Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.880
Filter
1.
Harmful Algae ; 134: 102621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705617

ABSTRACT

Vulcanodinium rugosum is a benthic dinoflagellate known for producing pinnatoxins, pteriatoxins, portimines and kabirimine. In this study, we aimed to identify unknown analogs of these emerging toxins in mussels collected in the Ingril lagoon, France. First, untargeted data acquisitions were conducted by means of liquid chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Data processing involved a molecular networking approach, and a workflow dedicated to the identification of biotransformed metabolites. Additionally, targeted analyses by liquid chromatography coupled to triple quadrupole mass spectrometry were also implemented to further investigate and confirm the identification of new compounds. For the first time, a series of 13-O-acyl esters of portimine-A (n = 13) were identified, with fatty acid chains ranging between C12:0 and C22:6. The profile was dominated by the palmitic acid conjugation. This discovery was supported by fractionation experiments combined with the implementation of a hydrolysis reaction, providing further evidence of the metabolite identities. Furthermore, several analogs were semi-synthesized, definitively confirming the discovery of these metabolization products. A new analog of pinnatoxin, with a molecular formula of C42H65NO9, was also identified across the year 2018, with the highest concentration observed in August (4.5 µg/kg). The MS/MS data collected for this compound exhibited strong structural similarities with PnTX-A and PnTX-G, likely indicating a substituent C2H5O2 in the side chain at C33. The discovery of these new analogs will contribute to deeper knowledge of the chemodiversity of toxins produced by V. rugosum or resulting from shellfish metabolism, thereby improving our ability to characterize the risks associated with these emerging toxins.


Subject(s)
Bivalvia , Dinoflagellida , Esters , Fatty Acids , Marine Toxins , Animals , Bivalvia/metabolism , Bivalvia/chemistry , Dinoflagellida/chemistry , Dinoflagellida/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Fatty Acids/chemistry , Esters/metabolism , Esters/chemistry , Marine Toxins/metabolism , Marine Toxins/chemistry , Chromatography, Liquid , France
2.
Langmuir ; 40(21): 10957-10965, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752656

ABSTRACT

Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.


Subject(s)
Anti-Bacterial Agents , Polymers , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Staphylococcus aureus/drug effects , Animals , Biofouling/prevention & control , Escherichia coli/drug effects , Bivalvia/chemistry , Surface Properties , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Serum Albumin, Bovine/chemistry , Humans , Methacrylates/chemistry , Methacrylates/pharmacology , Bacterial Adhesion/drug effects , Indoles
3.
Food Chem ; 451: 139454, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703725

ABSTRACT

Morphology regulation of heterodimer nanoparticles and the use of their asymmetric features for further practical applications are crucial because of the rich optical properties and various combinations of heterodimers. This work used silicon to asymmetrically wrap half of a gold sphere and grew gold branches on the bare gold surface to form heterogeneous nano pineapples (NPPs) which can effectively improve Surface-enhanced Raman scattering (SERS) properties through chemical enhancement and lightning-rod effect respectively. The asymmetric structures of NPPs enabled them to self-assemble into the monolayer membrane with consistent branch orientation. The prepared substrate had high homogeneity and better SERS ability than disorganized substrates, and achieved reliable detection of malachite green (MG) in clams with a detection limit of 7.8 × 10-11 M. This work provided a guide to further revise the morphology of heterodimers and a new idea for the use of asymmetric dimers for practically photochemical and biomedical sensing.


Subject(s)
Gold , Rosaniline Dyes , Silicon , Spectrum Analysis, Raman , Rosaniline Dyes/chemistry , Spectrum Analysis, Raman/methods , Gold/chemistry , Silicon/chemistry , Animals , Ananas/chemistry , Metal Nanoparticles/chemistry , Bivalvia/chemistry , Limit of Detection , Surface Properties
4.
Environ Res ; 252(Pt 3): 119048, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697595

ABSTRACT

Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 µmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 µmol kg-1, meaning >80% retention), followed by pine bark (8280 µmol kg-1, 69%) and mussel shell (between 3000 and 6000 µmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Bivalvia , Pinus , Plant Bark , Quercus , Animals , Adsorption , Quercus/chemistry , Plant Bark/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Azithromycin/chemistry , Azithromycin/analysis , Pinus/chemistry , Bivalvia/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Animal Shells/chemistry
5.
Environ Pollut ; 352: 124133, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38754690

