Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.776
Filter
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 330-338, 2024 Apr 14.
Article in Chinese | MEDLINE | ID: mdl-38951059

ABSTRACT

Blood cell morphological examination is a crucial method for the diagnosis of blood diseases, but traditional manual microscopy is characterized by low efficiency and susceptibility to subjective biases. The application of artificial intelligence (AI) technology has improved the efficiency and quality of blood cell examinations and facilitated the standardization of test results. Currently, a variety of AI devices are either in clinical use or under research, with diverse technical requirements and configurations. The Experimental Diagnostic Study Group of the Hematology Branch of the Chinese Medical Association has organized a panel of experts to formulate this consensus. The consensus covers term definitions, scope of application, technical requirements, clinical application, data management, and information security. It emphasizes the importance of specimen preparation, image acquisition, image segmentation algorithms, and cell feature extraction and classification, and sets forth basic requirements for the cell recognition spectrum. Moreover, it provides detailed explanations regarding the fine classification of pathological cells, requirements for cell training and testing, quality control standards, and assistance in issuing diagnostic reports by humans. Additionally, the consensus underscores the significance of data management and information security to ensure the safety of patient information and the accuracy of data.


Subject(s)
Artificial Intelligence , Blood Cells , Consensus , Humans , Blood Cells/cytology , China , Algorithms
2.
Nature ; 631(8020): 281-283, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926555
3.
Methods Mol Biol ; 2796: 185-190, 2024.
Article in English | MEDLINE | ID: mdl-38856902

ABSTRACT

The potassium channels are one of the key regulators of cell membrane potential and permeability properties of blood cells. The changes in functioning of potassium channels control crucial cell processes such as proliferation, viability, migration, and invasion. The correct estimation of these processes is important for the characterization of physiological and pathophysiological cell states. Here, we present the experimental protocol for evaluation of the role of potassium ion channels in the proliferation, migration, and invasion of blood cells.


Subject(s)
Cell Movement , Cell Proliferation , Potassium Channels , Humans , Potassium Channels/metabolism , Blood Cells/metabolism , Blood Cells/cytology , Membrane Potentials
4.
J Nanobiotechnology ; 22(1): 363, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910248

ABSTRACT

Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.


Subject(s)
Blood Cells , Microscopy, Fluorescence , Animals , Humans , Blood Cells/ultrastructure , Blood Platelets/metabolism , Erythrocytes , Hematology/methods , Leukocytes/metabolism , Microscopy, Fluorescence/methods , Nanotechnology/methods
5.
Anat Histol Embryol ; 53(3): e13054, 2024 May.
Article in English | MEDLINE | ID: mdl-38735037

ABSTRACT

Identifying and analysing distinct blood cells is crucial for the diagnosis and treatment of diseases in the field of biomedicine. The present study was undertaken to study the cytomorphological and cytochemical characteristics of the blood cells of Zoar, a non-descript indigenous breed of chicken extensively reared under backyard poultry farming in Mizoram, India. For this study, 2 mL of blood samples were aseptically collected from the wings veins of 12 chickens and were processed for light microscopic study under standard protocols. The matured erythrocytes were elliptical, while the immature erythrocytes appeared oval. The heterophils were positive for SBB (SBB), Periodic Acid Schiff (PAS), acid phosphatase, alkaline phosphatase and Arylsulphatase while the eosinophils were positive for SBB, PAS, alkaline phosphatase, cytochrome oxidase and peroxidase. The basophils of were positive for toluidine blue while the thrombocytes were positive for PAS. These cytochemical and cytoenzymatic staining properties plays a very important role in diagnosis, differentiation, and classification of leukaemias.


