Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.964
Filter
1.
Mol Biol Rep ; 51(1): 621, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709430

ABSTRACT

BACKGROUND: To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS: MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION: Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.


Subject(s)
Embryonic Development , Extracellular Vesicles , Oocytes , Animals , Extracellular Vesicles/metabolism , Mice , Female , Oocytes/metabolism , Oocytes/cytology , Fertilization in Vitro/methods , Blastocyst/metabolism , In Vitro Oocyte Maturation Techniques/methods , HSP90 Heat-Shock Proteins/metabolism
2.
Sci Rep ; 14(1): 10316, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705876

ABSTRACT

Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.


Subject(s)
Infertility, Male , MicroRNAs , Spermatozoa , Humans , Male , Infertility, Male/genetics , Spermatozoa/metabolism , MicroRNAs/genetics , Adult , Female , Blastocyst/metabolism , RNA/genetics , RNA/metabolism , Embryonic Development/genetics
3.
Sci Rep ; 14(1): 10569, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719918

ABSTRACT

Within the medical field of human assisted reproductive technology, a method for interpretable, non-invasive, and objective oocyte evaluation is lacking. To address this clinical gap, a workflow utilizing machine learning techniques has been developed involving automatic multi-class segmentation of two-dimensional images, morphometric analysis, and prediction of developmental outcomes of mature denuded oocytes based on feature extraction and clinical variables. Two separate models have been developed for this purpose-a model to perform multiclass segmentation, and a classifier model to classify oocytes as likely or unlikely to develop into a blastocyst (Day 5-7 embryo). The segmentation model is highly accurate at segmenting the oocyte, ensuring high-quality segmented images (masks) are utilized as inputs for the classifier model (mask model). The mask model displayed an area under the curve (AUC) of 0.63, a sensitivity of 0.51, and a specificity of 0.66 on the test set. The AUC underwent a reduction to 0.57 when features extracted from the ooplasm were removed, suggesting the ooplasm holds the information most pertinent to oocyte developmental competence. The mask model was further compared to a deep learning model, which also utilized the segmented images as inputs. The performance of both models combined in an ensemble model was evaluated, showing an improvement (AUC 0.67) compared to either model alone. The results of this study indicate that direct assessments of the oocyte are warranted, providing the first objective insights into key features for developmental competence, a step above the current standard of care-solely utilizing oocyte age as a proxy for quality.


Subject(s)
Blastocyst , Machine Learning , Oocytes , Humans , Blastocyst/cytology , Blastocyst/physiology , Oocytes/cytology , Female , Embryonic Development , Adult , Fertilization in Vitro/methods , Image Processing, Computer-Assisted/methods
4.
Analyst ; 149(11): 3078-3084, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717228

ABSTRACT

This study is the first to identify bovine blastocysts through in vitro fertilization (IVF) of matured oocytes with a large quantity of high-quality sperm separated from a biomimetic cervix environment. We obtained high-quality sperm in large quantities using an IVF sperm sorting chip (SSC), which could mimic the viscous environment of the bovine cervix during ovulation and facilitates isolation of progressively motile sperm from semen. The viscous environment-on-a-chip was realized by formulating and implementing polyvinylpyrrolidone (PVP)-based solutions for the SSC medium. Sperm separated from the IVF-SSC containing PVP 1.5% showed high motility, normal morphology and high DNA integrity. As a result of IVF, a higher rate of hatching blastocysts, which is the pre-implantation stage, were observed, compared to the conventional swim-up method. Our results may significantly contribute to improving livestock with superior male and female genetic traits, thus overcoming the limitation of artificial insemination based on the superior genetic traits of existing males.


Subject(s)
Embryonic Development , Fertilization in Vitro , Spermatozoa , Animals , Cattle , Male , Spermatozoa/cytology , Spermatozoa/chemistry , Female , Fertilization in Vitro/methods , Embryonic Development/physiology , Biomimetics/methods , Cervix Uteri/cytology , Povidone/chemistry , Blastocyst/cytology , Sperm Motility/drug effects
5.
Front Endocrinol (Lausanne) ; 15: 1378635, 2024.
Article in English | MEDLINE | ID: mdl-38737550