ABSTRACT

Microplastic (MP) pollution has become a global concern due to its potential impacts on the environment, ecosystem services and human health. The goals of the present study were to document the MP contamination in wild specimens of Mytilus galloprovincialis sampled along the Atlantic coast of the North region of Portugal continental (NW Portuguese coast), and to estimate the human risk of MP intake (HRI) through the consumption of local mussels as seafood. Mussels were collected at four sampling sites along the NW Portuguese coast (40 mussels per site), and the whole soft body of each mussel was analysed for MP content. HRI estimates were based on the mean of MP items per wet weight of mussel analysed tissue (MP/g) and consumption habits. A total of 132 MP items were recovered from mussels. MP had diverse sizes (98-2690 µm) and colours. The most common shapes were fibres (39%) and pellets (36%). Five polymers were identified in the MP: polyethylene (50%), polystyrene (15%), poly(ethylene vinyl acetate) (14%), polyamide (12%) and polypropylene (9%). From the 160 analysed mussels, 55% had MP. The mean and standard error of the mean of mussel contamination ranged from 0.206 ± 0.067 and 0.709 ± 0.095 MP/g. Compared to estimates based on MP contamination in mussels from other areas and varied consumption habits, the HRI through the consumption of mussels from the NW Portuguese coast is relatively low.


Subject(s)
Environmental Monitoring , Microplastics , Mytilus , Seafood , Water Pollutants, Chemical , Animals , Portugal , Water Pollutants, Chemical/analysis , Microplastics/analysis , Seafood/analysis , Environmental Monitoring/methods , Humans , Mytilus/chemistry , Food Contamination/analysis , Risk Assessment , Bivalvia/chemistry , Dietary Exposure/statistics & numerical data , Atlantic Ocean
6.
Int J Biol Macromol ; 270(Pt 2): 132419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759859

ABSTRACT

Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.


Subject(s)
Bone Regeneration , Cellulose , Hydrogels , Metal Nanoparticles , Silver , Skull , Tannins , Silver/chemistry , Silver/pharmacology , Animals , Bone Regeneration/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Skull/drug effects , Skull/injuries , Tannins/chemistry , Tannins/pharmacology , Bivalvia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Rats, Sprague-Dawley , Escherichia coli/drug effects
7.
Int J Biol Macromol ; 270(Pt 2): 132436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761908

ABSTRACT

Biodegradable self-healing hydrogels with antibacterial property attracted growing attentions in biomedication as wound dressings since they can prevent bacterial infection and promote wound healing process. In this research, a biodegradable self-healing hydrogel with ROS scavenging performance and enhanced tissue adhesion was fabricated from dopamine grafted oxidized pectin (OPD) and naphthoate hydrazide terminated PEO (PEO NH). At the same time, Fe3+ ions were incorporated to endow the hydrogel with near-infrared (NIR) triggered photothermal property to obtain antibacterial activity. The composite hydrogel showed good hemostasis performance based on mussel inspired tissue adhesion with biocompatibility well preserved. As expected, the composition of FeCl3 improved conductivity and endowed photothermal property to the hydrogel. The in vivo wound repairing experiment revealed the 808 nm NIR light triggered photothermal behavior of the hydrogel reduced the inflammation response and promoted wound repairing rate. As a result, this composite FeCl3/hydrogel shows great potential to be an excellent wound dressing for the treatment of infection prong wounds with NIR triggers.


Subject(s)
Antioxidants , Bivalvia , Burns , Hydrogels , Pectins , Wound Healing , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Pectins/chemistry , Pectins/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Bivalvia/chemistry , Burns/drug therapy , Burns/therapy , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Rats
8.
Sci Rep ; 14(1): 9369, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653774

ABSTRACT

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Subject(s)
Digestive System , Mytilus , Water Pollutants, Chemical , Animals , Mytilus/drug effects , Mytilus/metabolism , Water Pollutants, Chemical/toxicity , Digestive System/drug effects , Digestive System/metabolism , Macromolecular Substances , Carbamazepine/pharmacology , Spectroscopy, Fourier Transform Infrared , Bivalvia/drug effects , Bivalvia/chemistry
9.
Toxicon ; 243: 107710, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579982

ABSTRACT

For food safety, the concentrations and profiles of paralytic shellfish toxins (PSTs) and tetrodotoxin were examined in economically important scallops and bloody clams collected from the coast of the Miyagi Prefecture, Japan. PSTs were the major toxins in both species. The tetrodotoxin concentration in scallops increased in summer, although the highest value (18.7 µg/kg) was lower than the European Food Safety Authority guideline threshold (44 µg/kg). This confirmed the safety for tetrodotoxin in this area.