Subject(s)
Chickens , Eosinophils , Erythrocytes , Animals , Chickens/anatomy & histology , India , Erythrocytes/cytology , Eosinophils/cytology , Blood Cells/cytology , Blood Platelets/cytology , Alkaline Phosphatase/blood , Basophils/cytology , Acid Phosphatase/blood , Electron Transport Complex IV/analysis
6.
Article in English | MEDLINE | ID: mdl-38782370

ABSTRACT

Current therapies for acute radiation syndrome (ARS) involve bone marrow transplantation (BMT), leading to graft-versus-host disease (GvHD). To address this challenge, we have developed a novel donor-recipient chimeric cell (DRCC) therapy to increase survival and prevent GvHD following total body irradiation (TBI)-induced hematopoietic injury without the need for immunosuppression. In this study, 20 Lewis rats were exposed to 7 Gy TBI to induce ARS, and we assessed the efficacy of various cellular therapies following systemic intraosseous administration. Twenty Lewis rats were randomly divided into four experimental groups (n = 5/group): saline control, allogeneic bone marrow transplantation (alloBMT), DRCC, and alloBMT + DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. Fusion feasibility was confirmed by flow cytometry and confocal microscopy. The impact of different therapies on post-irradiation peripheral blood cell recovery was evaluated through complete blood count, while GvHD signs were monitored clinically and histopathologically. The chimeric state of DRCC was confirmed. Post-alloBMT mortality was 60%, whereas DRCC and alloBMT + DRCC therapies achieved 100% survival. DRCC therapy also led to the highest white blood cell counts and minimal GvHD changes in kidney and skin samples, in contrast to alloBMT treatment. In this study, transplantation of DRCC promoted the recovery of peripheral blood cell populations after TBI without the development of GVHD. This study introduces a novel and promising DRCC-based bridging therapy for treating ARS and extending survival without GvHD.


Subject(s)
Acute Radiation Syndrome , Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Rats, Inbred Lew , Whole-Body Irradiation , Animals , Rats , Graft vs Host Disease/therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Bone Marrow Transplantation/methods , Acute Radiation Syndrome/therapy , Transplantation Chimera , Male , Transplantation, Homologous , Humans , Blood Cells
7.
J Vis Exp ; (205)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38558008

ABSTRACT

Induced pluripotent stem cell (iPSC)-based models are excellent platforms to understand blood development, and iPSC-derived blood cells have translational utility as clinical testing reagents and transfusable cell therapeutics. The advent and expansion of multiomics analysis, including but not limited to single nucleus RNA sequencing (snRNAseq) and Assay for Transposase-Accessible Chromatin sequencing (snATACseq), offers the potential to revolutionize our understanding of cell development. This includes developmental biology using in vitro hematopoietic models. However, it can be technically challenging to isolate intact nuclei from cultured or primary cells. Different cell types often require tailored nuclear preparations depending on cellular rigidity and content. These technical difficulties can limit data quality and act as a barrier to investigators interested in pursuing multiomics studies. Specimen cryopreservation is often necessary due to limitations with cell collection and/or processing, and frozen samples can present additional technical challenges for intact nuclear isolation. In this manuscript, we provide a detailed method to isolate high-quality nuclei from iPSC-derived cells at different stages of in vitro hematopoietic development for use in single-nucleus multiomics workflows. We have focused the method development on the isolation of nuclei from iPSC-derived adherent stromal/endothelial cells and non-adherent hematopoietic progenitor cells, as these represent very different cell types with regard to structural and cellular identity. The described troubleshooting steps limited nuclear clumping and debris, allowing the recovery of nuclei in sufficient quantity and quality for downstream analyses. Similar methods may be adapted to isolate nuclei from other cryopreserved cell types.


Subject(s)
Cell Nucleus , Endothelial Cells , Cell Nucleus/metabolism , Cryopreservation/methods , Hematopoietic Stem Cells , Blood Cells
8.
BMC Med Imaging ; 24(1): 83, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589793

