Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.409
Filter
1.
Sci Rep ; 14(1): 19424, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169175

ABSTRACT

Global climate change has generated an increasing number of environmental problems, especially in Mediterranean coastal areas, such as the Po Delta (PD), where shellfish production has undergone an overall decline because of strong environmental changes. The present study is centred on assessing the fundamental ecological aspects in one of the most crucial European shellfish production lagoons, Sacca degli Scardovari (SC), addressing phytoplankton community parameters directly affecting shellfish production, namely, chemotaxonomic composition, size fractions, and total biomass, in relation to the physicochemical properties of the water column and mussel filtering activity. Our findings suggest that the phytoplankton community structure, its role within the lagoon food web and its production cycles depend on two distinct allogenic inputs, which shape the community differently and exert substantial control on shellfish production. At the same time, the suspended mussel biomass strongly controls the phytoplankton size composition, as their growth is largely supported by nanophytoplankton. As the Po River collects the drainage waters of the Italian side of the entire Alpine Arch, the phytoplankton dynamics reported here represent a useful baseline for further addressing issues of climatic changes affecting lagoon ecology. We believe that our study presents an innovative tool for the planning and management of interventions aimed at enhancing national mussel production without neglecting aspects of environmental protection or the integrity of the coastal system, with significant scientific implications.


Subject(s)
Biomass , Climate Change , Phytoplankton , Shellfish , Phytoplankton/growth & development , Phytoplankton/metabolism , Animals , Bivalvia/growth & development , Bivalvia/physiology , Aquaculture/methods , Ecosystem , Food Chain , Rivers/chemistry
2.
Mar Environ Res ; 201: 106672, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128428

ABSTRACT

Aquaculture of bivalve shellfish and algae offers significant ecological benefits, yet the complex interactions between these organisms can substantially impact local carbon dynamics. This study investigated the effects of co-culturing four intertidal bivalve species Pacific oysters (Crassostrea gigas), Manila clams (Ruditapes philippinarum), Chinese clams (Cyclina sinensis), and hard clams (Mercenaria mercenaria) with microalgae (Isochrysis galbana) on specific water quality parameters, including total particulate matter (TPM), total organic matter (TOM), dissolved inorganic carbon (DIC), dissolved carbon dioxide (dCO2), dissolved oxygen (DO), and ammonium (NH4+) concentrations. The bivalves were divided into smaller and larger groups and cultured under two conditions: with algae (WP) and without (NP), along with matched controls. Total particulate matter (TPM), total organic matter (TOM), dissolved oxygen (DO), ammonium nitrogen (NH4+), dissolved inorganic carbon (DIC), and CO2 (dCO2) were measured before and after 3-h cultivation. Results revealed species-specific impacts on water chemistry. C. gigas, C. sinensis and R. philippinarum showed the strongest reduction in DIC and dCO2 in WP groups, indicating synergistic bioremediation with algae. M. mercenaria notably reduced TPM, highlighting its particle carbon sequestration potential. DO concentrations decreased in most WP or NP groups, reflecting respiration of the cultured bivalves or microalgae. NH4+ levels also declined for most species, indicating nitrogen assimilation by these creatures. Overall, the bivalve size significantly impacted carbon and nitrogen processing capacities. These findings reveal species-specific capabilities in regulating water carbon dynamics. Further research should explore integrating these bivalves in carbon-negative aquaculture systems to mitigate environmental impacts. This study provides valuable insights underlying local carbon dynamics in shallow marine ecosystems.


