cours de la période d'hivernage (début, milieu I, milieu II et fin de l'hiver). Sur la base des données 18S, huit genres de parasites ont été identifiés, dont trois parasites protozoaires : Eimeria sp. (92,1 %) était le parasite dominant, suivi de Tetratrichomonas sp. (36,8 %) et Theileria sp. (2,6 %). Cinq genres d'helminthes ont été trouvés : Echinostoma sp. (100 %), Posthodiplostomum sp. (50,0 %), Euryhelmis sp. (26,3 %), Eucoleus sp. (50,0 %) et Halomonhystera sp. (2,6 %). De plus, huit genres d'amibes libres ont été détectés, y compris les agents pathogènes connus Acanthamoeba spp. (n = 13) et Allovahlkampfia spp. (n = 3). Des PCR spécifiques ont été utilisées pour identifier davantage les espèces de certains parasites et amibes libres. En outre, les données 18S ont indiqué des changements significatifs dans l'abondance relative et la diversité des genres des parasites protozoaires et des amibes au cours des quatre périodes. Ces résultats soulignent l'importance de la surveillance à long terme des agents pathogènes chez les grues à cou noir pour protéger cette espèce quasi menacée.


Subject(s)
Birds , DNA Barcoding, Taxonomic , Feces , Helminths , RNA, Ribosomal, 18S , Animals , Feces/parasitology , Helminths/classification , Helminths/isolation & purification , Helminths/genetics , RNA, Ribosomal, 18S/genetics , Birds/parasitology , High-Throughput Nucleotide Sequencing , Prevalence , China/epidemiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Eimeria/isolation & purification , Eimeria/classification , Eimeria/genetics , Theileria/isolation & purification , Theileria/genetics , Theileria/classification , Amoeba/isolation & purification , Amoeba/classification , Amoeba/genetics , DNA, Protozoan/isolation & purification , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Intestinal Diseases, Parasitic/epidemiology , Seasons , Phylogeny
12.
Syst Parasitol ; 101(3): 40, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739253

ABSTRACT

A novel Eimeria Schneider, 1875 species is described from an Australian pied oystercatcher Haematopus longirostris Vieillot, in Western Australia. The pied oystercatcher was admitted to the Kanyana Wildlife Rehabilitation Centre (KWRC), Perth, Western Australia in a poor body condition, abrasion to its right hock and signs of partial delamination to its lower beak. Investigation into potential medical causes resulted in a faecal sample being collected and screened for gastrointestinal parasites. Unsporulated coccidian oocysts were initially observed in the faeces and identified as Eimeria upon sporulation. The sporulated oocysts (n = 20) are ellipsoidal, 20-21 × 12-13 µm in shape and have thick bi-layered walls which are c.2/3 of the total thickness. Micropyle is present, robust and protruding, and occasionally has a rounded polar body attached to the micropyle. Within the oocyst, a residuum, in addition, two to five polar granules are present. There are four ellipsoidal sporocysts 9-11 × 5-6 µm with flattened to half-moon shaped Stieda bodies. Sub-Stieda body and para-Stieda body are absent. The sporocysts contain sporocyst residuums composed of a few spherules scattered among the sporozoites. Within the sporozoites, anterior and posterior refractile bodies are present, but the nucleus is indiscernible. To further characterise the novel Eimeria species from H. longirostris, molecular analysis was conducted at the 18S ribosomal RNA locus, using PCR amplification and cloning. Two cloned sequences from the novel Eimeria were compared with those from other Eimeria spp. with the highest genetic similarity of 97.6% and 97.2% from Clone 1 and 2, respectively with Eimeria reichenowi (AB544308) from a hooded crane (Grus monacha Temminck) in Japan. Both sequences grouped in a clade with the Eimeria spp. isolated from wetland birds, which include Eimeria paludosa (KJ767187) from a dusky moorhen (Gallinula tenebrosa Gould) in Western Australia, Eimeria reichenowi (AB544308) and Eimeria gruis (AB544336) both from hooded cranes. Based on the morphological and molecular data, this Eimeria sp. is a new species of coccidian parasite and is named Eimeria haematopusi n. sp. after its host H. longirostris.


