Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.190
Filter
1.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607015

ABSTRACT

Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.


Subject(s)
Drosophila Proteins , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Blood Cells/metabolism , Homeostasis , Serine/metabolism , Threonine/metabolism
2.
BMC Med Genomics ; 17(1): 102, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654378

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is on the rise globally, and past research suggests a significant association with various blood cell components. Our goal is to explore the potential correlation between whole blood cell indices and NAFLD risk using Mendelian randomization (MR). METHODS: We analyzed data from 4,198 participants in the 2017-2018 National Health and Nutrition Examination Survey to investigate the link between blood cell indicators and NAFLD. Using various methods like weighted quantile sum and multivariate logistic regression, we assessed the association. Additionally, two-sample Mendelian randomization were employed to infer causality for 36 blood cell indicators and NAFLD. RESULTS: Multivariate logistic regression identified 10 NAFLD risk factors. Weighted quantile sum revealed a positive correlation (p = 6.03e-07) between total blood cell indices and NAFLD, with hemoglobin and lymphocyte counts as key contributors. Restricted cubic spline analysis found five indicators with significant nonlinear correlations to NAFLD. Mendelian randomization showed a notable association between reticulocyte counts and NAFLD using the inverse-variance weighted method. CONCLUSIONS: Hematological markers pose an independent NAFLD risk, with a positive causal link found for reticulocyte count. These results emphasize the importance of monitoring NAFLD and investigating specific underlying mechanisms further.


Subject(s)
Mendelian Randomization Analysis , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/blood , Male , Risk Factors , Female , Middle Aged , Blood Cells/metabolism , Adult , Nutrition Surveys
3.
Aging Cell ; 23(5): e14112, 2024 May.
Article in English | MEDLINE | ID: mdl-38439206

ABSTRACT

Allogenic hematopoietic stem cell transplantation is a therapeutic procedure performed over a wide range of donor and recipient age combinations, representing natural experiments of how the age of the recipient affects aging in transplanted donor cells in vivo. We measured DNA methylation and epigenetic aging in donors and recipients and found that biological epigenetic clocks are accelerated in cells transplanted into an older body and decelerated in a younger body. This is the first evidence that the age of the circulating environment influences human epigenetic aging in vivo.


Subject(s)
Aging , Cellular Senescence , DNA Methylation , Epigenesis, Genetic , Humans , DNA Methylation/genetics , Cellular Senescence/genetics , Aging/genetics , Blood Cells/metabolism , Hematopoietic Stem Cell Transplantation/methods , Adult , Middle Aged , Male , Female
4.
Blood Adv ; 8(10): 2410-2423, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38513139

ABSTRACT

ABSTRACT: The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 2 Subunit , Mutation , Promoter Regions, Genetic , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Cell Differentiation/genetics , Enhancer Elements, Genetic , Blood Cells/metabolism , Gene Regulatory Networks , Gene Expression Regulation
5.
Toxicol Ind Health ; 40(3): 125-133, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243157

ABSTRACT

Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.


Subject(s)
Flavanones , Metal Nanoparticles , Silver , Humans , Silver/toxicity , Metal Nanoparticles/toxicity , Reactive Oxygen Species/metabolism , Flavonoids , Blood Cells/metabolism , Caspases
6.
Clin Epigenetics ; 16(1): 4, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172913

