Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.038
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 617-626, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708493

ABSTRACT

OBJECTIVE: To investigate immunogenic and toxic effects of graphene oxide (GO) nanoparticles in mouse skeletal muscles and in human blood in vitro. METHODS: GO nanoparticles prepared using a probe sonicator were supended in deionized H2O or PBS, and particle size and surface charge of the nanoparticles were measured with dynamic light scattering (DLS). Different concentrations (0.5, 1.0 and 2.0 mg/mL) of GO suspension or PBS were injected at multiple sites in the gastrocnemius muscle (GN) of C57BL/6 mice, and inflammatory response and immune cell infiltrations were detected with HE and immunofluorescence staining. We also examined the effects of GO nanoparticles on human red blood cell (RBC) morphology, hemolysis and blood coagulation using scanning electron microscope (SEM), spectrophotometry, and thromboelastography (TEG). RESULTS: GO nanoparticles suspended in PBS exhibited better colloidal dispersity, stability and surface charge effects than those in deionized H2O. In mouse GNs, injection of GO suspensions dose- and time-dependently resulted in sustained muscular inflammation and myofiber degeneration at the injection sites, which lasted till 8 weeks after the injection; immunofluorescence staining revealed obvious infiltration of monocytes, macrophages, dendritic cells and CD4+ T cells around the injection sites in mouse GNs. In human RBCs, incubation with GO suspensions at 0.2, 2.0 and 20 mg/mL, but not at 0.002 or 0.02 mg/mL, caused significant alterations of cell morphology and hemolysis. TEG analysis showed significant abnormalities of blood coagulation parameters following treatment with high concentrations of GO. CONCLUSION: GO nanoparticles can induce sustained inflammatory and immunological responses in mouse GNs and cause RBC hemolysis and blood coagulation impairment, suggesting its muscular toxicity and hematotoxicity at high concentrations.


Subject(s)
Erythrocytes , Graphite , Hemolysis , Mice, Inbred C57BL , Muscle, Skeletal , Nanoparticles , Animals , Graphite/toxicity , Graphite/chemistry , Mice , Erythrocytes/drug effects , Humans , Muscle, Skeletal/drug effects , Hemolysis/drug effects , Particle Size , Blood Coagulation/drug effects
2.
Clin Appl Thromb Hemost ; 30: 10760296241252838, 2024.
Article in English | MEDLINE | ID: mdl-38711321

ABSTRACT

In unfractionated heparin (UFH) monitoring during extracorporeal circulation, the traditional measures of activated clotting time (ACT) or activated partial thromboplastin time (APTT) may diverge, confounding anticoagulant adjustments. We aimed to explore the factors explaining this discrepancy in children and young adults. This retrospective observational study, conducted at an urban regional tertiary hospital, included consecutive pediatric patients who received UFH during extracorporeal circulation (continuous kidney replacement therapy or extracorporeal membrane oxygenation) between April 2017 and March 2021. After patients whose ACT and APTT were not measured simultaneously or who were also taking other anticoagulants were excluded, we analyzed 94 samples from 23 patients. To explain the discrepancy between ACT and APTT, regression equations were created using a generalized linear model (family = gamma, link = logarithmic) with ACT as the response variable. Other explanatory variables included age, platelet count, and antithrombin. Compared to APTT alone as an explanatory variable, the Akaike information criterion and pseudo-coefficient of determination improved from 855 to 625 and from 0.01 to 0.42, respectively, when these explanatory variables were used. In conclusion, we identified several factors that may explain some of the discrepancy between ACT and APTT in the routinely measured tests. Evaluation of these factors may aid in appropriate adjustments in anticoagulation therapy.