ABSTRACT

Objective: The objective of this study is to investigate the factors that influence the live birth rate (LBR) of the first single euploid frozen-thawed blastocyst transfer (FBT) cycles after preimplantation genetic testing for structural rearrangements (PGT-SR) in couples with balanced chromosomal translocations (BCT). Design: Single center, retrospective and observational study. Methods: A total of 336 PGT-SR and the first single euploid FBT cycles between July 2016 and December 2022 were included in this study. The patients were divided into two groups according to the live birth outcomes. The parameters of the study population, controlled ovarian stimulation cycles, and FBT cycles were analyzed. Multivariable binary logistic regression was performed to find the factors that affected the LBR. Results: The percentage of blastocysts at developmental stage Day 5 compared to Day 6 (51.8% vs. 30.8%; P<0.001) and with morphology ≥BB compared to

Subject(s)
Cryopreservation , Embryo Transfer , Live Birth , Pregnancy Rate , Preimplantation Diagnosis , Translocation, Genetic , Humans , Female , Pregnancy , Retrospective Studies , Adult , Embryo Transfer/methods , Male , Preimplantation Diagnosis/methods , Birth Rate , Fertilization in Vitro/methods , Pregnancy Outcome , Blastocyst , Ovulation Induction/methods
6.
Reprod Domest Anim ; 59(5): e14596, 2024 May.
Article in English | MEDLINE | ID: mdl-38757656

ABSTRACT

Chlorogenic acid (CGA) is an effective phenolic antioxidant that can scavenge hydroxyl radicals and superoxide anions. Herein, the protective effects and mechanisms leading to CGA-induced porcine parthenogenetic activation (PA) in early-stage embryos were investigated. Our results showed that 50 µM CGA treatment during the in vitro culture (IVC) period significantly increased the cleavage and blastocyst formation rates and improved the blastocyst quality of porcine early-stage embryos derived from PAs. Then, genes related to zygotic genome activation (ZGA) were identified and investigated, revealing that CGA can promote ZGA in porcine PA early-stage embryos. Further analysis revealed that CGA treatment during the IVC period decreased the abundance of reactive oxygen species (ROS), increased the abundance of glutathione and enhanced the activity of catalase and superoxide dismutase in porcine PA early-stage embryos. Mitochondrial function analysis revealed that CGA increased mitochondrial membrane potential and ATP levels and upregulated the mitochondrial homeostasis-related gene NRF-1 in porcine PA early-stage embryos. In summary, our results suggest that CGA treatment during the IVC period helps porcine PA early-stage embryos by regulating oxidative stress and improving mitochondrial function.


Subject(s)
Chlorogenic Acid , Embryo Culture Techniques , Embryonic Development , Mitochondria , Oxidative Stress , Parthenogenesis , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Parthenogenesis/drug effects , Mitochondria/drug effects , Embryo Culture Techniques/veterinary , Chlorogenic Acid/pharmacology , Embryonic Development/drug effects , Reactive Oxygen Species/metabolism , Blastocyst/drug effects , Swine , Membrane Potential, Mitochondrial/drug effects , Antioxidants/pharmacology , Female , Glutathione/metabolism
7.
Cells ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38727294

ABSTRACT

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Subject(s)
Behavior, Animal , Mitochondria , Oocytes , Oxidative Stress , Animals , Oocytes/metabolism , Mitochondria/metabolism , Female , Mice , Male , Ovulation , Anxiety/metabolism , Anxiety/pathology , Antioxidants/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Blastocyst/metabolism , Cellular Senescence , Memory
8.
Birth Defects Res ; 116(5): e2349, 2024 May.
Article in English | MEDLINE | ID: mdl-38778782

ABSTRACT

BACKGROUND: To describe and conclude the in vitro fertilization (IVF) results of patients with X chromosome abnormality. METHODS: A retrospective case series was conducted. According to the number of normal X, patients were allocated into two groups: Group A (patients with only a normal X, while other X has any types of abnormalities) and Group B (patients have two or more normal X chromosomes). Clinical data, including basic information, fertility information, and IVF outcomes, were collected. RESULTS: Fourteen patients with X chromosome abnormality were included, among which 13 patients underwent a total of 29 cycles. Patients in Group B had five successful pregnancies and three live births, while no patient in Group A had a clinical pregnancy. Furthermore, the blastocyst formation rate and incidence of pregnancy were significantly lower in Group A (Z = -3.135, p = .002; Z = -2.946, p = .003, respectively). When controlled covariates, the karyotype of one normal X was also a risk factor for both blastocyst formation rate and success pregnancy (ß = .820, 95% confidence interval [CI] = 0.458-1.116, ß = .333, 95% CI = 0.017-0.494, respectively). CONCLUSIONS: Our results revealed that women with only one normal X might suffer from worse IVF outcomes, mainly blastocyst formation rate, compared with those who had two or more normal X, including mosaic Turner syndrome and 47,XXX.