ABSTRACT

BACKGROUND: Serotonin (5-hydroxytryptamine, 5-HT) signaling is involved in neurodevelopment, mood regulation, energy metabolism, and other physiological processes. DNA methylation plays a significant role in modulating the expression of genes responsible for maintaining 5-HT balance, such as 5-HT transporter (SLC6A4), monoamine oxidase A (MAOA), and 5-HT receptor type 2A (HTR2A). Maternal metabolic health can influence long-term outcomes in offspring, with DNA methylation mediating these effects. We investigated associations between maternal metabolic parameters-pre-pregnancy body mass index (pBMI), gestational weight gain (GWG), and glucose tolerance status (GTS), i.e., gestational diabetes mellitus (GDM) versus normal glucose tolerance (NGT)-and cord blood methylation of SLC6A4, MAOA, and HTR2A in participants from our PlaNS birth cohort. CpG sites (15, 9, and 2 in each gene, respectively) were selected based on literature and in silico data. Methylation levels were quantified by bisulfite pyrosequencing. We also examined the stability of methylation patterns in these genes in circulating blood cells from birth to adolescence using longitudinal DNA methylation data from the ARIES database. RESULTS: None of the 203 PlaNS mothers included in this study had preexisting diabetes, 99 were diagnosed with GDM, and 104 had NGT; all neonates were born at full term by planned Cesarean section. Methylation at most CpG sites differed between male and female newborns. SLC6A4 methylation correlated inversely with maternal pBMI and GWG, while methylation at HTR2A site -1665 correlated positively with GWG. None of the maternal metabolic parameters statistically associated with MAOA methylation. DNA methylation data in cord blood and peripheral blood at ages 7 and 15 years were available for 808 participants from the ARIES database; 4 CpG sites (2 in SLC6A4 and 2 in HTR2A) overlapped between the PlaNS and ARIES cohorts. A positive correlation between methylation levels in cord blood and peripheral blood at 7 and 15 years of age was observed for both SLC6A4 and HTR2A CpG sites. CONCLUSIONS: Methylation of 5-HT regulating genes in cord blood cells is influenced by neonatal sex, with maternal metabolism playing an additional role. Inter-individual variations present in circulating blood cells at birth are still pronounced in childhood and adolescence.


Subject(s)
DNA Methylation , Diabetes, Gestational , Humans , Male , Infant, Newborn , Pregnancy , Female , Adolescent , Serotonin/metabolism , Fetal Blood/metabolism , Cesarean Section , Diabetes, Gestational/genetics , Blood Cells/metabolism , Glucose/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism
7.
Int J Biol Macromol ; 258(Pt 1): 128809, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128801

ABSTRACT

Hyperproteinemia is a serious metabolic disease of both humans and animals characterized by an abnormally high plasma protein concentration (HPPC). Although hyperproteinemia can cause an imbalance in blood cell homeostasis, the functional changes to blood cells remain unclear. Here, a HPPC silkworm model was used to assess changes to the chromatin accessibility and transcript levels of genes related to blood cell metabolism and immune function. The results showed that HPPC enhanced phagocytosis of blood cells, increased chromatin accessibility and transcript levels of genes involved in cell phagocytosis, proliferation, stress, and programmed death, while genes associated with aromatic amino acid metabolism, and antibacterial peptide synthesis were inhibited in blood cells. Further analysis of the chromatin accessibility of the promoter region found that the high chromatin accessibility of genes sensitive to HPPC, was related to histone modifications, including tri-methylation of lysine residue 4 of histone H3 and acetylation of lysine residue 27 of histone H3. Changes to the chromatin accessibility and transcript levels of genes related to immune function and amino acid metabolism in the blood cells of the HPPC silkworm model provided useful references for future studies of the mechanisms underlying epigenomic regulation mediated by hyperproteinemia.


Subject(s)
Bombyx , Metabolic Diseases , Humans , Animals , Histones/metabolism , Bombyx/metabolism , Lysine/metabolism , Multiomics , Chromatin , Blood Proteins/metabolism , Blood Cells/metabolism , Acetylation
8.
Development ; 150(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37681301

ABSTRACT

Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Transcriptome/genetics , Cell Differentiation , Blood Cells/metabolism , Drosophila Proteins/metabolism , Hemocytes , Larva/metabolism
9.
PLoS One ; 18(8): e0289980, 2023.
Article in English | MEDLINE | ID: mdl-37566600