Subject(s)
Extracorporeal Circulation , Heparin , Humans , Heparin/pharmacology , Heparin/therapeutic use , Female , Male , Child , Retrospective Studies , Extracorporeal Circulation/methods , Adolescent , Partial Thromboplastin Time/methods , Child, Preschool , Young Adult , Adult , Infant , Anticoagulants/therapeutic use , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Whole Blood Coagulation Time/methods
3.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731503

ABSTRACT

This current article was dedicated to the determination of the composition of phenolic compounds in extracts of four species of the genus Filipendula in order to establish a connection between the composition of polyphenols and biological effects. A chemical analysis revealed that the composition of the extracts studied depended both on the plant species and its part (leaf or flower) and on the extractant used. All four species of Filipendula were rich sources of phenolic compounds and contained hydrolyzable tannins, condensed tannins, phenolic acids and their derivatives, and flavonoids. The activities included data on those that are most important for creating functional foods with Filipendula plant components: the influence on blood coagulation measured by prothrombin and activated partial thromboplastin time, and on the activity of the digestive enzymes (pancreatic amylase and lipase). It was established that plant species, their parts, and extraction methods contribute meaningfully to biological activity. The most prominent result is as follows: the plant organ determines the selective inhibition of either amylase or lipase; thus, the anticoagulant activities of F. camtschatica and F. stepposa hold promise for health-promoting food formulations associated with general metabolic disorders.


Subject(s)
Phenols , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/analysis , Phenols/pharmacology , Lipase/antagonists & inhibitors , Lipase/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Amylases/antagonists & inhibitors , Amylases/metabolism , Blood Coagulation/drug effects , Humans , Anticoagulants/pharmacology , Anticoagulants/chemistry , Plant Leaves/chemistry
4.
Sci Rep ; 14(1): 10997, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744855

ABSTRACT

Intravenous application of tranexamic acid (TXA) in posterior lumbar interbody fusion (PLIF) can effectively reduce blood loss without affecting coagulation function. However, it has not been reported whether preoperative use of anticoagulants may affect the efficacy of TXA in PLIF. The purpose of this study is to observe the effect of preoperative use of anticoagulants on coagulation indicators and blood loss after PLIF receiving intravenous unit dose TXA. A retrospective analysis was conducted on data from 53 patients with PLIF between 2020.11 and 2022.9, who received intravenous application of a unit dose of TXA (1 g/100 mL) 15 min before the skin incision after general anesthesia. Those who used anticoagulants within one week before surgery were recorded as the observation group, while those who did not use anticoagulants were recorded as the control group. The main observation indicators include surgical time, intraoperative blood loss, postoperative drainage volume, blood transfusion, and red blood cell (RBC), hemoglobin (HB), and hematocrit (HCT) measured on the 1st, 4th, 7th, and last-test postoperative days. Secondary observation indicators included postoperative incision healing, deep vein thrombosis of lower limbs, postoperative hospital stay, and activated partial thrombin time (APTT), prothrombin time (PT), thrombin time (TT), fibrinogen (FIB), and platelets (PLT) on the 1st and 4th days after surgery. The operation was successfully completed in both groups, the incision healed well after operation, and no lower limb deep vein thrombosis occurred. There was no significant difference in surgical time, intraoperative blood loss, postoperative drainage volume, and blood transfusion between the two groups (p > 0.05). There was no significant difference in the RBC, HB, and HCT measured on the 1st, 4th, 7th, and last-test postoperative days between the two groups (p > 0.05). There was no statistically significant difference in APTT, PT, TT, FIB and PLT between the two groups on the 1st and 4th postoperative days (p > 0.05). There was no significant difference in postoperative hospital stay between the two groups (p > 0.05). The use of anticoagulants within one week before surgery does not affect the hemostatic effect of intravenous unit dose TXA in PLIF.


Subject(s)
Anticoagulants , Blood Loss, Surgical , Tranexamic Acid , Humans , Tranexamic Acid/administration & dosage , Tranexamic Acid/therapeutic use , Female , Male , Middle Aged , Retrospective Studies , Case-Control Studies , Anticoagulants/administration & dosage , Anticoagulants/therapeutic use , Anticoagulants/pharmacology , Blood Loss, Surgical/prevention & control , Aged , Administration, Intravenous , Spinal Fusion/methods , Preoperative Care/methods , Antifibrinolytic Agents/administration & dosage , Antifibrinolytic Agents/therapeutic use , Blood Coagulation/drug effects
5.
Carbohydr Polym ; 338: 122148, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763731

ABSTRACT

Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.