Subject(s)
Eimeria , Phylogeny , RNA, Ribosomal, 18S , Animals , Eimeria/genetics , Eimeria/classification , RNA, Ribosomal, 18S/genetics , Western Australia , Charadriiformes/parasitology , Feces/parasitology , Oocysts , Coccidiosis/parasitology , Coccidiosis/veterinary , Species Specificity , Bird Diseases/parasitology , DNA, Protozoan/genetics
14.
J Helminthol ; 98: e44, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818780

ABSTRACT

The Cyathocotylidae Mühling, 1898 is a family of primitive diplostomoid trematodes important for understanding the evolution of the superfamily Diplostomoidea. However, cyathocotylids remain poorly studied with the use of molecular techniques. In this study we sequenced the 5.8S + ITS2 region, 28S rRNA, and cox1 genes of two cyathocotylid species and obtained new morphological data on them. We propose Georduboisia nom. nov. instead of the preoccupied name Duboisia Szidat, 1936 (junior homonym of Duboisia Stremme, 1911). Adults of Georduboisia cf. teganuma (Ishii, 1935) and Paracoenogonimus ovatus Katsurada, 1914 were collected from fish-eating birds in the south of the European part of Russia. Georduboisia cf. teganuma was very similar to G.teganuma but differed from it in the shape of the testes. The 28S rRNA gene dataset provided the best-resolved phylogeny of the Cyathocotylidae to date. In the phylogram based on partial sequences of this gene, P. ovatus was close to members of Holostephanoides Dubois, 1983, Neogogatea Chandler & Rausch, 1947 and Gogatea Szidat, 1936. Georduboisia cf. teganuma clustered with members of Cyathocotyle Mühling, 1896 and Holostephanus Szidat, 1936. Phylogenetic analysis based on the 5.8S + ITS2 dataset showed that adults of P. ovatus examined in our study were conspecific with the metacercariae from the musculature of fish collected in Hungary and Italy. It also revealed probable misidentifications of larvae and adults of cyathocotylids whose sequences are deposited in GenBank NCBI.


Subject(s)
DNA, Helminth , Phylogeny , RNA, Ribosomal, 28S , Trematoda , Animals , Trematoda/classification , Trematoda/genetics , Trematoda/anatomy & histology , Trematoda/isolation & purification , RNA, Ribosomal, 28S/genetics , DNA, Helminth/genetics , Russia , Birds/parasitology , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Trematode Infections/parasitology , Trematode Infections/veterinary , RNA, Ribosomal, 5.8S/genetics , Bird Diseases/parasitology
15.
J Parasitol ; 110(3): 206-209, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38802105

ABSTRACT

Toxoplasma gondii is a zoonotic protozoan parasite that infects most warm-blooded animals, including birds. Scavenging birds are epidemiologically important hosts because they can serve as indicators of environmental T. gondii levels. A rapid point-of-care (POC) test that detects antibodies to T. gondii in humans is commercially available. In this research, we assessed the ability of the human POC test to detect anti-T. gondii antibodies in 106 black vultures (Coragyps atratus) and 23 ring-billed gulls (Larus delawarensis) from Pennsylvania, USA. Serum samples were tested with the POC test and compared to the modified agglutination test (MAT) in a blinded study. Overall, anti-T. gondii antibodies were detected in 2.8% (3/106) of black vultures and 60.9% (14/23) of ring-billed gulls by the POC test. One false-positive POC test occurred in a black vulture that was negative by MAT. False-negative results were obtained in 2 black vultures and 4 ring-billed gulls that had MAT titers of 1:25 or 1:50. The sensitivity and specificity of the POC for both black vultures and ring-billed gulls combined were 95.7% and 95.5%, respectively. This is the first study using human POC tests to detect antibodies to T. gondii in birds. Further study of the rapid test as a screening tool for serological surveillance of T. gondii in birds is warranted.