ABSTRACT

The bile salt-stimulated lipase (BSSL) was originally recognized as a lipolytic enzyme expressed by the exocrine pancreas and in some species, notably humans, the lactating mammary gland, being secreted into the duodenum and with the mother's milk, respectively. However, BSSL is also present in the blood and has been assigned additional functions, even beyond the gastrointestinal tract. Conventional BSSL knockout mice are protected from developing disease in animal models of arthritis, and antibodies directed towards BSSL prevent or mitigate disease in similar models. The aim of this study was to investigate the role of BSSL as a newly discovered player in inflammation and specifically in inflammatory joint disorders. As part of mechanism of action, we here show that BSSL is secreted by neutrophils, interacts with monocytes and stimulates their migration in vitro. An anti-BSSL antibody that blocks the human BSSL-monocyte interaction was shown to simultaneously prevent the signaling pathway by which BSSL induce cell migration. Moreover, in this cohort study we show that BSSL levels are significantly higher in blood samples from patients with rheumatoid arthritis and psoriatic arthritis compared to healthy controls. The BSSL levels in patients' blood also correlated with disease activity scores and established inflammatory markers. Hence, although the mode of action is not yet fully clarified, we conclude that BSSL could be considered a proinflammatory component in the innate immune system and thus a possible novel target for treatment of chronic inflammation.


Subject(s)
Lactation , Lipase , Animals , Female , Humans , Mice , Blood Cells/metabolism , Cohort Studies , Inflammation , Lipase/metabolism , Mice, Knockout , Milk, Human/metabolism
10.
Mol Metab ; 75: 101774, 2023 09.
Article in English | MEDLINE | ID: mdl-37429525

ABSTRACT

OBJECTIVES: Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS: Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS: In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS: We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Hepcidins , Humans , Female , Mice , Animals , Hepcidins/genetics , Hepcidins/metabolism , DNA Methylation , Diabetes Mellitus, Type 2/metabolism , Prospective Studies , Insulin/metabolism , Obesity/genetics , Biomarkers/metabolism , Blood Cells/metabolism
11.
Fluids Barriers CNS ; 20(1): 34, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170266

ABSTRACT

BACKGROUND: Transferrin receptor 1 (TfR1) mediated brain delivery of antibodies could become important for increasing the efficacy of emerging immunotherapies in Alzheimer's disease (AD). However, age, dose, binding to TfR1 on blood cells, and pathology could influence the TfR1-mediated transcytosis of TfR1-binders across the blood-brain barrier (BBB). The aim of the study was, therefore, to investigate the impact of these factors on the brain delivery of a bispecific TfR1-transported Aß-antibody, mAb3D6-scFv8D3, in comparison with the conventional antibody mAb3D6. METHODS: Young (3-5 months) and aged (17-20 months) WT and tg-ArcSwe mice (AD model) were injected with 125I-labeled mAb3D6-scFv8D3 or mAb3D6. Three different doses were used in the study, 0.05 mg/kg (low dose), 1 mg/kg (high dose), and 10 mg/kg (therapeutic dose), with equimolar doses for mAb3D6. The dose-corrected antibody concentrations in whole blood, blood cells, plasma, spleen, and brain were evaluated at 2 h post-administration. Furthermore, isolated brains were studied by autoradiography, nuclear track emulsion, and capillary depletion to investigate the intrabrain distribution of the antibodies, while binding to blood cells was studied in vitro using blood isolated from young and aged mice. RESULTS: The aged WT and tg-ArcSwe mice showed significantly lower brain concentrations of TfR-binding [125I]mAb3D6-scFv8D3 and higher concentrations in the blood cell fraction compared to young mice. For [125I]mAb3D6, no significant differences in blood or brain delivery were observed between young and aged mice or between genotypes. A low dose of [125I]mAb3D6-scFv8D3 was associated with increased relative parenchymal delivery, as well as increased blood cell distribution. Brain concentrations and relative parenchymal distribution of [125I]mAb3D6-scFv8D6 did not differ between tg-ArcSwe and WT mice at this early time point but were considerably increased compared to those observed for [125I]mAb3D6. CONCLUSION: Age-dependent differences in blood and brain concentrations were observed for the bispecific antibody mAb3D6-scFv8D3 but not for the conventional Aß antibody mAb3D6, indicating an age-related effect on TfR1-mediated brain delivery. The lowest dose of [125I]mAb3D6-scFv8D3 was associated with higher relative BBB penetration but, at the same time, a higher distribution to blood cells. Overall, Aß-pathology did not influence the early brain distribution of the bispecific antibody. In summary, age and bispecific antibody dose were important factors determining brain delivery, while genotype was not.