Subject(s)
Alginates , Gels , Hemostasis , Hemostatics , Alginates/chemistry , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Hemostasis/drug effects , Gels/chemistry , Porosity , Hemorrhage/drug therapy , Blood Coagulation/drug effects , Mice , Male , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
6.
Methodist Debakey Cardiovasc J ; 20(3): 27-35, 2024.
Article in English | MEDLINE | ID: mdl-38765210

ABSTRACT

Pulmonary embolus (PE) carries a significant impending morbidity and mortality, especially in intermediate and high-risk patients, and the choice of initial anticoagulation that allows for therapeutic adjustment or manipulation is important. The preferred choice of anticoagulation management includes direct oral anticoagulants. Vitamin K antagonists and low-molecular-weight heparin are preferred in special populations or selected patients such as breastfeeding mothers, those with end-stage renal disease, or obese patients, among others. This article reviews the primary and longer-term considerations for anticoagulation management in patients with PE and highlights special patient populations and risk factor considerations.


Subject(s)
Anticoagulants , Pulmonary Embolism , Humans , Pulmonary Embolism/drug therapy , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Risk Factors , Treatment Outcome , Blood Coagulation/drug effects , Administration, Oral , Risk Assessment , Hemorrhage/chemically induced , Vitamin K/antagonists & inhibitors , Clinical Decision-Making
7.
Nat Commun ; 15(1): 3977, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730234

ABSTRACT

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Subject(s)
Aptamers, Nucleotide , Catalytic Domain , Hirudins , Thrombin , Humans , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Thrombin/chemistry , Hirudins/chemistry , Hirudins/pharmacology , Anticoagulants/pharmacology , Anticoagulants/chemistry , Factor Xa/metabolism , Factor Xa/chemistry , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/pharmacology , Animals , Binding Sites , Blood Coagulation/drug effects
8.
Exp Clin Transplant ; 22(4): 284-293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742319

ABSTRACT

OBJECTIVES: Splenectomy during liver transplant can affect platelet function. In this study, our primary aim was to assess the perioperative platelet function by rotational thromboelastometry and the effects of splenectomy on platelet function. MATERIALS AND METHODS: We studied 40 consecutive liver transplant recipients with end-stage liver disease (50% as a result of hepatitis C). Patients with splenectomy were compared with patients without splenectomy (n = 20/group). Three platelet function parameters by rotational thromboelastometry were studied: platelet activation with arachidonic acid, platelet activation with adenosine diphosphate, and platelet activation with thrombin receptor-activating peptide 6. Patients were monitored perioperatively and until postoperative day 21. Heparin was infused for 2 days postoperatively (60-180 U/kg/day), followed by administration of subcutaneous low-molecular-weight heparin (40 mg/24 h) on postoperative days 2 and 3 and oral acetylsalicylic acid when platelet count was >50 × 103/µL. RESULTS: Liver disease contributed to low perioperative platelet count and function. Patients showed significant improvement by postoperative day 14 and day 21, particularly after splenectomy. Platelet count was significantly correlated with the 3 platelet function parameters by rotational thromboelastometry (P < .001). Acetyl salicylic acid was required earlier (postoperative day 3) for patients with splenectomy (8/20) but only affected the platelet function represented by platelet activation with arachidonic acid, whereas other platelet activation pathways were less affected. Patients received no transfusions of platelet units. CONCLUSIONS: End-stage liver disease significantly contributed to low platelet function and counts before transplant. Two weeks were required for recovery of patients posttransplant, with further enhancement by splenectomy. Some recipients showed recovery that exceeded the normal reference range, which warranted monitoring. Acetyl salicylic acid only affected 1 platelet activation receptor.