Subject(s)
Chromosomes, Human, X , Fertilization in Vitro , Pregnancy Outcome , Humans , Female , Pregnancy , Fertilization in Vitro/methods , Adult , Chromosomes, Human, X/genetics , Retrospective Studies , Sex Chromosome Aberrations , Blastocyst/metabolism , Live Birth/genetics , Turner Syndrome/genetics , Pregnancy Rate
9.
JBRA Assist Reprod ; 28(2): 276-283, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38775323

ABSTRACT

OBJECTIVE: Cryopreservation has some adverse effects on embryos including cell metabolism reduction, mitochondria and plasma membrane damage, excess production of 'Reactive Oxygen Species' and damage to DNA. In the present study. In this study we assessed the effect of coenzyme Q10 as an exogenous antioxidant on mouse embryos following cryopreservation. METHODS: We collected mice embryos at the morula stage from uterine horns on the third day of gestation. The morulae were divided into 9 groups (1 control, 2 vehicles and 6 experimental), then vitrified. The culture and/or vitrification media of the experimental groups were supplemented by 10 or 30 µM of CoQ10. After one week, the embryos were warmed and then cultured. After 48 hours of embryo culture, the blastocyst rate, total cell number, viability; and after 72 hours of embryo culture, we assessed the hatching rate. RESULTS: Blastocyst rate and hatching rate were significantly reduced in the groups containing 30 µM CoQ10 supplemented culture media compared to other groups (p<0.05). The hatching rate in the groups containing 10 µM CoQ10 supplemented in both culture and vitrification media was significantly higher than in the other groups (p<0.05). In groups containing 10 µM CoQ10 supplemented culture media, the viability was higher than that in the other groups (p<0.05). CONCLUSIONS: It seems that CoQ10 in a dose-dependent manner is able to improve hatching rate and viability following cryopreservation through its antioxidant and anti-apoptotic properties, and through the production of ATP.


Subject(s)
Cryopreservation , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Mice , Female , Embryo Culture Techniques , Embryonic Development/drug effects , Blastocyst/drug effects , Vitrification/drug effects , Embryo, Mammalian/drug effects , Antioxidants/pharmacology , Pregnancy
10.
Sci Rep ; 14(1): 11689, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778076

ABSTRACT

We evaluated whether serum stem cell factor (s-SCF) levels just prior to ovulation induction could indicate the ability to develop a top-quality (TQ) blastocyst by day 5. We investigated patients with normal ovarian reserve (NOR), polycystic ovary syndrome (PCOS), diminished ovarian reserve (DOR), or mild endometriosis. Our pilot research suggests a correlation between s-SCF levels and the ability to form TQ blastocysts in patients with mild endometriosis. This significant statistical difference (p < 0.05) was noted between mild endometriosis patients for whom a TQ blastocyst was obtained and those for whom it was not possible, as measured on the 8th day of stimulation and the day of oocyte retrieval. The mean SCF levels in the serum of these women on the 8th day were at 28.07 (± 2.67) pg/ml for the TQ subgroup and 53.32 (± 16.02) pg/ml for the non-TQ subgroup (p < 0.05). On oocyte retrieval day it was 33.47 (± 3.93) pg/ml and 52.23 (± 9.72) pg/ml (p < 0.05), respectively.


Subject(s)
Blastocyst , Ovarian Reserve , Stem Cell Factor , Humans , Female , Stem Cell Factor/blood , Adult , Blastocyst/cytology , Ovarian Reserve/physiology , Polycystic Ovary Syndrome/blood , Endometriosis/blood , Oocyte Retrieval , Ovulation Induction/methods , Pilot Projects , Fertilization in Vitro/methods
11.
Reprod Biol Endocrinol ; 22(1): 58, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778410

ABSTRACT

BACKGROUND: The best method for selecting embryos ploidy is preimplantation genetic testing for aneuploidies (PGT-A). However, it takes more labour, money, and experience. As such, more approachable, non- invasive techniques were still needed. Analyses driven by artificial intelligence have been presented recently to automate and objectify picture assessments. METHODS: In present retrospective study, a total of 3448 biopsied blastocysts from 979 Time-lapse (TL)-PGT cycles were retrospectively analyzed. The "intelligent data analysis (iDA) Score" as a deep learning algorithm was used in TL incubators and assigned each blastocyst with a score between 1.0 and 9.9. RESULTS: Significant differences were observed in iDAScore among blastocysts with different ploidy. Additionally, multivariate logistic regression analysis showed that higher scores were significantly correlated with euploidy (p < 0.001). The Area Under the Curve (AUC) of iDAScore alone for predicting euploidy embryo is 0.612, but rose to 0.688 by adding clinical and embryonic characteristics. CONCLUSIONS: This study provided additional information to strengthen the clinical applicability of iDAScore. This may provide a non-invasive and inexpensive alternative for patients who have no available blastocyst for biopsy or who are economically disadvantaged. However, the accuracy of embryo ploidy is still dependent on the results of next-generation sequencing technology (NGS) analysis.