Subject(s)
Aquaculture , Bivalvia , Carbon , Microalgae , Water Quality , Animals , Bivalvia/metabolism , Bivalvia/physiology , Carbon/metabolism , Coculture Techniques , Nitrogen/metabolism
3.
Sci Total Environ ; 951: 174987, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39142406

ABSTRACT

Offshore ocean aquaculture is expanding globally to meet the growing demand for sustainable food production. At the United Kingdom's largest longline mussel farm, we assessed the potential for the farm to improve the habitat suitability for commercially important crustaceans. Modelled distribution patterns (GAM & GLM) predicted the low complexity seabed beneath the mussel farm was 34-94 % less suitable for European lobster (Homarus gammarus) and brown crab (Cancer pagurus) than nearby rocky reefs. The mussel farm operations, however, contributed large amounts of living mussels and shell material to the seabed. Acoustic telemetry revealed that H.gammarus remained within the farm for between 2 and 283 days using both the farm anchors and areas of seabed dominated by fallen mussels for refuge. In contrast, C. pagurus movements showed no affinity to either the farm infrastructure or benthic habitat under the farm. Stable isotope analysis indicated a high dietary niche overlap in C. pagurus and H. gammarus (67.8 and 84.6 %) between the mussel farm (mixed muddy sediment) and nearby rocky reef. Our mixed-methods suggest that the mussel farm augments structural complexity on the seabed providing refuge and similar feeding opportunities for lobster and crab as their typical habitat on rocky reefs. Longline mussel farms can deliver profound biodiversity-positive effects through biogenic augmentation of degraded habitat for commercial species and potential for co-benefits to local fisheries.


Subject(s)
Aquaculture , Ecosystem , Animals , Bivalvia/physiology , Nephropidae , United Kingdom , Brachyura , Crustacea , Conservation of Natural Resources/methods
4.
Sci Rep ; 14(1): 19130, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160258

ABSTRACT

Increasing seawater temperatures coupled with more intense and frequent heatwaves pose an increasing threat to marine species. In this study, the New Zealand green-lipped mussel, Perna canaliculus, was used to investigate the effect of genetics and ontogeny on thermal resilience. The culturally and economically significant mussel P. canaliculus (Gmelin, 1971) has been selectively-bred in New Zealand for two decades, making it a unique biological resource to investigate genetic interactions in a temperate bivalve species. Six selectively-bred full sibling families and four different ages, from early juveniles (6, 8, 10 weeks post-fertilisation) to sub-adults (52 weeks post-fertilisation), were used for experimentation. At each age, each family was exposed to a three-hour heat challenge, followed by recovery, and survival assessments. The shell lengths of live and dead juvenile mussels were also measured. Gill tissue samples from sub-adults were collected after the thermal challenge to quantify the 70 kDa heat shock protein gene (hsp70). Results showed that genetics, ontogeny and size influence thermal resilience in P. canaliculus, with LT50 values ranging between 31.3 and 34.4 °C for all studied families and ages. Juveniles showed greater thermotolerance compared to sub-adults, while the largest individuals within each family/age class tended to be more heat sensitive than their siblings. Sub-adults differentially upregulated hsp70 in a pattern that correlated with net family survival following heat challenge, reinforcing the perceived role of inducible HSP70 protein in molluscs. This study provides insights into the complex interactions of age and genotype in determining heat tolerance of a key mussel species. As marine temperatures increase, equally complex selection pressure responses may therefore occur. Future research should focus on transcriptomic and genomic approaches for key species such as P. canaliculus to further understand and predict the effect of genetic variation and ontogeny on their survival in the context of climate change.


Subject(s)
Perna , Animals , Perna/genetics , Perna/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Thermotolerance/genetics , Bivalvia/genetics , Bivalvia/physiology , New Zealand , Hot Temperature , Gills/metabolism
5.
Sci Total Environ ; 949: 175185, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089385