Subject(s)
Blood Coagulation , Blood Platelets , End Stage Liver Disease , Liver Transplantation , Predictive Value of Tests , Splenectomy , Thrombelastography , Humans , Liver Transplantation/adverse effects , Male , Female , Middle Aged , Splenectomy/adverse effects , Treatment Outcome , Blood Coagulation/drug effects , Adult , End Stage Liver Disease/surgery , End Stage Liver Disease/diagnosis , End Stage Liver Disease/blood , Time Factors , Blood Platelets/drug effects , Platelet Activation/drug effects , Platelet Function Tests , Platelet Aggregation Inhibitors/administration & dosage , Anticoagulants/administration & dosage , Platelet Count , Blood Coagulation Tests , Aspirin/administration & dosage , Prospective Studies
9.
PLoS One ; 19(5): e0304398, 2024.
Article in English | MEDLINE | ID: mdl-38814913

ABSTRACT

OBJECTIVE: Minimally invasive surgery for spontaneous intracerebral hemorrhage is impeded by inadequate lysis of the target blood clot. Ultrasound is thought to expedite intravascular thrombolysis, thereby facilitating vascular recanalization. However, the impact of ultrasound on intracerebral blood clot lysis remains uncertain. This study aimed to explore the feasibility of combining ultrasound with urokinase to enhance blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage. METHODS: The blood clots were divided into four groups: control group, ultrasound group, urokinase group, and ultrasound + urokinase group. Using our experimental setup, which included a key-shaped bone window, we simulated a minimally invasive puncture and drainage procedure for spontaneous intracerebral hemorrhage. The blood clot was then irradiated using ultrasound. Blood clot lysis was assessed by weighing the blood clot before and after the experiment. Potential adverse effects were evaluated by measuring the temperature variation around the blood clot in the ultrasound + urokinase group. RESULTS: A total of 40 blood clots were observed, with 10 in each experimental group. The blood clot lysis rate in the ultrasound group, urokinase group, and ultrasound + urokinase group (24.83 ± 4.67%, 47.85 ± 7.09%, 61.13 ± 4.06%) was significantly higher than that in the control group (16.11 ± 3.42%) (p = 0.02, p < 0.001, p < 0.001). The blood clot lysis rate in the ultrasound + urokinase group (61.13 ± 4.06%) was significantly higher than that in the ultrasound group (24.83 ± 4.67%) (p < 0.001) or urokinase group (47.85 ± 7.09%) (p < 0.001). In the ultrasound + urokinase group, the mean increase in temperature around the blood clot was 0.26 ± 0.15°C, with a maximum increase of 0.38 ± 0.09°C. There was no significant difference in the increase in temperature regarding the main effect of time interval (F = 0.705, p = 0.620), the main effect of distance (F = 0.788, p = 0.563), or the multiplication interaction between time interval and distance (F = 1.100, p = 0.342). CONCLUSIONS: Our study provides evidence supporting the enhancement of blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage through the combined use of ultrasound and urokinase. Further animal experiments are necessary to validate the experimental methods and results.


Subject(s)
Cerebral Hemorrhage , Urokinase-Type Plasminogen Activator , Urokinase-Type Plasminogen Activator/pharmacology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/therapy , Ultrasonic Therapy/methods , Humans , Thrombosis , Animals , Thrombolytic Therapy/methods , Fibrinolysis/drug effects , Blood Coagulation/drug effects
10.
Clin Cardiol ; 47(5): e24273, 2024 May.
Article in English | MEDLINE | ID: mdl-38693831

ABSTRACT

BACKGROUND: The use of extracorporeal membrane oxygenation (ECMO) is associated with complex hemostatic changes. Systemic anticoagulation is initiated to prevent clotting in the ECMO system, but this comes with an increased risk of bleeding. Evidence on the use of anti-Xa-guided monitoring to prevent bleeding during ECMO support is limited. Therefore, we aimed to analyze the association between anti-factor Xa-guided anticoagulation and hemorrhage during ECMO. METHODS: A systematic review and meta-analysis was performed (up to August 2023). PROSPERO: CRD42023448888. RESULTS: Twenty-six studies comprising 2293 patients were included in the analysis, with six works being part of the meta-analysis. The mean anti-Xa values did not show a significant difference between patients with and without hemorrhage (standardized mean difference -0.05; 95% confidence interval [CI]: -0.19; 0.28, p = .69). We found a positive correlation between anti-Xa levels and unfractionated heparin dose (UFH; pooled estimate of correlation coefficients 0.44; 95% CI: 0.33; 0.55, p < .001). The most frequent complications were any type of hemorrhage (pooled 36%) and thrombosis (33%). Nearly half of the critically ill patients did not survive to hospital discharge (47%). CONCLUSIONS: The most appropriate tool for anticoagulation monitoring in ECMO patients is uncertain. Our analysis did not reveal a significant difference in anti-Xa levels in patients with and without hemorrhagic events. However, we found a moderate correlation between anti-Xa and the UFH dose, supporting its utilization in monitoring UFH anticoagulation. Given the limitations of time-guided monitoring methods, the role of anti-Xa is promising and further research is warranted.