Subject(s)
Alzheimer Disease , Antibodies, Bispecific , Mice , Animals , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Brain/metabolism , Blood-Brain Barrier/metabolism , Alzheimer Disease/metabolism , Receptors, Transferrin/metabolism , Blood Cells/metabolism
12.
Cells ; 12(8)2023 04 09.
Article in English | MEDLINE | ID: mdl-37190028

ABSTRACT

This study aimed to assess the post-effort transcriptional changes of selected genes encoding receptors for chemokines and interleukins in young, physically active men to better understand the immunomodulatory effect of physical activity. The participants, aged 16-21 years, performed physical exercise tasks of either a maximal multistage 20 m shuttle-run test (beep test) or a repeated speed ability test. The expression of selected genes encoding receptors for chemokines and interleukins in nucleated peripheral blood cells was determined using RT-qPCR. Aerobic endurance activity was a positive stimulant that induced increased expression of CCR1 and CCR2 genes following lactate recovery, while the maximum expression of CCR5 was found immediately post-effort. The increase in the expression of inflammation-related genes encoding chemokine receptors triggered by aerobic effort strengthens the theory that physical effort induces sterile inflammation. Different profiles of studied chemokine receptor gene expression induced by short-term anaerobic effort suggest that not all types of physical effort activate the same immunological pathways. A significant increase in IL17RA gene expression after the beep test confirmed the hypothesis that cells expressing this receptor, including Th17 lymphocyte subsets, can be involved in the creation of an immune response after endurance efforts.


Subject(s)
Physical Exertion , Receptors, CCR2 , Male , Humans , Receptors, CCR5/genetics , Chemokines/metabolism , Blood Cells/metabolism , Receptors, Interleukin , Inflammation/genetics
13.
Cell Mol Life Sci ; 80(5): 131, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095391

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Epigenesis, Genetic , Chromatin , Genetic Predisposition to Disease , Neurodegenerative Diseases/genetics , Blood Cells/metabolism , Blood Cells/pathology
14.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902257

ABSTRACT

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer leaflet of eukaryotic plasma membranes (PMs) only by carboxy-terminal covalently coupled GPI. GPI-APs are known to be released from the surface of donor cells in response to insulin and antidiabetic sulfonylureas (SUs) by lipolytic cleavage of the GPI or upon metabolic derangement as full-length GPI-APs with the complete GPI attached. Full-length GPI-APs become removed from extracellular compartments by binding to serum proteins, such as GPI-specific phospholipase D (GPLD1), or insertion into the PMs of acceptor cells. Here, the interplay between the lipolytic release and intercellular transfer of GPI-APs and its potential functional impact was studied using transwell co-culture with human adipocytes as insulin-/SU-responsive donor cells and GPI-deficient erythroleukemia as acceptor cells (ELCs). Measurement of the transfer as the expression of full-length GPI-APs at the ELC PMs by their microfluidic chip-based sensing with GPI-binding α-toxin and GPI-APs antibodies and of the ELC anabolic state as glycogen synthesis upon incubation with insulin, SUs and serum yielded the following results: (i) Loss of GPI-APs from the PM upon termination of their transfer and decline of glycogen synthesis in ELCs, as well as prolongation of the PM expression of transferred GPI-APs upon inhibition of their endocytosis and upregulated glycogen synthesis follow similar time courses. (ii) Insulin and SUs inhibit both GPI-AP transfer and glycogen synthesis upregulation in a concentration-dependent fashion, with the efficacies of the SUs increasing with their blood glucose-lowering activity. (iii) Serum from rats eliminates insulin- and SU-inhibition of both GPI-APs' transfer and glycogen synthesis in a volume-dependent fashion, with the potency increasing with their metabolic derangement. (iv) In rat serum, full-length GPI-APs bind to proteins, among them (inhibited) GPLD1, with the efficacy increasing with the metabolic derangement. (v) GPI-APs are displaced from serum proteins by synthetic phosphoinositolglycans and then transferred to ELCs with accompanying stimulation of glycogen synthesis, each with efficacies increasing with their structural similarity to the GPI glycan core. Thus, both insulin and SUs either block or foster transfer when serum proteins are depleted of or loaded with full-length GPI-APs, respectively, i.e., in the normal or metabolically deranged state. The transfer of the anabolic state from somatic to blood cells over long distance and its "indirect" complex control by insulin, SUs and serum proteins support the (patho)physiological relevance of the intercellular transfer of GPI-APs.