Subject(s)
Aneuploidy , Blastocyst , Deep Learning , Preimplantation Diagnosis , Humans , Retrospective Studies , Female , Preimplantation Diagnosis/methods , Adult , Pregnancy , Blastocyst/cytology , Genetic Testing/methods , Fertilization in Vitro/methods
12.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786052

ABSTRACT

Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.


Subject(s)
Huntingtin Protein , Macaca mulatta , Animals , Macaca mulatta/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Blastocyst/metabolism , Trinucleotide Repeat Expansion/genetics , Embryo, Mammalian/metabolism , CRISPR-Cas Systems/genetics , Female , Disease Models, Animal
13.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786090

ABSTRACT

The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.


Subject(s)
Blastocyst , Embryo Culture Techniques , Embryonic Development , Zygote , Animals , Cattle , Blastocyst/cytology , Blastocyst/metabolism , Zygote/cytology , Zygote/metabolism , Embryo Culture Techniques/methods , Female , Mitochondria/metabolism
14.
Sci Rep ; 14(1): 10295, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704415

ABSTRACT

Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.


Subject(s)
Cell Proliferation , Fibroblasts , Histones , Nuclear Transfer Techniques , Animals , Cattle , Fibroblasts/metabolism , Fibroblasts/cytology , Cell Proliferation/drug effects , Histones/metabolism , Embryonic Development , Blastocyst/metabolism , Blastocyst/cytology , Lysine/metabolism , Crotonates/metabolism , Cells, Cultured , Protein Processing, Post-Translational , Female
15.
Mol Reprod Dev ; 91(5): e23760, 2024 May.
Article in English | MEDLINE | ID: mdl-38769918

ABSTRACT

e-Lysine acetylation is a prominent histone mark found at transcriptionally active loci. Among many lysine acetyl transferases, nonspecific lethal complex (NSL) members are known to mediate the modification of histone H4. In addition to histone modifications, the KAT8 regulatory complex subunit 3 gene (Kansl3), a core member of NSL complex, has been shown to be involved in several other cellular processes such as mitosis and mitochondrial activity. Although functional studies have been performed on NSL complex members, none of the four core proteins, including Kansl3, have been studied during early mouse development. Here we show that homozygous knockout Kansl3 embryos are lethal at peri-implantation stages, failing to hatch out of the zona pellucida. When the zona pellucida is removed in vitro, Kansl3 null embryos form an abnormal outgrowth with significantly disrupted inner cell mass (ICM) morphology. We document lineage-specific defects at the blastocyst stage with significantly reduced ICM cell number but no difference in trophectoderm cell numbers. Both epiblast and primitive endoderm lineages are altered with reduced cell numbers in null mutants. These results show that Kansl3 is indispensable during early mouse embryonic development and with defects in both ICM and trophectoderm lineages.


Subject(s)
Mice, Knockout , Animals , Mice , Blastocyst Inner Cell Mass/metabolism , Blastocyst Inner Cell Mass/cytology , Female , Embryonic Development , Embryo Loss/pathology , Embryo Loss/genetics , Embryo Loss/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/deficiency , Blastocyst/metabolism , Blastocyst/cytology
16.
Mol Biol Rep ; 51(1): 692, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796562