Subject(s)
Anticoagulants , Extracorporeal Membrane Oxygenation , Factor Xa Inhibitors , Hemorrhage , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Hemorrhage/chemically induced , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/adverse effects , Anticoagulants/adverse effects , Blood Coagulation/drug effects , Factor Xa/metabolism , Risk Factors
11.
Thromb Res ; 238: 97-102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701723

ABSTRACT

INTRODUCTION: The association between estrogen and hypercoagulability is well-established but little is known about coagulation dynamics during IVF. Our goal was to measure coagulation potential prior to, during, and following an IVF cycle and to investigate differences by conception outcome. MATERIALS AND METHODS: Patients undergoing IVF with fresh embryo transfer at a single academic center using oral contraceptive pills for cycle batching underwent evaluation of thrombin generation using the calibrated automated thrombogram at multiple points during the IVF cycle. Multiple thrombin generation parameters were compared across timepoints and by IVF cycle outcome using ANOVA repeated measures analysis. RESULTS: Of the 17 patients included, 11 conceived. There was a significant increase in peak and total thrombin generation in the entire cohort between the pre-treatment natural follicular phase and following a short course of oral contraceptive pills used for cycle batching. Further increase in these parameters was seen at the time of oocyte retrieval. In the pre-treatment natural follicular phase, patients who conceived had lower peak thrombin generation. There were changes throughout the cycle for factors II, V, VIII, X, XI, XII, antithrombin, and tissue factor pathway inhibitor. Only Factor XI was distinguishable by conception status; values were lower at all visits in patients who conceived. CONCLUSION: Increases in coagulation potential are seen in patients undergoing IVF following a short course of oral contraceptive pills for cycle batching and continue during controlled ovarian hyperstimulation. Those who conceived were seen to have lower peak thrombin generation in the pre-treatment natural follicular phase.


Subject(s)
Blood Coagulation , Fertilization in Vitro , Humans , Fertilization in Vitro/methods , Female , Adult , Blood Coagulation/drug effects , Longitudinal Studies , Thrombin/metabolism , Blood Coagulation Tests/methods
12.
Thromb Res ; 238: 172-183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723522

ABSTRACT

INTRODUCTION: Cancer cells induce hypercoagulability in the tumoral microenvironment by expressing Tissue Factor (TF). We aimed to study the impact of the procoagulant signature of cancer cells on the quality and structure of fibrin network. We also studied the impact of fibrin clot shield (FCS) on the efficiency of anticancer agents and the migration of cancer cells. MATERIALS AND METHODS: Pancreatic cancer cells BXPC3 and breast cancer cells MDA-MB231 and MCF7, were cultured in the presence of normal Platelet Poor Plasma (PPP), diluted 10 % in conditioning media. Their potential to induce thrombin generation and their fibrinolytic activity were assessed. The structure of fibrin network was analyzed with Scanning Electron Microscopy (SEM). Cancer cells' mobility with fibrin clot and their interactions with fibrin were observed. Cancer cells were treated with paclitaxel (PTX) or 4-hydroxy-tamoxifen (4OHTam) in the presence or absence of FCS. RESULTS: Cancer cells, in presence of PPP, induced fibrin network formation. High TF-expressing cancer cells (BXPC3 and MDA-MB23 cells), led to dense fibrin network with fine fibers. Low TF expressing cells MCF7 led to thick fibers. Exogenous TF enhanced the density of fibrin network formed by MCF7 cells. Cancer cells through their inherent profibrinolytic potential migrated within the fiber scaffold. The BXPC3 and MCF7 cells moved in clusters whereas the MDA-MB231 cells moved individually within the fibrin network. FCS decreased the efficiency of PTX and 4OHTam on the viability of cancer cells. CONCLUSIONS: The procoagulant signature of cancer cells is determinant for the quality and structure of fibrin network in the microenvironment. Original SEM images show the architecture of "bird's nest"-like fibrin network being in touch with the cell membranes and surrounding cancer cells. Fibrin network constructed by triggering thrombin generation by cancer cells, provides a scaffold for cell migration. Fibrin clot shields protect cancer cells against PTX and 4OHTam.