Subject(s)
Adipocytes , Adipose Tissue , Blood Cells , Glycosylphosphatidylinositols , Hypoglycemic Agents , Insulin , Sulfonylurea Compounds , Animals , Humans , Rats , Blood Cells/metabolism , Glycogen/metabolism , Glycosylphosphatidylinositols/metabolism , Insulin/pharmacology , Sulfonylurea Compounds/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Protein Transport/drug effects , Hypoglycemic Agents/pharmacology , Adipocytes/drug effects , Coculture Techniques
15.
Commun Biol ; 6(1): 342, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997638

ABSTRACT

Genome-wide association studies (GWAS) successfully identified multiple sclerosis (MS) susceptibility variants. Despite this notable progress, understanding the biological context of these associations remains challenging, due in part to the complexity of linking GWAS results to causative genes and cell types. Here, we aimed to address this gap by integrating GWAS data with single-cell and bulk chromatin accessibility data and histone modification profiles from immune and nervous systems. MS-GWAS associations are significantly enriched in regulatory regions of microglia and peripheral immune cell subtypes, especially B cells and monocytes. Cell-specific polygenic risk scores were developed to examine the cumulative impact of the susceptibility genes on MS risk and clinical phenotypes, showing significant associations with risk and brain white matter volume. The findings reveal enrichment of GWAS signals in B cell and monocyte/microglial cell-types, consistent with the known pathology and presumed targets of effective MS therapeutics.


Subject(s)
B-Lymphocytes , Microglia , Monocytes , Multiple Sclerosis , Humans , B-Lymphocytes/metabolism , Blood Cells/metabolism , Chromatin , Enhancer Elements, Genetic , Epigenesis, Genetic , Genetic Predisposition to Disease , Genetic Risk Score , Genetic Variation , Microglia/metabolism , Monocytes/metabolism , Multiple Sclerosis/genetics , Single-Cell Gene Expression Analysis , Brain/cytology , UK Biobank
16.
Article in English | MEDLINE | ID: mdl-35642119

ABSTRACT

AIM: This study aimed to assess the role of Tight junction proteins (TJPs) and claudins in smokers with and without COPD compared to healthy individuals. BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disease, including various inflammatory mediators. The prime etiological element in the development of COPD is cigarette smoking. The lung airway epithelium comprises beneficial immunological barriers to draw in insults, such as environmental particulates, cigarette smoke, etc. Tight junctions (TJ) connected by transmembrane proteins determine epithelial permeability. Cigarette smoke is indicated to defect TJ integrity. The possible involvement of the airway epithelium in the pathogenesis of COPD has recently become apparent; however, its detailed mechanisms remain elusive. The integrity of airway epithelium is crucial for airway homeostasis; defective airway barrier activity contributes to COPD. OBJECTIVE: In the present study, the objective was to investigate mRNA expression levels of TJP's like TJP-1, TJP-2, TJP-3, Tight junction-associated proteins-1, claudin-1, claudin-3, claudin-4, claudin-7, claudin-10, claudin-15, claudin-19, and claudin-25 from blood samples of smokers with COPD and compared them with smokers without COPD and healthy individuals. METHODS: The mRNA expressions were evaluated by the quantitative PCR method. RESULTS: The gene expressions of these TJPs were significantly down-regulated, specifically in COPD patients with a history of smoking (Smokers with COPD). Besides, FEV% was also established for these patients. Similarly, smokers with COPD showed a significant increase in the expression levels of transcription factors, like ZEB-1, ZEB-2, PDGFA, and HDGF, compared to COPD patients without a history of smoking (smokers without COPD) and the healthy subjects. CONCLUSION: In conclusion, cigarette smoke disrupts TJ of the human airway epithelium, and the transcriptional factors counteract this smoke-induced COPD. Thus, TJPs may serve as protective elements for airway epithelial homeostasis during COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Tight Junction Proteins , Humans , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Smokers , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Claudins/genetics , Claudins/metabolism , Nicotiana , Blood Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Immunology ; 168(3): 459-472, 2023 03.
Article in English | MEDLINE | ID: mdl-36175368