ABSTRACT

BACKGROUND: Resveratrol, a potent antioxidant, is known to induce the up-regulation of the internal antioxidant system. Therefore, it holds promise as a method to mitigate cryopreservation-induced injuries in bovine oocytes and embryos. This study aimed to (i) assess the enhancement in the quality of in vitro produced bovine embryos following resveratrol supplementation and (ii) monitor changes in the expression of genes associated with oxidative stress (GPX4, SOD, CPT2, NFE2L2), mitochondrial function (ATP5ME), endoplasmic reticulum function (ATF6), and embryo quality (OCT4, DNMT1, CASP3, ELOVL5). METHODS AND RESULTS: Three groups of in vitro bovine embryos were cultured with varying concentrations of resveratrol (0.01, 0.001, and 0.0001 µM), with a fourth group serving as a control. Following the vitrification process, embryos were categorized as either good or poor quality. Blastocysts were then preserved at - 80 °C for RNA isolation, followed by qRT-PCR analysis of selected genes. The low concentrations of resveratrol (0.001 µM, P < 0.05 and 0.0001 µM, P < 0.01) significantly improved the blastocyst rate compared to the control group. Moreover, the proportion of good quality vitrified embryos increased significantly (P < 0.05) in the groups treated with 0.001 and 0.0001 µM resveratrol compared to the control group. Analysis of gene expression showed a significant increase in OCT4 and DNMT1 transcripts in both good and poor-quality embryos treated with resveratrol compared to untreated embryos. Additionally, CASP3 expression was decreased in treated good embryos compared to control embryos. Furthermore, ELOVL5 and ATF6 transcripts were down-regulated in treated good embryos compared to the control group. Regarding antioxidant-related genes, GPX4, SOD, and CPT2 transcripts increased in the treated embryos, while NFE2L2 mRNA decreased in treated good embryos compared to the control group. CONCLUSIONS: Resveratrol supplementation at low concentrations effectively mitigated oxidative stress and enhanced the cryotolerance of embryos by modulating the expression of genes involved in oxidative stress response.


Subject(s)
Antioxidants , Blastocyst , Cryopreservation , Oxidative Stress , Resveratrol , Vitrification , Animals , Cattle , Resveratrol/pharmacology , Vitrification/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Cryopreservation/methods , Antioxidants/pharmacology , Antioxidants/metabolism , Blastocyst/drug effects , Blastocyst/metabolism , Gene Expression Regulation, Developmental/drug effects , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryo Culture Techniques/methods , Embryonic Development/drug effects , Embryonic Development/genetics , Oocytes/drug effects , Oocytes/metabolism , Female
17.
Reprod Domest Anim ; 59(5): e14620, 2024 May.
Article in English | MEDLINE | ID: mdl-38798166

ABSTRACT

This study examines the impact of oxygen tension and embryo kinetics on gene transcription dynamics in pathways crucial for embryonic preimplantation development, including lipid metabolism, carbohydrate transport and metabolism, mitochondrial function, stress response, apoptosis and transcription regulation. Bovine embryos were generated in vitro and allocated into two groups based on oxygen tension (20% or 5%) at 18 h post insemination (hpi). At 40 hpi, embryos were categorized into Fast (≥4 cells) or Slow (2 cells) groups, resulting in four experimental groups: FCL20, FCL5, SCL20 and SCL5. Embryo collection also occurred at 72 hpi (16-cell stage; groups FMO20, FMO5, SMO20 and SMO5) and at 168 hpi (expanded blastocyst (BL) stage; groups FBL20, FBL5, SBL20 and SBL5). Pools of three embryos per group were analysed in four replicates using inventoried TaqMan assays specific for Bos taurus, targeting 93 genes. Gene expression patterns were analysed using the K-means algorithm, revealing three main clusters: genes with low relative abundance at the cleavage (CL) and 16-cell morula (MO) stages but increased at the BL stage (cluster 1); genes with higher abundances at CL but decreasing at MO and BL (cluster 2); and genes with low levels at CL, higher levels at MO and decreased levels at BL (cluster 3). Within each cluster, genes related to epigenetic mechanisms, cell differentiation events and glucose metabolism were particularly influenced by differences in developmental kinetics and oxygen tension. Fast-developing embryos, particularly those cultured under low oxygen tension, exhibited transcript dynamics more closely resembling that reported in vivo-produced embryos.


Subject(s)
Blastocyst , Embryo Culture Techniques , Embryonic Development , Gene Expression Regulation, Developmental , Oxygen , Animals , Cattle/embryology , Oxygen/metabolism , Embryo Culture Techniques/veterinary , Blastocyst/metabolism , Transcription, Genetic , Fertilization in Vitro/veterinary , Female
18.
Biol Res ; 57(1): 35, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812008

ABSTRACT

BACKGROUND: Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities. RESULTS: In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-ß (TGFß) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCsNT and TSCsIVF). Compared with the TSCsIVF, TSCsNT showed distinct expression patterns suggesting unique TSCsNT characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability. CONCLUSION: This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.