Subject(s)
Bivalvia , Pectinidae , Tetrodotoxin , Animals , Tetrodotoxin/analysis , Pectinidae/chemistry , Japan , Bivalvia/chemistry , Marine Toxins/analysis , Saxitoxin/analysis , Saxitoxin/analogs & derivatives , Shellfish Poisoning , Seasons , Food Contamination/analysis
10.
J Colloid Interface Sci ; 668: 282-292, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38678884

ABSTRACT

Metal-phenolic networks (MPNs) have emerged as a versatile and multifunctional platform applied in bioimaging, disease treatment, electrocatalysis, and water purification. The synthesis of MPNs with mesoporous frameworks and ultra-small diameters (<200 nm), crucial for post-modification, cargo loading, and mass transport, remains a formidable challenge. Inspired by mussel chemistry, mesoporous metal-phenolic nanospheres (MMPNs) are facilely prepared by direct deposition of the metal-polyphenol complex on the interface of oil nano-droplets composed of block copolymers/1,3,5-trimethylbenzene followed by a spontaneous template-removal process. Due to the penetrable and stable networks, the oil nano-droplets gradually leak from the networks driven by shear stress during the stirring process. As a result, MMPNs are obtained without additional template removal procedures such as solvent extraction or high-temperature calcination. The materials have a large pore size (∼12.1 nm), uniform spherical morphology with a small particle size (∼99 nm), and a large specific surface area (49.8 m2 g-1). Due to the abundant phenolic hydroxyl groups, the MMPNs show excellent antioxidative property. The MMPNs also have excellent photothermal property, whose photothermal conversion efficiency was 40.9 %. Moreover, the phenolic hydroxyl groups can reduce Ag+ in situ to prepare Ag nanoparticles loaded MMPNs composites, which have excellent inhibition performance of drug-resistant bacteria biofilm.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Nanospheres , Particle Size , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanospheres/chemistry , Porosity , Animals , Microbial Sensitivity Tests , Bivalvia/chemistry , Phenols/chemistry , Phenols/pharmacology , Surface Properties , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
11.
Microb Pathog ; 190: 106641, 2024 May.
Article in English | MEDLINE | ID: mdl-38588925

ABSTRACT

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Subject(s)
Adjuvants, Immunologic , Antioxidants , Bivalvia , Kefir , Probiotics , Superoxide Dismutase , Vibrio alginolyticus , Animals , Probiotics/pharmacology , Bivalvia/chemistry , Bivalvia/microbiology , Antioxidants/metabolism , Kefir/microbiology , Superoxide Dismutase/metabolism , Spirulina/chemistry , Malondialdehyde/metabolism , Malondialdehyde/analysis , Animal Feed , Monophenol Monooxygenase/metabolism , Dietary Supplements , Alkaline Phosphatase/metabolism , Muramidase/metabolism , Vibrio Infections/prevention & control
12.
Biomacromolecules ; 25(5): 3098-3111, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38606583

ABSTRACT

Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.


Subject(s)
Anti-Inflammatory Agents , Anticoagulants , Bivalvia , Polyesters , Stents , Animals , Bivalvia/chemistry , Mice , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Stents/adverse effects , Anticoagulants/chemistry , Anticoagulants/pharmacology , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/chemistry , Tannins/pharmacology , Humans , Methacrylates
13.
Article in English | MEDLINE | ID: mdl-38547176