Subject(s)
Antineoplastic Agents , Cell Movement , Fibrin , Tumor Microenvironment , Humans , Cell Movement/drug effects , Fibrin/metabolism , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , MCF-7 Cells , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Blood Coagulation/drug effects
13.
Exp Clin Transplant ; 22(4): 249-257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742314

ABSTRACT

OBJECTIVES: Presently, the management of direct oral anticoagulants lacks specific guidelines for patients before and after transplant, particularly for lung transplant recipients. We aimed to consolidate the existing literature on direct oral anticoagulants and explore their implications in lung transplant recipients. MATERIALS AND METHODS: We conducted a comprehensive search in PubMed and Google Scholar databases for studies published between January 2000 and December 2022, using specific search terms. We only included studies involving lung transplant recipients and focusing on direct oral anticoagulants. RESULTS: Five relevant publications were identified, providing varied insights. None of the studies specifically addressed bleeding complications associated with direct oral anticoagulants in lung transplant recipients. Limited details were available on the type of solid-organ transplant or the specific direct oral anticoagulant used in these studies. CONCLUSIONS: Varied bleeding complications associated with direct oral anticoagulants in lung transplant recipients were reported, but studies lacked specificity on transplant type and direct oral anticoagulant variations. Notably, the incidence of venous thrombotic embolism in lung transplant recipients was comparatively higher than in other solid-organ transplant recipients, potentially linked to factors such as corticosteroid therapy, calcineurin inhibitors, and cytomegalovirus infections. Our synthesis on findings of use of direct oral anticoagulant in lung transplant recipients emphasized challenges of managing these medications in urgent transplant situations. Recommendations from experts suggested caution in initiation of direct oral anticoagulants posttransplant until stability in renal and hepatic function is achieved. The limited evidence on safety of direct oral anticoagulants in lung transplant recipients underscores the need for further research and guidance in this specific patient population.


Subject(s)
Hemorrhage , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Administration, Oral , Risk Factors , Treatment Outcome , Hemorrhage/chemically induced , Risk Assessment , Blood Coagulation/drug effects , Anticoagulants/adverse effects , Anticoagulants/administration & dosage , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/administration & dosage
14.
Int J Biol Macromol ; 270(Pt 2): 132440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761899

ABSTRACT

Hemostatic powder is widely utilized in emergency situations to control bleeding due to its ability to work well on wounds with irregular shapes, ease of application, and long-term stability. However, traditional powder often suffers from limited tissue adhesion and insufficient support for blood clot formation, leaving it susceptible to displacement by the flow of blood. This study introduces a hemostatic powder composed of tannic modified mesoporous bioactive glass (TMBG), cationic quaternized chitosan (QCS), and anionic hyaluronic acid modified with catechol group (HADA). The resulting TMBG/QCS/HADA based hemostatic powder (TMQH) rapidly absorbs plasma, concentrating blood coagulation factors. Simultaneously, the water-soluble QCS and HADA interact to form a 3D network structure, which can be strengthened by crosslinking with TMBG. This network effectively captures clustered blood coagulation factors, leading to a strong and adhesive thrombus that resists disruption from blood flow. TMQH exhibits superior efficacy in promoting hemostasis compared to Celox™ both in rat arterial injuries and non-compressible liver puncture wounds. TMQH demonstrates excellent antibacterial activity, cytocompatibility, and blood compatibility. These outstanding superiorities in blood clotting capability, wet tissue adhesion, antibacterial activity, safety for living organisms, ease of application, and long-term stability, make TMQH highly suitable for emergency hemostasis.