ABSTRACT

The research focuses on the segmentation and classification of leukocytes, a crucial task in medical image analysis for diagnosing various diseases. The leukocyte dataset comprises four classes of images such as monocytes, lymphocytes, eosinophils, and neutrophils. Leukocyte segmentation is achieved through image processing techniques, including background subtraction, noise removal, and contouring. To get isolated leukocytes, background mask creation, Erythrocytes mask creation, and Leukocytes mask creation are performed on the blood cell images. Isolated leukocytes are then subjected to data augmentation including brightness and contrast adjustment, flipping, and random shearing, to improve the generalizability of the CNN model. A deep Convolutional Neural Network (CNN) model is employed on augmented dataset for effective feature extraction and classification. The deep CNN model consists of four convolutional blocks having eleven convolutional layers, eight batch normalization layers, eight Rectified Linear Unit (ReLU) layers, and four dropout layers to capture increasingly complex patterns. For this research, a publicly available dataset from Kaggle consisting of a total of 12,444 images of four types of leukocytes was used to conduct the experiments. Results showcase the robustness of the proposed framework, achieving impressive performance metrics with an accuracy of 97.98% and precision of 97.97%. These outcomes affirm the efficacy of the devised segmentation and classification approach in accurately identifying and categorizing leukocytes. The combination of advanced CNN architecture and meticulous pre-processing steps establishes a foundation for future developments in the field of medical image analysis.


Subject(s)
Deep Learning , Humans , Data Curation , Leukocytes , Neural Networks, Computer , Blood Cells , Image Processing, Computer-Assisted/methods
9.
Front Immunol ; 15: 1329820, 2024.
Article in English | MEDLINE | ID: mdl-38590526

ABSTRACT

The immune system of Asian elephants (Elephas maximus) is poorly studied, compared to that of livestock, rodents or humans. The innate immune response has become a focus of interest in relation to Elephant endotheliotropic herpesviruses (EEHVs). EEHVs cause a fatal hemorrhagic disease (EEHV-HD) and are a significant threat to captive Asian elephant populations worldwide. Similar to other herpesvirus infections, nearly all animals become infected, but only some develop disease. As progression to EEHV-HD is often acute, a robust innate immune response is crucial to control EEHV infections. This is invariably true of the host in the first instance, but it can also potentially be modulated by intervention strategies. Here, two immunostimulant veterinary medicinal products, authorized for use in domestic species, were tested for their ability to induce innate anti-viral immune responses in Asian elephant blood cells. Sequence data were obtained for a range of previously unidentified Asian elephant immune genes, including C-X-C motif chemokine ligand 10 (CXCL10), interferon stimulated gene 15 (ISG15) and myxovirus GTPase 1 (Mx1), and were employed in the design of species-specific qPCR assays. These assays were subsequently used in analyses to determine fold changes in gene expression over a period of 24 hours. This study demonstrates that both immunostimulant medications are capable of inducing significant innate anti-viral immune responses which suggests that both could be beneficial in controlling EEHV infections in Asian elephants.


Subject(s)
Elephants , Herpesviridae Infections , Herpesviridae , Humans , Animals , Sheep , Elephants/genetics , DNA, Bacterial , Blood Cells , Immunity, Innate , Plasmids , Immunization , Adjuvants, Immunologic , Gene Expression
10.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607015

ABSTRACT

Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.


Subject(s)
Drosophila Proteins , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Blood Cells/metabolism , Homeostasis , Serine/metabolism , Threonine/metabolism
11.
Environ Int ; 186: 108642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608384