Subject(s)
Blastocyst , Nuclear Transfer Techniques , Trophoblasts , Animals , Trophoblasts/metabolism , Swine , Cell Differentiation , Female , Stem Cells , Fertilization in Vitro/methods
19.
BMC Pregnancy Childbirth ; 24(1): 339, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702596

ABSTRACT

OBJECTIVE: This study aimed to compare the per OPU clinical outcomes for transfer of Day 3 double cleavage-stage embryos (DET) and Day 5 single blastocyst-stage (SBT) in patients with five or fewer good quality embryos on day 3 per occyte pick-up cycle (OPU) in antagonist cycles with consideration of blastocyst formation failure. METHODS: This was a retrospective, observational cohort study of 2,116 cases of OPU treated with antagonist protocol in the affiliated Chenggong Hospital of Xiamen University between January 2013 and December 2020. DET was performed in 1,811cycles and SBT was performed in 305 cycles. The DET group was matched to the SBT group by propensity score (PS) matching according to multiple maternal baseline covariates. After PS matching, there were 303 ET cycles in each group. The primary outcomes were the cumulative live birth rate (CLBR), cumulative multiple pregnancy rate(CMPR)per OPU and the number of ET to achieve live birth per OPU. Secondary outcomes were the percentage of clinical pregnancy(CPR), live birth rate(LBR), multiple pregnancy rate(MPR). RESULTS: Following PS mating, the CLBR was slightly higher (48.8% versus 40.3% ; P = 0.041) and the CMPR was significantly higher in the DET group compared to SBT group(44.2% versus 7.9%, P < 0.001). The CPR, LBR and MPR per fresh transfer were higher in DET group compared to SBT group(50.2% versus 28.7%; 41.3% versus 21.5%;29.6% versus 0%, P < 0.001). The number of ET to achieve live birth per OPU in SBT group was obiviously more than in DET group(1.48 ± 0.578 versus 1.22 ± 0.557 ,P < 0.001). CONCLUSION: With a marginal difference cumulative live birth rate, the lower live birth rate per fresh transfer and higher number of ET per OPU in the SBT group suggested that it might take longer time to achieve a live birth with single blastocyst strategy. A trade-off decision should be made between efficiency and safety.


Subject(s)
Cleavage Stage, Ovum , Embryo Transfer , Pregnancy Rate , Propensity Score , Humans , Retrospective Studies , Female , Pregnancy , Adult , Embryo Transfer/methods , Single Embryo Transfer/methods , Live Birth , Blastocyst , Ovulation Induction/methods
20.
Theriogenology ; 223: 74-88, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38692037

ABSTRACT

Mammalian embryos produced in vitro have poor embryo quality and low developmental ability compared with in vivo embryos. The main manifestations are the low number of blastocysts, the low ratio of the number of inner cell mass cells to the number of trophoblastic cells, and the high apoptosis rate of blastocysts, resulting in low embryo implantation rate. Therefore, optimizing in vitro culture conditions has become a key technology to im-prove the quality of preimplantation embryos. Oviduct Epithelial cells exosomes (OEVs) can be absorbed and internalized by embryos to improve the blastocyst rate and blastocyst quality of embryos in vitro. As a special nuclear structure, Paraspeckles are involved in the fate determination of mammalian early embryonic mammalian cells. However, the regulation of embryonic cell differentiation by OEVs remains unknown. We aimed to investigate the effects of OEVs on paraspeckle formation and cell fate determination in yak in vitro fertilization (IVF) of em-bryos. To simulate the in vivo oviduct environment after ovulation, we used follicular fluid exosomes (FEVs) to stimulate yak oviduct epithelial cells and collect OEVs. OEVs were added to the yak IVF embryo culture system. Paraspeckle formation, cell differentiation, and blastocyst quality in yak embryos were determined. Our results show that, development of yak embryos is unique compared to other bovine species, and OEVs can be used as a supplement to the in vitro culture system of yak embryos to improve embryonic development and blas-tocyst quality. And also Paraspeckles/CARM1 mediated the regulation of OEVs on cell differentiation during in vitro yak embryo production. These results provide new insights into the study of yak embryonic development and the role of OEVs in embryonic development.


Subject(s)
Cell Differentiation , Embryo Culture Techniques , Embryonic Development , Epithelial Cells , Exosomes , Animals , Female , Embryonic Development/physiology , Cattle/embryology , Epithelial Cells/physiology , Epithelial Cells/metabolism , Embryo Culture Techniques/veterinary , Exosomes/metabolism , Fertilization in Vitro/veterinary , Fallopian Tubes/cytology , Blastocyst/physiology , Oviducts
SELECTION OF CITATIONS
SEARCH DETAIL
...