ABSTRACT

Interleukin-1 alpha (IL-1α) is a powerful cytokine that drives inflammation and modulates adaptive immunity. Due to these powerful effects, IL-1α is controlled at multiple levels from transcription to cleavage and release from the cell. Genome-wide association studies can identify loci that drive important diseases, although often the functional effect of the variant on phenotype remains unknown or small, with most risk variants in non-coding regions. We find that the common variant rs17561 changes a conserved amino acid in the central region of IL-1α linking the pro piece to the cytokine domain. Using a recall-by-genotype study and whole blood stimulation, we find that minor allele homozygotes release ~50% less IL-1α than the major allele, with IL-1ß release equivalent. IL-1α transcript level was identical between groups, implying a post-transcriptional effect, whilst cleavage of recombinant pro-IL-1α by multiple proteases was also equivalent for both forms. Importantly, transfected macrophages also release less minor allele IL-1α upon inflammasome activation, revealing that reduced secretion is directly caused by the missense amino acid substitution and more minor allele IL-1α was retained within the cell. Thus, rs17561 represents a very common hypomorphic mutation in IL-1α. We believe this novel data will be important for determining the potential contribution of IL-1α to disease and/or physiological processes, for example, by Mendelian randomisation, and may aid patient stratification when considering anti-IL-1 therapies.


Subject(s)
Interleukin-1alpha , Polymorphism, Single Nucleotide , Humans , Interleukin-1alpha/metabolism , Genome-Wide Association Study , Interleukin-1beta , Inflammation/metabolism , Blood Cells/metabolism
18.
Sci Rep ; 12(1): 18656, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333382

ABSTRACT

Advanced computational methods exploit gene expression and epigenetic datasets to predict gene regulatory networks controlled by transcription factors (TFs). These methods have identified cell fate determining TFs but require large amounts of reference data and experimental expertise. Here, we present an easy to use network-based computational framework that exploits enhancers defined by bidirectional transcription, using as sole input CAGE sequencing data to correctly predict TFs key to various human cell types. Next, we applied this Analysis Algorithm for Networks Specified by Enhancers based on CAGE (ANANSE-CAGE) to predict TFs driving red and white blood cell development, and THP-1 leukemia cell immortalization. Further, we predicted TFs that are differentially important to either cell line- or primary- associated MLL-AF9-driven gene programs, and in primary MLL-AF9 acute leukemia. Our approach identified experimentally validated as well as thus far unexplored TFs in these processes. ANANSE-CAGE will be useful to identify transcription factors that are key to any cell fate change using only CAGE-seq data as input.