ABSTRACT

Marine mussels inhabit a wide range of ocean depths, necessitating unique adaptations to cope with varying hydrostatic pressures. This study investigates the transcriptomic responses and evolutionary adaptations of the deep-sea mussel Gigantidas platifrons and the shallow-water mussel Mytilus galloprovincialis to high hydrostatic pressure (HHP) conditions. By exposing atmospheric pressure (AP) acclimated G. platifrons and M. galloprovincialis to HHP, we aim to simulate extreme environmental challenges and assess their adaptive mechanisms. Through comparative transcriptomic analysis, we identified both conserved and species-specific mechanisms of adaptation, with a notable change in gene expression associated with immune system, substance transport, protein ubiquitination, apoptosis, lipid metabolism and antioxidant processes in both species. G. platifrons demonstrated an augmented lipid metabolism, whereas M. galloprovincialis exhibited a dampened immune function. Additionally, the expressed pattern of deep-sea mussel G. platifrons were more consistent than shallow-water mussel M. galloprovincialis under hydrostatic pressures changed conditions which corresponding the long-term living stable deep-sea environment. Moreover, evolutionary analysis pinpointed positively selected genes in G. platifrons that are linked to transmembrane transporters, DNA repair and replication, apoptosis, ubiquitination which are important to cell structural integrity, substances transport, and cellular growth regulation. This indicates a specialized adaptation strategy in G. platifrons to cope with the persistent HHP conditions of the deep sea. These results offer significant insights into the molecular underpinnings of mussel adaptation to varied hydrostatic conditions and enhance our comprehension of the evolutionary forces driving their depth-specific adaptations.


Subject(s)
Hydrostatic Pressure , Transcriptome , Animals , Adaptation, Physiological , Biological Evolution , Mytilus/physiology , Mytilus/genetics , Bivalvia/genetics , Bivalvia/physiology
6.
Mar Environ Res ; 200: 106658, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088890

ABSTRACT

Shellfish ecosystems facilitate important ecological functions and communities, but overexploitation and mismanagement have contributed to their decline worldwide. Within recent decades, coastal management efforts have increasingly sought to understand and reinstate valuable ecological functions provided by habitat-forming bivalves including oysters, mussels and pinnids. However, many bivalve species are critically understudied, limiting restoration and ecological engineering opportunities. Pinnids, specifically, are an underappreciated bivalve group, with razor clams (Pinna bicolor) forming dense aggregations, and potentially supporting important ecological functions. This study, conducted in an urban Australian estuary, was a manipulative experiment that investigated whether artificial razor clam shells could facilitate beneficial ecological functions through the provision of structural habitat. Specifically, we investigated the influence of intertidal benthic structures, including the micro-habitat influences of surface structure associated with mortality status (open or closed shell), and the short-term response of the benthic and epifaunal communities. Within 12 weeks, the structural razor clam mimics rapidly changed the aboveground ecological community, relative to the bare habitat controls. Both open and closed artificial shells provided a settlement surface for epiphytic organisms and supported enhanced epifaunal biodiversity. Contrastingly, the artificial structures did not significantly alter sediment characteristics or infaunal macroinvertebrate composition in the surrounding benthos. These results provide important insights into the rapid ecological response to the installation of intertidal pinnid structures in dynamic estuarine ecosystems. Furthermore, we provide a case study for understanding the ecological functions of an understudied habitat-forming species, which could be used to inform future restoration and management efforts.


Subject(s)
Biodiversity , Bivalvia , Ecosystem , Animals , Bivalvia/physiology , Estuaries , Australia , Conservation of Natural Resources
7.
Mar Environ Res ; 200: 106653, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094430

ABSTRACT

Along the northern Mid-Atlantic Ridge (nMAR), in habitats under moderate (<10 °C) hydrothermal influence on the Snake Pit vent field (SP), large assemblages dominated by Bathymodiolin mussels remain poorly characterised, contrary to those in warmer habitats dominated by gastropods and alvinocaridid shrimps that were recently described. In this study, we assessed and compared the population structure, biomass, diversity and trophic interactions of two Bathymodiolus puteoserpentis assemblages and their associated fauna at SP. Three sampling units distanced by 30 cm were sampled in 2014 during the BICOSE cruise at the top of the Moose site (''Elan'' site), while few meters further down three others, distanced by ∼1 m were obtained in 2018 during the BICOSE 2 cruise at the edifice's base. We observed a micro-scale heterogeneity between these six sampling units partially explained by temperature variations, proximity to hydrothermal fluids and position on the edifice. Meiofauna dominate or co-dominate most of the sampling units, with higher densities at the base of the edifice. In terms of macrofauna, high abundance of Pseudorimula midatlantica gastropods was observed at the top of the vent edifice, while numerous Ophioctenella acies ophiuroids were found at the base. Contrary to what was expected, the apparent health and abundance of mussels seems to indicate a current climax stage of the community. However, the modification of B. puteoserpentis isotopic signatures, low number of juveniles decreasing over the two years and observations made during several French cruises in the study area raise questions about the fate of the B. puteoserpentis population over time, which remains to be verified in a future sampling campaign.