ABSTRACT

Bisphenols and phthalates are wide classes of endocrine disrupting chemicals (EDCs) extensively used as additives in plastic products. In this study, a fast and reliable analytical method based on matrix solid-phase dispersion (MSPD) coupled with LC-MS/MS was developed and optimized for simultaneous determination of 8 bisphenols and 7 phthalates in raw mussel extract. The LC-MS/MS method was tested for linearity (R2), inter- and intra-day repeatability, limit of detection and quantification, both for matrix-free and matrix-matched solutions. The MSPD method was optimized in terms of ratio between sample and sorbent, and the type and quantity of the eluents in order to maximize the recoveries and to minimize matrix effects. The obtained recoveries (values between 75% and 113%), limits of detection (values between 0.048 and 0.36 µg kg-1), limits of quantification (values between 0.16 and 1.28 µg kg-1), repeatability (RSD% between 1.30% and 8.41%) and linearity (R2 > 0.998) were satisfactory and suitable for the determination of target micropollutants in food samples. In addition, the low solvent consumption and fast execution make this method ideal for routinely determinations of bisphenols and phthalates in mussels.


Subject(s)
Benzhydryl Compounds , Bivalvia , Phenols , Phthalic Acids , Tandem Mass Spectrometry , Phthalic Acids/analysis , Phenols/analysis , Animals , Bivalvia/chemistry , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Food Contamination/analysis , Chromatography, Liquid , Solid Phase Extraction , Endocrine Disruptors/analysis , Liquid Chromatography-Mass Spectrometry
14.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542120

ABSTRACT

China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.


Subject(s)
Bivalvia , Unionidae , Animals , Biomineralization/genetics , Bivalvia/genetics , Bivalvia/chemistry , Unionidae/genetics , Unionidae/metabolism , Calcium Carbonate , Fresh Water , Fibrillins/metabolism
15.
J Chromatogr A ; 1720: 464795, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38490144

ABSTRACT

An accurate and efficient method was developed for the determination of azaspiracid shellfish toxins (azaspiracids-1, -2, and -3), neurotoxic shellfish toxins (brevetoxins-2 and -3), diarrhetic shellfish toxins (okadaic acid and dinophysistoxins-1 and -2), and the amnesic shellfish toxin (domoic acid) in mussels (Mytilus galloprovincialis). Lipophilic marine biotoxins (azaspiracids, brevetoxins, and okadaic acid group) were extracted with 0.5 % acetic acid in methanol under heating at 60°C to improve the extraction efficiency of okadaic acid group toxins and then cleaned up with a C18 solid-phase extraction cartridge. Domoic acid was extracted with 50 % aqueous methanol and then cleaned up with a graphitized carbon solid-phase extraction cartridge. Lipophilic marine biotoxins and domoic acid were quantified by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The developed method had insignificant matrix effects for the nine analytes and good recoveries in the range of 79.0 % to 97.6 % at three spiking levels for all analytes except brevetoxin-2 (43.8-49.8 %). The developed method was further validated by analyzing mussel tissue certified reference materials, and good agreement was observed between certified and determined values.


Subject(s)
Bivalvia , Kainic Acid/analogs & derivatives , Oxocins , Polyether Toxins , Spiro Compounds , Tandem Mass Spectrometry , Animals , Okadaic Acid/analysis , Tandem Mass Spectrometry/methods , Chromatography, Reverse-Phase , Methanol , Chromatography, Liquid/methods , Shellfish/analysis , Marine Toxins/analysis , Bivalvia/chemistry , Solid Phase Extraction
16.
Mar Drugs ; 22(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38393035

ABSTRACT

Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of China, causing a serious threat to consumer health; however, there is still a lack of large-scale systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from March to November 2020, and the PSTs' toxicity was detected via liquid chromatography-tandem mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and the highest PST toxicity was 546.09 µg STX eq. kg-1. The PST toxicity in spring was significantly higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This research provides reference for the green and sustainable development of the shellfish industry and the establishment of a shellfish toxin prevention and control system.


Subject(s)
Bivalvia , Shellfish Poisoning , Animals , Marine Toxins/chemistry , Shellfish Poisoning/etiology , Shellfish Poisoning/prevention & control , Shellfish Poisoning/diagnosis , Tandem Mass Spectrometry/methods , Shellfish/analysis , Bivalvia/chemistry , Risk Assessment , China
17.
Anal Bioanal Chem ; 416(8): 1983-1995, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358533

ABSTRACT

Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.