Subject(s)
Gene Regulatory Networks , Leukemia, Myeloid, Acute , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/genetics , Algorithms , Blood Cells/metabolism , Computational Biology
19.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361528

ABSTRACT

Aberrations in blood cells are common among heavy alcohol drinkers. In order to shed further light on such responses, we compared blood cell status with markers of hemolysis, mediators of inflammation and immune responses to ethanol metabolites in alcohol-dependent patients at the time of admission for detoxification and after abstinence. Blood cell counts, indices of hemolysis (LDH, haptoglobin, bilirubin), calprotectin (a marker of neutrophil activation), suPAR, CD163, pro- and anti-inflammatory cytokines and autoantibodies against protein adducts with acetaldehyde, the first metabolite of ethanol, were measured from alcohol-dependent patients (73 men, 26 women, mean age 43.8 ± 10.4 years) at baseline and after 8 ± 1 days of abstinence. The assessments also included information on the quantities of alcohol drinking and assays for biomarkers of alcohol consumption (CDT), liver function (AST, ALT, ALP, GGT) and acute phase reactants of inflammation. At baseline, the patients showed elevated values of CDT and biomarkers of liver status, which decreased significantly during abstinence. A significant decrease also occurred in LDH, bilirubin, CD163 and IgA and IgM antibodies against acetaldehyde adducts, whereas a significant increase was noted in blood leukocytes, platelets, MCV and suPAR levels. The changes in blood leukocytes correlated with those in serum calprotectin (p < 0.001), haptoglobin (p < 0.001), IL-6 (p < 0.02) and suPAR (p < 0.02). The changes in MCV correlated with those in LDH (p < 0.02), MCH (p < 0.01), bilirubin (p < 0.001) and anti-adduct IgG (p < 0.01). The data indicates that ethanol-induced changes in blood leukocytes are related with acute phase reactants of inflammation and release of neutrophil calprotectin. The studies also highlight the role of hemolysis and immune responses to ethanol metabolites underlying erythrocyte abnormalities in alcohol abusers.


Subject(s)
Alcoholism , Male , Humans , Female , Adult , Middle Aged , Hemolysis , Acute-Phase Proteins/metabolism , Haptoglobins/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Alcohol Drinking , Acetaldehyde , Ethanol/metabolism , Erythrocyte Indices , Biomarkers , Blood Cells/metabolism , Inflammation , Immunity , Leukocyte L1 Antigen Complex , Bilirubin/metabolism , Transferrin/metabolism
20.
Environ Health ; 21(1): 102, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36289513

ABSTRACT

BACKGROUND: Ingestion of fluoride in drinking water has been shown to result in increased cellular markers of inflammation in rodent models. However, the approximately 5-10 × increase in water fluoride concentrations required in rat and mouse models to obtain plasma fluoride concentrations similar to those found in humans has made relevant comparisons of animal to human studies difficult to assess. As an increased white blood cell count (WBC) is a marker of inflammation in humans, we used available NHANES survey data to assess the associations between plasma fluoride levels in the U.S. and blood cell counts children and adolescents.   METHODS: Multiple linear regressions were done to determine the association of blood cell counts and plasma fluoride in publicly available NHANES survey data from the 2013-2014 and 2015-2016 cycles. Plasma fluoride concentration measurements were available only for children aged 6 to 19, inclusive, and therefore this subpopulation was used for all analyses. Covariate predictors along with plasma fluoride were age, ethnicity, gender, and Body Mass Index (BMI).  RESULTS: Plasma fluoride was significantly positively associated with water fluoride, total WBC count, segmented neutrophils, and monocytes, and negatively associated with red blood cell count when adjusted for age, gender and BMI. CONCLUSION: Our finding that neutrophils and monocytes are associated with higher plasma fluoride in U.S. children and adolescents is consistent with animal data showing fluoride related effects of increased inflammation. These findings suggest the importance of further studies to assess potential mechanisms that are involved in absorption and filtration of ingested fluoride, particularly in tissues and organs such as the small intestine, liver and kidney.


Subject(s)
Drinking Water , Fluorides , Child , Mice , United States/epidemiology , Adolescent , Humans , Rats , Animals , Fluorides/analysis , Nutrition Surveys , Drinking Water/analysis , Inflammation/chemically induced , Inflammation/epidemiology , Leukocyte Count , Blood Cells/chemistry , Blood Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...