Subject(s)
Ecosystem , Hydrothermal Vents , Animals , Atlantic Ocean , Biodiversity , Bivalvia/physiology , Ecology , Biomass , Environmental Monitoring , Mytilidae/physiology
8.
Mar Environ Res ; 200: 106664, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098304

ABSTRACT

Microplastic deposition in soft marine sediments raises concerns on their role in sediment habitats and unknown effects on resident macrobenthic communities. To assess the reciprocal influence that MPs and macrobenthos might have on each other, we performed a mesocosm experiment with ambient concentrations of environmental Polyethylene (PE) and a non-manipulated, natural macrobenthic community from the Belgian part of the North Sea (BPNS). Our results show that PE fragments increase mortality of abundant bivalves (specifically Abra alba) after 30 days of exposure but not for the most abundant polychaete Owenia fusiformis, possibly due to its predominant suspension feeding behavior. Fast burial of surface MPs exposes deep-dwelling burrowers to the pollutant, however reducing the amount of MPs interacting with (sub) surface living fauna. We conclude that macrobenthos promotes the sequestration of deposited MPs, counteracting resuspension, and can have cascading effects on biodiversity due to their effect on abundant and functionally important species.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Biodiversity , North Sea , Geologic Sediments/chemistry , Belgium , Aquatic Organisms , Plastics , Bivalvia/physiology , Polychaeta/physiology , Polychaeta/drug effects , Ecosystem
9.
PeerJ ; 12: e17753, 2024.
Article in English | MEDLINE | ID: mdl-39119103

ABSTRACT

Symbionts dominate planetary diversity and three primary symbiont diversification processes have been proposed: co-speciation with hosts, speciation by host-switching, and within-host speciation. The last mechanism is prevalent among members of an extraordinary marine symbiosis in the Indian River Lagoon, Florida, composed of a host mantis shrimp, Lysiosquilla scabricauda, and seven host-specific commensal vasconielline "yoyo" clams (Galeommatoidea) that collectively occupy two distinct niches: burrow-wall-attached, and host-attached/ectocommensal. This within-host symbiont radiation provides a natural experiment to test how symbiont coexistence patterns are regulated in a common ancestral habitat. The competitive exclusion principle predicts that sister taxa produced by adaptive speciation (with distinct morphologies and within-burrow niches) are most likely to coexist whereas the neutral theory predicts no difference among adaptive and non-adaptive sister taxa co-occurrence. To test these predictions, we engaged in (1) field-censusing commensal species assemblages; (2) trophic niche analyses; (3) laboratory behavioral observations. Although predicted by both models, the field census found no mixed-niche commensal assemblages: multi-species burrows were exclusively composed of burrow-wall commensals. Their co-occurrence matched random assembly process expectations, but presence of the single ectocommensal species had a highly significant negative effect on recruitment of all burrow-wall commensal species (P < 0.001), including on its burrow-wall commensal sister species (P < 0.001). Our stable isotope data indicated that commensals are suspension feeders and that co-occurring burrow-wall commensals may exhibit trophic niche differentiation. The artificial burrow behavioral experiment yielded no evidence of spatial segregation among burrow-wall commensals, and it was terminated by a sudden breakdown of the host-commensal relationship resulting in a mass mortality of all commensals unattached to the host. This study system appears to contain two distinct, superimposed patterns of commensal distribution: (1) all burrow-wall commensal species; (2) the ectocommensal species. Burrow-wall commensals (the plesiomorphic condition) broadly adhere to neutral theory expectations of species assembly but the adaptive evolution of ectocommensalism has apparently led to ecological exclusion rather than coexistence, an inverse outcome of theoretical expectations. The ecological factors regulating the observed burrow-wall/ectocommensal exclusion are currently obscure but potentially include differential recruitment to host burrows and/or differential survival in "mixed" burrow assemblages, the latter potentially due to changes in host predatory behavior. Resampling host burrows during commensal recruitment peak periods and tracking burrow-wall commensal survival in host burrows with and without added ectocommensals could resolve this outstanding issue.