Subject(s)
Bivalvia , Shellfish Poisoning , Animals , Humans , Marine Toxins/chemistry , Electronic Nose , Bivalvia/chemistry , Shellfish/analysis , Carbamates , Shellfish Poisoning/etiology
18.
Mar Pollut Bull ; 200: 116128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377862

ABSTRACT

Pharmaceuticals are recognised as environmental contaminants of emerging concern (CECs) due to their increasing presence in the aquatic environment, along with high bioactivity linked to their therapeutic use. Therefore, information on environmental levels is urgently required. This study examined the presence of a range of common pharmaceuticals in oysters and mussels intended for human consumption from England and Wales using stable isotope dilution tandem mass spectrometry. A range of compounds were detected in bivalve tissue, with the Selective Serotonin Reuptake Inhibitor antidepressant sertraline being most abundant, reaching a maximum concentration of 22.1 ng/g wet weight shellfish tissue. Levels of all pharmaceuticals showed seasonal and geographical patterns. A dietary risk assessment revealed that the levels of pharmaceuticals identified in bivalve molluscs represent a clear hazard, but not a risk for the consumer. This study highlights the requirement for further monitoring of the presence of pharmaceuticals and other CECs in bivalve molluscs.


Subject(s)
Bivalvia , Ostreidae , Animals , Humans , Seasons , Bivalvia/chemistry , Ostreidae/chemistry , Shellfish/analysis , Pharmaceutical Preparations , Environmental Monitoring
19.
Small ; 20(18): e2308833, 2024 May.
Article in English | MEDLINE | ID: mdl-38185768

ABSTRACT

Topical hemostatic agents are preferred for application to sensitive bleeding sites because of their immediate locoregional effects with less tissue damage. However, the majority of commercial hemostatic agents fail to provide stable tissue adhesion to bleeding wounds or act as physical barriers against contaminants. Hence, it has become necessary to investigate biologically favorable materials that can be applied and left within the body post-surgery. In this study, a dual-sided nanofibrous dressing for topical hemostasis is electrospun using a combination of two protein materials: bioengineered mussel adhesive protein (MAP) and silk fibroin (SF). The wound-adhesive inner layer is fabricated using dihydroxyphenylalanine (DOPA)-containing MAP, which promotes blood clotting by aggregation of hemocytes and activation of platelets. The anti-adhesive outer layer is composed of alcohol-treated hydrophobic SF, which has excellent spinnability and mechanical strength for fabrication. Because both proteins are fully biodegradable in vivo and biocompatible, the dressing would be suitable to be left in the body. Through in vivo evaluation using a rat liver damage model, significantly reduced clotting time and blood loss are confirmed, successfully demonstrating that the proposed dual-sided nanofibrous dressing has the right properties and characteristics as a topical hemostatic agent having dual functionality of hemostasis and physical protection.


Subject(s)
Anti-Bacterial Agents , Bandages , Hemostasis , Hemostatics , Nanofibers , Animals , Nanofibers/chemistry , Hemostasis/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats , Fibroins/chemistry , Fibroins/pharmacology , Bivalvia/chemistry , Proteins/chemistry , Silk/chemistry , Rats, Sprague-Dawley
20.
J Am Chem Soc ; 146(3): 2219-2226, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38207218

ABSTRACT

Marine organisms produce biological materials through the complex self-assembly of protein condensates in seawater, but our understanding of the mechanisms of microstructure evolution and maturation remains incomplete. Here, we show that critical processing attributes of mussel holdfast proteins can be captured by the design of an amphiphilic, fluorescent polymer (PECHIA) consisting of a polyepichlorohydrin backbone grafted with 1-imidazolium acetonitrile. Aqueous solutions of PECHIA were extruded into seawater, wherein the charge repulsion of PECHIA is screened by high salinity, facilitating interfacial condensation via enhanced "cation-dipole" interactions. Diffusion of seawater into the PECHIA solution caused droplets to form immiscibly within the PECHIA phase (i.e., inverse coacervation). Simultaneously, weakly alkaline seawater catalyzes nitrile cyclization and time-dependent solidification of the PECHIA phase, leading to hierarchically porous membranes analogous to porous architectures in mussel plaques. In contrast to conventional polymer processing technologies, processing of this biomimetic polymer required neither organic solvents nor heating and enabled the template-free production of hollow spheres and fibers over a wide range of salinities.


Subject(s)
Bivalvia , Proteins , Animals , Proteins/chemistry , Seawater , Water , Bivalvia/chemistry , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...