ABSTRACT

Parkinson's disease (PD) is a complex neurodegenerative disorder influenced by genetic factors and environmental exposures. Polychlorinated biphenyls (PCBs), a group of synthetic organic compounds, have been identified as potential environmental risk factors for neurodegenerative diseases, including PD. We explored PCB-induced neurotoxicity mechanisms using iPSC-derived dopaminergic neurons and assessed their transcriptomic responses to varying PCB concentrations (0.01 µM, 0.5 µM, and 10 µM). Specifically, we focused on PCB-180, a congener known for its accumulation in human brains. The exposure durations were 24 h and 74 h, allowing us to capture both short-term and more prolonged effects on gene expression patterns. We observed that PCB exposure led to the suppression of oxidative phosphorylation, synaptic function, and neurotransmitter release, implicating these pathways in PCB-induced neurotoxicity. In our comparative analysis, we noted similarities in PCB-induced changes with other PD-related compounds like MPP+ and rotenone. Our findings also aligned with gene expression changes in human blood derived from a population exposed to PCBs, highlighting broader inflammatory responses. Additionally, molecular patterns seen in iPSC-derived neurons were confirmed in postmortem PD brain tissues, validating our in vitro results. In conclusion, our study offers novel insights into the multifaceted impacts of PCB-induced perturbations on various cellular contexts relevant to PD. The use of iPSC-derived dopaminergic neurons allowed us to decipher intricate transcriptomic alterations, bridging the gap between in vitro and in vivo findings. This work underscores the potential role of PCB exposure in neurodegenerative diseases like PD, emphasizing the need to consider both systemic and cell specific effects.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Polychlorinated Biphenyls , Transcriptome , Polychlorinated Biphenyls/toxicity , Dopaminergic Neurons/drug effects , Humans , Transcriptome/drug effects , Blood Cells/drug effects , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Environmental Pollutants/toxicity
12.
Front Public Health ; 12: 1336674, 2024.
Article in English | MEDLINE | ID: mdl-38590804

ABSTRACT

Background: Hyperuricemia is a common metabolic disorder linked to various health conditions. Its prevalence varies among populations and genders, and high-altitude environments may contribute to its development. Understanding the connection between blood cell parameters and hyperuricemia in high-altitude areas can shed light on the underlying mechanisms. This study aimed to investigate the relationship between blood cell parameters and hyperuricemia in high-altitude areas, with a particular focus on gender differences. Methods: We consecutively enrolled all eligible Tibetan participants aged 18-60 who were undergoing routine medical examinations at the People's Hospital of Chaya County between January and December 2022. During this period, demographic and laboratory data were collected to investigate the risk factors associated with hyperuricemia. Results: Among the participants, 46.09% were diagnosed with hyperuricemia. In the male cohort, significant correlations were found between serum uric acid (SUA) levels and red blood cell (RBC) count, creatinine (Cr). Urea, alanine transaminase (ALT), and albumin (ALB). Notably, RBC exhibited the strongest association. Conversely, in the female cohort, elevated SUA levels were associated with factors such as white blood cell (WBC) count. Urea, ALT, and ALB, with WBC demonstrating the most significant association. Further analysis within the female group revealed a compelling relationship between SUA levels and specific white blood cell subtypes, particularly neutrophils (Neu). Conclusion: This study revealed gender-specific associations between SUA levels and blood cell parameters in high-altitude areas. In males, RBC count may play a role in hyperuricemia, while in females, WBC count appears to be a significant factor. These findings contribute to our understanding of metabolic dynamics in high-altitude regions but require further research for comprehensive mechanistic insights.


Subject(s)
Hyperuricemia , Humans , Male , Female , Hyperuricemia/epidemiology , Altitude , Uric Acid , Blood Cells , Urea
13.
Acta Neurobiol Exp (Wars) ; 84(1): 70-79, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38587322

ABSTRACT

Hemorrhagic complications may be seen following reperfusion therapy with rtPA and/or thrombectomy after acute ischemic stroke (AIS). Neutrophils, lymphocytes, and platelets have important roles in the inflammatory and immune responses that develop in these patients. We investigated time­dependent changes in blood cells, NIHSS and mRS values according to type of reperfusion therapy in AIS patients who developed cerebral hemorrhage. In AIS patients who underwent rtPA and/or thrombectomy and developed cerebral hemorrhage within the first 24 hours after treatment, leukocyte, neutrophil, lymphocyte, platelet counts and their ratios were recorded on admission, 1st, 3rd, and 7th days. NIHSS values on admission, 3rd days and mRS values on admission, discharge, and the 3rd month were recorded. These values were compared according to the type of reperfusion therapy. Out of 436 AIS patients, rtPA was applied in 50.5%, thrombectomy in 28.2%, and rtPA+thrombectomy in 21.3%. Hemorrhage developed in 25.5% of the patients. Patients treated with thrombectomy had a greater rate of cerebral hemorrhage. Pre­stroke mRS values were lower in all therapy types than mRS scores at discharge and the 3rd month. The NIHSS scores did not differ significantly in 3 days. Depending on the type of reperfusion treatment, there are a few time­dependent significant changes observed in the blood cell counts and ratios. In conclusion, there is a relation between the type of reperfusion therapy and the time­dependent changes in blood cells and ratios as well as mRS scores among AIS patients who have undergone rtPA and/or thrombectomy and developed cerebral hemorrhage.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Ischemic Stroke/therapy , Treatment Outcome , Stroke/complications , Stroke/therapy , Cerebral Hemorrhage/complications , Blood Cells , Reperfusion/adverse effects , Brain Ischemia/complications
14.
BMC Med Genomics ; 17(1): 102, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654378