Subject(s)
Bivalvia , Symbiosis , Animals , Bivalvia/microbiology , Bivalvia/genetics , Bivalvia/physiology , Florida , Ecosystem , Genetic Speciation
10.
Sci Rep ; 14(1): 19495, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174570

ABSTRACT

The presence of different types of larvae within the same class suggests a broad ecological diversification. A clear comparison of bivalve larval nervous systems would give a broader view on evolutionary and ecological picture of the clade in question. The present study focused on the neurodevelopment in two bivalve species with different larval types: pericalymma of Acila insignis (Bivalvia: Protobranchia) and veliger of Spisula sybillae (Bivalvia: Autobranchia). It was shown that the pioneer dorsal and ventral neurons in S. sybillae appear at the trochophore stage. Subsequently, future three paired ganglia are developed on the nerve cords in pediveliger. In the pericalymma of A. insignis, serotonin- and FMRFamide-positive cells are found in the apical organ (AO), as well as two pairs of FMRFamide positive neurons are detected on dorsal and posterior part of pericalymma. A comparative analysis showed significant differences in the larval neuromorphology between veliger and pericalymma. In contrast to the S. sybillae veliger, the nervous system of the A. insignis pericalymma is simple, likely due to its different lifestyle. The larval nervous system in the species under study has features characteristic of Lophotrochozoa and Spiralia.


Subject(s)
Bivalvia , Larva , Neurogenesis , Animals , Bivalvia/physiology , Neurogenesis/physiology , Larva/physiology , Larva/growth & development , Neurons/physiology , Neurons/cytology , Neurons/metabolism , Nervous System
11.
Sci Total Environ ; 948: 174764, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39004357

ABSTRACT

Biological invasions cause biodiversity erosion on a global scale. Invasive species spreading beyond their natural range compete with native fauna for food and space, push native species to suboptimal habitats, impairing their behaviour and thus limiting their occurrence. Freshwater ecosystems are especially vulnerable to biological invasions and their ecological and economic impacts. The invasive Asian clams (Corbicula spp.), due to their opportunistic life style, can occur at densities of thousands ind. m-2. They act as ecosystem engineers transforming bottom substrata through accumulation of shells. Our goal was to determine the effect of substratum modification by living Corbicula and their shells on substratum choice and behaviour of Unio tumidus and Anodonta anatina, two European freshwater mussel species of the highly imperilled Unionidae family. We assessed their substratum selection in pairwise choice tests (pure sand vs. sand modified by living Corbicula or their shells, sand modified by shells vs. living Corbicula). Next, we tested locomotion and burrowing of unionids on pure substratum and substrata modified by Corbicula. Unionids avoided sand modified by living Corbicula and their empty shells, not distinguishing between these two types of substratum modification. In the presence of Corbicula, their burrowing was shallower or it took them longer to obtain the same depth as in the pure sand. Additionally, on sand modified by Corbicula shells, we observed a locomotion increase (U. tumidus) or slowing down (A. anatina). Our research showed a novel mechanism of negative impact of Corbicula on unionids, consisting in pushing them away from their optimal habitats. This may contribute to their habitat loss and future declines in invaded ecosystems.