Subject(s)
Blood Coagulation , Hemostatics , Powders , Tannins , Animals , Rats , Blood Coagulation/drug effects , Tannins/chemistry , Tannins/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Porosity , Glass/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Gels/chemistry , Humans , Adhesives/chemistry , Adhesives/pharmacology , Male , Rats, Sprague-Dawley , Hemostasis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
15.
Int J Biol Macromol ; 269(Pt 2): 131952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692541

ABSTRACT

Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.


Subject(s)
Anticoagulants , Chondroitin Sulfates , Factor IXa , Molecular Weight , Animals , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Chondroitin Sulfates/isolation & purification , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Factor IXa/metabolism , Factor IXa/antagonists & inhibitors , Factor IXa/chemistry , Cucumaria/chemistry , Sea Cucumbers/chemistry , Blood Coagulation/drug effects , Humans , Models, Molecular
16.
Int J Biol Macromol ; 269(Pt 1): 132040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702003

ABSTRACT

Decellularized vascular tissue has high potential as a tissue-engineered vascular graft because of its similarity to native vessels in terms of mechanical strength. However, exposed collagen on the tissue induces blood coagulation, and low hemocompatibility is a major obstacle to its vascular application. Here we report that freeze-drying and ethanol treatment effectively modify collagen fiber structure and drastically reduce blood coagulation on the graft surface without exogenous chemical modification. Decellularized carotid artery of ostrich was treated with freeze-drying and ethanol solution at concentrations ranging between 5 and 99.5 %. Collagen fiber distance in the graft was narrowed by freeze-drying, and the non-helical region increased by ethanol treatment. Although in vitro blood coagulation pattern was similar on the grafts, platelet adhesion on the grafts was largely suppressed by freeze-drying and ethanol treatments. Ex vivo blood circulation tests also indicated that the adsorption of platelets and Von Willebrand Factor was largely reduced to approximately 80 % by ethanol treatment. These results indicate that structural modification of collagen fibers in decellularized tissue reduces blood coagulation on the surface by inhibiting platelet adhesion.


Subject(s)
Blood Coagulation , Collagen , Platelet Adhesiveness , Animals , Platelet Adhesiveness/drug effects , Blood Coagulation/drug effects , Collagen/chemistry , Tissue Engineering/methods , Materials Testing , Freeze Drying , Blood Vessel Prosthesis , Tissue Scaffolds/chemistry , Blood Platelets/metabolism , Blood Platelets/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Carotid Arteries/drug effects , Humans , Ethanol/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2710-2721, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812171

ABSTRACT

Studies have reported that the hemostatic effect of Sanguisorbae Radix(SR) is significantly enhanced after processing with charcoal. However, the standard components(tannins and gallic acid) specified in the Chinese Pharmacopeia decrease in charcoal-fried Sanguisorbae Radix(CSR), which is contrast to the enhancement of the hemostatic effect. Therefore, this study aimed to optimize the charcoal-frying process of SR based on its hemostatic efficacy and comprehensively analyze the components of SR and its processed products, thus exploring the material basis for the hemostatic effect. The results indicated that SR processed at 250 ℃ for 14 min(14-min CSR) not only complied with the description in the Chinese Pharmacopeia but also demonstrated improved blood-coagulating and blood-adsorbing effects compared with raw SR(P<0.05). Moroever, 14-min CSR reduced the bleeding time in the rat models of tail snipping, liver bleeding, and muscle injury, surpassing both raw and excessively fried SR(16 min processed) as well as tranexamic acid(P<0.05). Ellagitannin, ellagic acid, methyl gallate, pyrogallic acid, protocatechuic acid, Mg, Ca, Mn, Cu, and Zn contributed to the hemostatic effect of CSR over SR. Among these substances, ellagitannin, ellagic acid, Mg, and Ca had high content in the 14 min CSR, reaching(106.73±14.87),(34.86±4.43),(2.81±0.23), and(1.21±0.23) mg·g~(-1), respectively. Additionally, the color difference value(ΔE~*ab) of SR processed to different extents was correlated with the content of the aforementioned hemostatic substances. In summary, this study optimized the charcoal-frying process as 250 ℃ for 14 min for SR based on its hemostatic effect. Furthermore, ellagic acid and/or the powder chromaticity are proposed as indicators for the processing and quality control of CSR.