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is on the rise globally, and past research suggests a significant association with various blood cell components. Our goal is to explore the potential correlation between whole blood cell indices and NAFLD risk using Mendelian randomization (MR). METHODS: We analyzed data from 4,198 participants in the 2017-2018 National Health and Nutrition Examination Survey to investigate the link between blood cell indicators and NAFLD. Using various methods like weighted quantile sum and multivariate logistic regression, we assessed the association. Additionally, two-sample Mendelian randomization were employed to infer causality for 36 blood cell indicators and NAFLD. RESULTS: Multivariate logistic regression identified 10 NAFLD risk factors. Weighted quantile sum revealed a positive correlation (p = 6.03e-07) between total blood cell indices and NAFLD, with hemoglobin and lymphocyte counts as key contributors. Restricted cubic spline analysis found five indicators with significant nonlinear correlations to NAFLD. Mendelian randomization showed a notable association between reticulocyte counts and NAFLD using the inverse-variance weighted method. CONCLUSIONS: Hematological markers pose an independent NAFLD risk, with a positive causal link found for reticulocyte count. These results emphasize the importance of monitoring NAFLD and investigating specific underlying mechanisms further.


Subject(s)
Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/blood , Male , Risk Factors , Female , Middle Aged , Blood Cells/metabolism , Adult , Nutrition Surveys
15.
Aging Cell ; 23(5): e14112, 2024 05.
Article in English | MEDLINE | ID: mdl-38439206

ABSTRACT

Allogenic hematopoietic stem cell transplantation is a therapeutic procedure performed over a wide range of donor and recipient age combinations, representing natural experiments of how the age of the recipient affects aging in transplanted donor cells in vivo. We measured DNA methylation and epigenetic aging in donors and recipients and found that biological epigenetic clocks are accelerated in cells transplanted into an older body and decelerated in a younger body. This is the first evidence that the age of the circulating environment influences human epigenetic aging in vivo.


Subject(s)
Aging , Cellular Senescence , DNA Methylation , Epigenesis, Genetic , Humans , DNA Methylation/genetics , Cellular Senescence/genetics , Aging/genetics , Blood Cells/metabolism , Hematopoietic Stem Cell Transplantation/methods , Adult , Middle Aged , Male , Female
16.
An Acad Bras Cienc ; 96(1): e20230159, 2024.
Article in English | MEDLINE | ID: mdl-38451624

ABSTRACT

This study evaluated the median lethal concentration of silver nanoparticles and their effects in fish tambaqui Colossoma macropomum. Therefore, an acute toxicity assay was carried out in completely randomized design evaluating six different concentrations of silver nanoparticles on blood parameters of tambaqui. The silver nanoparticles were produced by chemical reduction with polyvinyl alcohol (AgNP-PVA). The lethal concentration 50% (LC50) was estimated using probit regression. The blood was collected, analyzed and the data were submitted to T-test (dying x surviving fish) and Tukey test (surviving fish). An increase in glucose, hematocrit, total plasma protein, hemoglobin, erythrocytes, leukocytes, monocytes, and neutrophils as well as reduced MCV (mean corpuscular volume) in dying fish compared to surviving fish were observed. Survived fish exposed to 187.5 µg/L showed an increase in hematocrit, MCV, and MCH and a reduction in erythrocytes, total numbers of leukocyte, thrombocyte, lymphocyte, and neutrophil. The fish exposed to concentrations below 125 µg/L, had returned the blood parameter to baselines compared to control. The estimated LC50 was 165.09 µg/L and was classified as highly toxic for the fish tambaqui. In higher concentrations, it causes an acute respiratory toxicity, but in concentrations below 125 µg/L, the fish can adapt to the stressing agent.