Subject(s)
Corbicula , Ecosystem , Introduced Species , Animals , Corbicula/physiology , Unionidae/physiology , Bivalvia/physiology , Biodiversity
12.
Sci Rep ; 14(1): 16967, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043878

ABSTRACT

This study is based on a natural experiment carried out in the Biebrza National Park, Poland. The study site was a channel inhabited by Anodonta anatina, A. cygnea, Unio pictorum and U. tumidus. The deepening of the channel to restore ecosystem connectivity provided an opportunity to conduct this study. Mussels were collected before dredging, held in captivity for 48 h, measured, individually tagged and released post-dredging to the same 5-m channel sections they originated from. They were subsequently monitored for three consecutive years. Mussel survival remained high throughout the study, and no increased mortality in the year following reintroduction was observed. There was no growth retardation. Mussel mobility was low, with most individuals remaining in the same channel section in which they were released. Recolonisation patterns were consistent with the composition of mussel communities in adjacent unaffected habitats. Although dredging drastically changes mussel habitat, some characteristics: microclimate, water chemistry, nutrient availability and host fish can remain adequate. Our study shows that reintroducing mussels to the same site can serve as an effective mitigation conservation measure and can be preferable to translocation, particularly when carried out under time pressure with limited possibilities of assigning appropriate destination sites.


Subject(s)
Bivalvia , Conservation of Natural Resources , Ecosystem , Fresh Water , Animals , Bivalvia/physiology , Conservation of Natural Resources/methods , Poland , Anodonta/physiology
13.
PeerJ ; 12: e17697, 2024.
Article in English | MEDLINE | ID: mdl-38993978

ABSTRACT

Rocky intertidal habitats occur worldwide and are mainly characterized by primary space holders such as seaweeds and sessile invertebrates. Some of these organisms are foundation species, as they can form structurally complex stands that host many small invertebrates. The abundance of primary space holders is known to vary along coastlines driven directly or indirectly by environmental variation. However, it is less clear if the invertebrate assemblages associated to a foundation species may remain relatively unchanged along coastlines, as similar stands of a foundation species can generate similar microclimates. We examined this question using abundance data for invertebrate species found in mussel stands of a similar structure in wave-exposed rocky habitats at mid-intertidal elevations along the Atlantic coast of Nova Scotia (Canada). While the most abundant invertebrate species were found at three locations spanning 315 km of coastline, species composition (a combined measure of species identity and their relative abundance) differed significantly among the locations. One of the species explaining the highest amount of variation among locations (a barnacle) exhibited potential signs of bottom-up regulation involving pelagic food supply, suggesting benthic-pelagic coupling. The abundance of the species that explained the highest amount of variation (an oligochaete) was positively related to the abundance of their predators (mites), further suggesting bottom-up forcing in these communities. Overall, we conclude that species assemblages associated to structurally similar stands of a foundation species can show clear changes in species composition at a regional scale.


Subject(s)
Bivalvia , Ecosystem , Invertebrates , Animals , Nova Scotia , Invertebrates/physiology , Bivalvia/physiology , Biodiversity
14.
Braz J Biol ; 84: e282016, 2024.
Article in English | MEDLINE | ID: mdl-38985069

ABSTRACT

Aspects of the reproductive biology of Donax striatus were studied from individuals collected from Gado Bravo Beach in the municipality of Tibau do Norte, state of Rio Grande do Norte, Brazil. Donax striatus is a dioic species without external (on the shell) or internal (gonads) macroscopic dimorphism. Thus, a microscopic examination of the reproductive cells is necessary. For the characterization of the gonadal development stages and determination of the size at first sexual maturity (L50), 30 specimens were selected monthly between February 2021 and January 2022 and submitted to histological processing. The condition index (CI) of each individual was estimated and monthly variations were statistically assessed. The size at first maturity (L50) was estimated to be 14.2 mm in shell length. To foster conservation of the species, catches of individuals larger than 14.2 mm is recommended. The lowest condition indices were found in the dry season, with a greater occurrence of organisms in the elimination stage and exhibiting gonad tissue reorganization. Higher indices were found in the rainy season, with the presence of mature individuals. The continuous nature of gametogenesis in Donax stritatus reflects the influence of rainfall in the region. Males and females have peak gamete elimination with pauses during the year, but with the presence of maturing and eliminating individuals throughout the year. As shellfish gathering targeting Donax striatus is excessive on Gado Bravo Beach in the state of Rio Grande do Norte, it is hoped that the results of the present study can contribute to the establishment of management measures for the activity and conservation strategies for the species.