Subject(s)
Agglutination Tests , Antibodies, Protozoan , Bird Diseases , Charadriiformes , Falconiformes , Toxoplasma , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Toxoplasma/immunology , Charadriiformes/parasitology , Pennsylvania/epidemiology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/immunology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Bird Diseases/epidemiology , Bird Diseases/immunology , Falconiformes/parasitology , Agglutination Tests/veterinary , Sensitivity and Specificity , Point-of-Care Testing
16.
BMC Genomics ; 25(1): 369, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622517

ABSTRACT

BACKGROUND: Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS: PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS: In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.


Subject(s)
Bird Diseases , Circoviridae Infections , Circovirus , Animals , Columbidae , Phylogeny , Farms , Circovirus/genetics , Circoviridae Infections/veterinary , Nucleotides
17.
J Parasitol ; 110(2): 143-149, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561014

ABSTRACT

Birds have a diverse community of "permanent" arthropods that complete their entire life cycle on the body of the host. Because some of these arthropods are parasites that reduce host fitness, birds control them by grooming, which consists of preening with the beak and scratching with the feet. Although preening is the primary component of grooming, scratching is essential for controlling arthropods on the head and neck, which cannot be preened. Several unrelated groups of birds have evolved comb-like pectinate claws on the middle toenail of each foot. We tested the role of these claws in the control of arthropods by experimentally removing teeth from the claws of captive western cattle egrets (Bubulcus ibis) infested with chewing lice (Insecta: Phthiraptera), feather mites (Acari: Sarcoptiformes), and nasal mites (Acari: Mesostigmata). After a period of 4 mo, we compared the abundance of arthropods on experimental birds to that of control birds with intact teeth. We used video to quantify the grooming rates of the captive birds, which groomed twice as much as wild birds. Experimental and control birds did not differ significantly in grooming time. Both groups virtually eradicated the chewing lice, but not feather mites or nasal mites. We found no support for the hypothesis that pectinate claws increase the efficiency of arthropod control by grooming. Experiments with wild birds are needed to test the hypothesis further under conditions in which birds devote less time to grooming.


Subject(s)
Acari , Arthropods , Bird Diseases , Lice Infestations , Phthiraptera , Animals , Cattle , Lice Infestations/veterinary , Lice Infestations/parasitology , Grooming , Bird Diseases/parasitology , Birds , Animals, Wild
18.
PeerJ ; 12: e16361, 2024.
Article in English | MEDLINE | ID: mdl-38563018

ABSTRACT

Parasite transmission is a heterogenous process in host-parasite interactions. This heterogeneity is particularly apparent in vector-borne parasite transmission where the vector adds an additional level of complexity. Haemosporidian parasites, a widespread protist, cause a malaria-like disease in birds globally, but we still have much to learn about the consequences of infection to hosts' health. In the Caribbean, where malarial parasites are endemic, studying host-parasites interactions may give us important insights about energetic trade-offs involved in malarial parasites infections in birds. In this study, we tested the consequences of Haemoproteus infection on the Bananaquit, a resident species of Puerto Rico. We also tested for potential sources of individual heterogeneity in the consequences of infection such as host age and sex. To quantify the consequences of infection to hosts' health we compared three complementary body condition indices between infected and uninfected individuals. Our results showed that Bananaquits infected by Haemoproteus had higher body condition than uninfected individuals. This result was consistent among the three body condition indices. Still, we found no clear evidence that this effect was mediated by host age or sex. We discuss a set of non-mutually exclusive hypotheses that may explain this pattern including metabolic syndrome, immunological responses leading to host tolerance or resistance to infection, and potential changes in consumption rates. Overall, our results suggest that other mechanisms, may drive the consequences of avian malarial infection.