Subject(s)
Characiformes , Metal Nanoparticles , Animals , Silver/toxicity , Metal Nanoparticles/toxicity , Blood Cells , Erythrocytes
18.
Reprod Toxicol ; 125: 108581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552991

ABSTRACT

Maternal smoking during pregnancy increases oxidative stress and decreases antioxidant capacity in newborns. Uncontrolled oxidative stress plays a role in fetal development disorders and in adverse perinatal outcomes. In order to identify molecular pathways involved in low fetal growth, epigenetic modifications in newborns of smoking and non-smoking mothers were examined. Low birth weight newborns of mothers who smoked more than 10 cigarettes per day during the first trimester of pregnancy and normal birth weight newborns of mothers who did not smoke during pregnancy were included in the study. DNA was extracted from umbilical cord blood of term newborns. 125 differentially methylated regions were identified by MeDIP-Seq. Functional analysis revealed several pathways, such as ferroptosis, that were enriched in differentially methylated genes after prenatal smoke exposure. GPX4 and PCBP1 were found to be hypermethylated and associated with low fetal growth. These epigenetic modifications in ferroptosis pathway genes in newborns of smoking mothers can potentially contribute to intrauterine growth restriction through the induction of cell death via lipid peroxidation of cell membranes. The identification of epigenetic modifications in the ferroptosis pathway sheds light on the potential mechanisms underlying the pathophysiology of low birth weight in infants born to smoking mothers.


Subject(s)
Ferroptosis , Fetal Blood , Pregnancy , Female , Infant , Infant, Newborn , Humans , Birth Weight , Ferroptosis/genetics , Fetal Development , Blood Cells , Epigenesis, Genetic
19.
Blood Adv ; 8(10): 2410-2423, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38513139

ABSTRACT

ABSTRACT: The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 2 Subunit , Mutation , Promoter Regions, Genetic , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Cell Differentiation/genetics , Enhancer Elements, Genetic , Blood Cells/metabolism , Gene Regulatory Networks , Gene Expression Regulation
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 269-273, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387933

ABSTRACT

OBJECTIVE: To study the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow of patients with fever of unknown origin. METHODS: A total of 465 patients with fever of unknown origin in our hospital from January 2019 to December 2021 were selected as the research objects, which was to reviewed retrospectively the correlation between the number of hemophagocytes and peripheral blood cells in bone marrow. RESULTS: The positive rates of hemophagocytes detected in the three lines decreased group, the two lines decreased group, the one line decreased group, normal group of the three lines and at least one of the three lines increased group were 86.4%, 62.1%, 38.3%, 34.6% and 33.3%, respectively. The number of hemophagocytes per unit area in the three lines decreased group was significantly higher than that in the other four groups ( P < 0.001). The number of hemophagocytes per unit area in the two lines decreased group was higher than that in the one line decreased group, normal group of three lines and at least one of the three lines increased group ( P < 0.01). There was no significant difference in the number of hemophagocytes per unit area between the group with a decreased number of one line and the other two groups with a normal number of three lines and the group with at least one increased number of three lines (P >0.05). The missed rates of hemophagocytes in the five groups were 15.78%, 22.03%, 62.22%, 77.78% and 53.84%, respectively. CONCLUSION: For patients with fever of unknown origin, especially those with obvious decrease in the number of three lines and two lines in peripheral blood cells, which should pay attention to the detection of hemophagocytes in bone marrow. Meanwhile, if the number of three lines was normal even at least one of the three lines increased, the presence of hemophagocytes in the bone marrow slice should be also carefully observed.


Subject(s)
Bone Marrow , Fever of Unknown Origin , Humans , Retrospective Studies , Blood Cells , Bone Marrow Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...