Subject(s)
Bivalvia , Reproduction , Seasons , Animals , Brazil , Male , Reproduction/physiology , Female , Bivalvia/physiology , Bivalvia/classification , Sexual Maturation/physiology , Gonads/growth & development , Gonads/anatomy & histology , Gonads/physiology
15.
Int J Mol Sci ; 25(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063236

ABSTRACT

Water molecules pose a significant obstacle to conventional adhesive materials. Nevertheless, some marine organisms can secrete bioadhesives with remarkable adhesion properties. For instance, mussels resist sea waves using byssal threads, sandcastle worms secrete sandcastle glue to construct shelters, and barnacles adhere to various surfaces using their barnacle cement. This work initially elucidates the process of underwater adhesion and the microstructure of bioadhesives in these three exemplary marine organisms. The formation of bioadhesive microstructures is intimately related to the aquatic environment. Subsequently, the adhesion mechanisms employed by mussel byssal threads, sandcastle glue, and barnacle cement are demonstrated at the molecular level. The comprehension of adhesion mechanisms has promoted various biomimetic adhesive systems: DOPA-based biomimetic adhesives inspired by the chemical composition of mussel byssal proteins; polyelectrolyte hydrogels enlightened by sandcastle glue and phase transitions; and novel biomimetic adhesives derived from the multiple interactions and nanofiber-like structures within barnacle cement. Underwater biomimetic adhesion continues to encounter multifaceted challenges despite notable advancements. Hence, this work examines the current challenges confronting underwater biomimetic adhesion in the last part, which provides novel perspectives and directions for future research.


Subject(s)
Adhesives , Aquatic Organisms , Biomimetic Materials , Bivalvia , Animals , Biomimetic Materials/chemistry , Adhesives/chemistry , Bivalvia/chemistry , Bivalvia/physiology , Biomimetics/methods , Adhesiveness , Thoracica/physiology , Hydrogels/chemistry
16.
Sci Rep ; 14(1): 15025, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951594

ABSTRACT

Clam shrimps are a group of freshwater crustaceans who prospered during the Late Triassic. They were abundant in lacustrine sedimentary records of continental basins distributed throughout Pangea during this time. However, they show significant taxonomic differences between the clamp shrimp faunas from the rift basins of central Pangea and the southern Gondwanan basins. In this contribution, we show new fossil clam shrimp assemblages from the lacustrine sedimentary successions of the Eastern Cordillera of Colombia (the Bocas and Montebel formations), providing information on the Late Triassic species that inhabited the northwestern Gondwana basins. This study demonstrates that the basins of northwestern Gondwana shared Norian clamp shrimp species with rift basins of central Pangea and differed in their faunas with the basins of the southern portion of Gondwana. In addition, the Late Triassic clam shrimps paleobiogeographic distribution reflects the dispersal of this fauna throughout fluvial-lacustrine environments established in the rift valleys along the central Pangea. Therefore, the rift valleys produced during the early fragmentation of central Pangea could have acted as corridors for dispersion. Simultaneously, rift valleys also provided paleobiogeographic barriers that isolated the central Pangea clam shrimp faunas from southern Gondwana.