Subject(s)
Charcoal , Drugs, Chinese Herbal , Hemostatics , Rats, Sprague-Dawley , Sanguisorba , Animals , Rats , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Hemostatics/pharmacology , Hemostatics/chemistry , Sanguisorba/chemistry , Charcoal/chemistry , Male , Cooking , Blood Coagulation/drug effects , Humans
18.
Mar Drugs ; 22(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667805

ABSTRACT

Three Laminaria japonica polysaccharides (LJPs) extracted via water extraction (LJP-W), acid extraction (LJP-A), and enzymatic extraction (LJP-E) were used as raw materials to be cross-linked with chitosan and polyvinyl alcohol to prepare hydrogels. Compared with conventional hydrogel systems, all three types of LJP-based polysaccharide hydrogels exhibited better swelling properties (14 times their original weight) and the absorption ability of simulated body fluid (first 2 h: 6-10%). They also demonstrated better rigidity and mechanical strength. Young's modulus of LJP-E was 4 times that of the blank. In terms of hemostatic properties, all three polysaccharide hydrogels did not show significant cytotoxic and hemolytic properties. The enzyme- and acid-extracted hydrogels (LJP-Gel-A and LJP-Gel-E) demonstrated better whole-blood coagulant ability compared with the water-extracted hydrogel (LJP-Gel-W), as evidenced by the whole blood coagulation index being half that of LJP-Gel-W. Additionally, the lactate dehydrogenase viabilities of LJP-Gel-A and LJP-Gel-E were significantly higher, at about four and three times those of water extraction, respectively. The above results suggested that LJP-Gel-A and LJP-Gel-E exhibited better blood coagulation capabilities than LJP-Gel-W, due to their enhanced platelet enrichment and adhesion properties. Consequently, these hydrogels are more conducive to promoting coagulation and have good potential for wound hemostasis.


Subject(s)
Blood Coagulation , Edible Seaweeds , Hemostatics , Hydrogels , Laminaria , Polysaccharides , Hydrogels/chemistry , Hydrogels/pharmacology , Laminaria/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Blood Coagulation/drug effects , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/isolation & purification , Humans , Animals , Chitosan/chemistry , Chitosan/pharmacology , Polyvinyl Alcohol/chemistry , Hemostasis/drug effects , Hemolysis/drug effects
19.
Toxins (Basel) ; 16(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668613

ABSTRACT

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Subject(s)
Blood Coagulation , Crotalid Venoms , Fucus , Phospholipases A2 , Polysaccharides , Undaria , Animals , Antivenins/pharmacology , Blood Coagulation/drug effects , Bothrops , Bothrops jararaca , Crotalid Venoms/toxicity , Crotalid Venoms/enzymology , Edible Seaweeds/chemistry , Fucus/chemistry , Phospholipases A2/metabolism , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Proteolysis/drug effects , Seaweed/chemistry , Undaria/chemistry , Venomous Snakes
20.
Biomed Mater ; 19(3)2024 May 03.
Article in English | MEDLINE | ID: mdl-38636501

ABSTRACT

Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.


Subject(s)
Blood Coagulation , Hemostatics , Magnesium Compounds , Oxalic Acid , Silicon Compounds , Magnesium Compounds/chemistry , Oxalic Acid/chemistry , Animals , Silicon Compounds/chemistry , Blood Coagulation/drug effects , Hemostatics/chemistry , Hemostatics/pharmacology , Biocompatible Materials/chemistry , Hemostasis/drug effects , Materials Testing , Humans , Surface Properties , Clay/chemistry , Magnesium/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...