Subject(s)
Bird Diseases , Haemosporida , Parasites , Passeriformes , Plasmodium , Humans , Animals , Bird Diseases/epidemiology , Passeriformes/parasitology , Puerto Rico
19.
Mol Biol Rep ; 51(1): 483, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578540

ABSTRACT

BACKGROUND: The Northern bobwhite (Colinus virginianus) is an economically important, and popular game bird in North America. Northern bobwhites have experiencing declines of > 3.5% annually in recent decades due to several factors. The eyeworm Oxyspirura petrowi is a nematode parasite frequently found in the eyes of bobwhites. Although reported frequently in wild bobwhites, there is no research to understand the host-parasite mechanism. Hence, it is important to investigate mechanisms of eyeworm invasion and immune modulation in bobwhite. Cytokine gene expression using RT-PCR is widely used to identify the innate immune response of a host to an infection. METHODOLOGY: In this study, we evaluated ten reference genes (HMBS, RPL19, RPL32, RPS7, RPS8, TATA, SDHA, YWHAZ, GAPDH, and ACTB) for their stability across three tissues (liver, spleen, and caecal tonsils) of control and O. petrowi infected Northern bobwhites. Primer efficiency and reference genes stability were assessed using GeNorm, NormFinder, and BestKeeper. RESULTS: Expression of these reference genes with respect to O. petrowi infection in bobwhites showed RPL32 and HMBS were the most stable genes in the liver, HMBS and SDHA were the most stable genes in the spleen, and HMBS and YWHAZ were equally stable reference genes in the caecal tonsils. CONCLUSION: Based on the geometric mean of all three analyses, our results indicate that the combination of RPL32 and HMBS for the liver, HMBS and SDHA for the spleen, and YWHAZ and HMBS for caecal tonsils might be used as reference genes for normalization in gene expression investigations on Northern bobwhites.


Subject(s)
Bird Diseases , Colinus , Thelazioidea , Animals , Colinus/genetics , Bird Diseases/parasitology , Thelazioidea/genetics , Eye , Cytokines
20.
J Avian Med Surg ; 38(1): 7-14, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38686883

ABSTRACT

Avian polyomavirus (APV) infection causes various health problems in psittacine species, including death. The present study was conducted to investigate the prevalence of APV among psittacine birds in Iran. We also aimed to evaluate the impact of age, sex, species, season, and origin of the birds on the prevalence of APV. This study investigated the presence of APV among 1050 individual birds from 7 psittacine species over a 1-year period in Iran, namely, green-cheeked parakeets (Pyrrhura molinae), rosy-faced lovebirds (Agapornis roseicollis), monk parakeets (Myiopsitta monachus), sun conures (Aratinga solstitialis), Senegal parrots (Poicephalus senegalus), cockatiels (Nymphicus hollandicus), and grey parrots (Psittacus erithacus). The overall prevalence of APV in all studied species was 25% (263/1050, 95% confidence interval [CI]: 22.5-27.8). Results of the study showed that age and the season of the year were 2 important determinant factors in the prevalence of APV in psittacine birds. Young psittacine birds <6 months old were 2.94 (95% CI: 1.19-7.27) times more likely to be infected with APV than birds >1 year old, and there was a significant interaction between season and species in the multivariate analysis. In the winter season, rosy-faced lovebirds and green-cheeked parakeets were 15.6 (95% CI: 4.20-57.95) and 4.76 (95% CI: 1.4-16.21) times more likely to be infected with APV than in other seasons, respectively. This is the first report on the detection rate of APV in psittacine birds in Iran.


Subject(s)
Bird Diseases , Polyomavirus Infections , Polyomavirus , Psittaciformes , Animals , Iran/epidemiology , Bird Diseases/epidemiology , Bird Diseases/virology , Polyomavirus Infections/veterinary , Polyomavirus Infections/epidemiology , Polyomavirus Infections/virology , Risk Factors , Male , Female , Polyomavirus/isolation & purification , Prevalence , Seasons , Tumor Virus Infections/veterinary , Tumor Virus Infections/epidemiology , Tumor Virus Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...