Subject(s)
Fossils , Animals , Colombia , Geologic Sediments , Paleontology , Crustacea/classification , Bivalvia/physiology
17.
Sci Total Environ ; 946: 174471, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964384

ABSTRACT

Rising ocean temperatures, a consequence of anthropogenic climate change, are increasing the frequency, intensity, and magnitude of extreme marine heatwaves (MHWs). These persistent anomalous warming events can have severe ecological and socioeconomic impacts, threatening ecologically and economically vital organisms such as bivalves and the ecosystems they support. Developing robust environmental and social frameworks to enhance the resilience and adaptability of bivalve aquaculture is critical to ensuring the sustainability of this crucial food source. This review synthesizes the current understanding of the physiological and ecological impacts of MHWs on commercially important bivalve species farmed globally. We propose an integrated risk assessment framework that encompasses environmental monitoring, farm-level preparedness planning, and community-level social support systems to safeguard bivalve aquaculture. Specifically, we examine heatwave prediction models, local mitigation strategies, and social programs that could mitigate the impacts on bivalve farms and vulnerable coastal communities economically dependent on this fishery. At the farm level, adaptation strategies such as selective breeding for heat-tolerant strains, optimized site selection, and adjustments to culture practices can improve survival outcomes during MHWs. Robust disease surveillance and management programs are essential for early detection and rapid response. Furthermore, we highlight the importance of stakeholder engagement, knowledge exchange, and collaborative governance in developing context-specific, inclusive, and equitable safeguard systems. Proactive measures, such as advanced forecasting tools like the California Current Marine Heat Wave Tracker developed by NOAA's Southwest Fisheries Science Center, enable preemptive action before losses occur. Coordinated preparation and response, underpinned by continuous monitoring and adaptive management, promise to protect these climate-vulnerable food systems and coastal communities. However, sustained research, innovation, and cross-sector collaboration are imperative to navigate the challenges posed by our rapidly changing oceans.


Subject(s)
Aquaculture , Bivalvia , Climate Change , Animals , Bivalvia/physiology , Extreme Weather , Environmental Monitoring , Ecosystem , Conservation of Natural Resources/methods
18.
Nat Ecol Evol ; 8(7): 1285-1297, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831017

ABSTRACT

Long-term, large-scale experimental studies provide critical information about how global change influences communities. When environmental changes are severe, they can trigger abrupt transitions from one community type to another leading to a regime shift. From 2014 to 2016, rocky intertidal habitats in the northeast Pacific Ocean experienced extreme temperatures during a multi-year marine heatwave (MHW) and sharp population declines of the keystone predator Pisaster ochraceus due to sea star wasting disease (SSWD). Here we measured the community structure before, during and after the MHW onset and SSWD outbreak in a 15-year succession experiment conducted in a rocky intertidal meta-ecosystem spanning 13 sites on four capes in Oregon and northern California, United States. Kelp abundance declined during the MHW due to extreme temperatures, while gooseneck barnacle and mussel abundances increased due to reduced predation pressure after the loss of Pisaster from SSWD. Using several methods, we detected regime shifts from substrate- or algae-dominated to invertebrate-dominated alternative states at two capes. After water temperatures cooled and Pisaster population densities recovered, community structure differed from pre-disturbance conditions, suggesting low resilience. Consequently, thermal stress and predator loss can result in regime shifts that fundamentally alter community structure even after restoration of baseline conditions.


Subject(s)
Starfish , Animals , Starfish/physiology , Oregon , California , Pacific Ocean , Thoracica/physiology , Ecosystem , Bivalvia/physiology , Climate Change , Population Dynamics , Extreme Heat/adverse effects , Kelp
19.
Mar Environ Res ; 199: 106562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870558

ABSTRACT

For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.


Subject(s)
Lipid Peroxidation , Oxidative Stress , Animals , Antioxidants/metabolism , Environmental Monitoring , Tidal Waves , Protein Carbonylation , Carotenoids/metabolism , Bivalvia/physiology , Bivalvia/metabolism , Mytilidae/metabolism , Mytilidae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL