Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 535
Filter
1.
New Microbiol ; 47(1): 107-110, 2024 May.
Article in English | MEDLINE | ID: mdl-38700891

ABSTRACT

We evaluated the performance of a new rapid phenotypic antimicrobial susceptibility test (ASTar; Q-linea AB) on Gram-negative bacilli, directly from positive blood cultures bottles. MIC values obtained by the routine reference method (Microscan, Beckman Coulter) were compared to the ones provided by the tested method (ASTar). ASTar demonstrated an overall essential agreement of 98% and a category agreement of 96.1%. The overall rate of major errors and very major errors was 2.5% and 3.3%, respectively. ASTar can represent a rapid, simple, and reliable method to speed up information about antimicrobial susceptibility of Gram-negative pathogens from positive blood culture bottles.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Blood Culture/methods , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/microbiology , Bacteremia/microbiology , Phenotype
2.
J Microbiol Methods ; 221: 106940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702032

ABSTRACT

Bloodstream infections (BSI) caused by carbapenem-resistant Gram-negative bacilli (CR-GNB) are a subject of major clinical concern, mainly those associated with carbapenemase-producing isolates. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed to detect specific ß-lactamases, including KPC. We aimed to detect KPC enzyme directly from positive blood cultures using MALDI-TOF MS. Overall, 146 clinical Gram-negative bacilli (46 CR-GNB) recovered from consecutive blood cultures were evaluated. Proteins were extracted using formic acid, isopropyl alcohol, and water and spotted onto a steel target plate using the double-layer sinapinic acid method. The relative ions intensity ≥120 arbitrary units (a.u.) of a peak close to 28,700 m/z indicated the presence of KPC. The results were compared to HRM-qPCR methodology. This specific peak was observed in 11/14 blood bottles with blaKPC positive isolates (78.6% sensitivity), with 3 false-positive results (97.7% specificity). Analysis from colonies reached identical sensitivity (78.6%), but higher specificity (100%). The detection of KPC peaks directly from positive blood cultures using MALDI-TOF MS is feasible and rapid. It's excellent specificity indicates that positive results are consistently associated with the presence of a KPC producer in positive blood culture.


Subject(s)
Bacterial Proteins , Blood Culture , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , beta-Lactamases , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , beta-Lactamases/genetics , Blood Culture/methods , Bacterial Proteins/genetics , Sensitivity and Specificity , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , Bacteremia/microbiology , Bacteremia/diagnosis , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/blood , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology
3.
Surg Infect (Larchmt) ; 25(4): 335-337, 2024 May.
Article in English | MEDLINE | ID: mdl-38696669

ABSTRACT

Background: Raoultella planticola is an uncommon gram-negative organism found in the environment. Patients and Methods: The patient, an 81-year-old female who had undergone total cystectomy and bilateral ureteral stoma surgery, presented to the hospital with a fever. It was determined that Raoultella planticola was responsible for the bacteremia. Results: Rapid identification of bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in blood culture samples and appropriate antibacterial treatment was begun and the patient was discharged three days later. Conclusions: This case emphasizes the presence of a rare pathogen as the cause of bacteremia and underscores the importance of utilizing rapid methods for bacterial identification to establish an accurate diagnosis.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Blood Culture , Enterobacteriaceae Infections , Enterobacteriaceae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Bacteremia/diagnosis , Bacteremia/microbiology , Aged, 80 and over , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/microbiology , Blood Culture/methods , Anti-Bacterial Agents/therapeutic use
4.
Diagn Microbiol Infect Dis ; 109(3): 116269, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692201

ABSTRACT

We assessed the performance of GenMark's ePlex® Blood Culture Identification (BCID) Panels for overall agreement of organism identification and resistance mechanism detection with standard microbiologic methods. This study included patients with a positive blood culture from May 2020 to January 2021. The primary outcomes were to assess concordance of ePlex® organism identification with standard identification methods and concordance of ePlex® genotypic resistance mechanism detection with standard phenotypic susceptibility testing. Secondary outcomes included panel specific performance and characterization of antimicrobial stewardship opportunities. The overall identification concordance rate in 1276 positive blood cultures was 98.1%. The overall concordance for the presence of resistance markers was 98.2% and concordance for the absence of resistance markers was 100%. A majority of ePlex® results (69.5%) represented opportunities for potential antimicrobial stewardship intervention. High concordance rates between the ePlex® BCID panels and standard identification and susceptibility methods enable utilization of results to guide rapid antimicrobial optimization.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Stewardship , Blood Culture , Microbial Sensitivity Tests , Humans , Blood Culture/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Drug Resistance, Bacterial/genetics , Bacteremia/microbiology , Bacteremia/diagnosis , Bacteremia/drug therapy , Genotype
5.
Diagn Microbiol Infect Dis ; 109(3): 116335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703531

ABSTRACT

OBJECTIVES: The objective of this study was to provide the clinic with rapid and accurate results of antimicrobial susceptibility testing for the treatment of patients with bloodstream infections. To achieve this, we applied the Clinical and Laboratory Standards Institute (CLSI) blood culture direct rapid antimicrobial susceptibility test (rAST) to assess the susceptibility of the most common Enterobacterales found in blood cultures. METHODS: In this study, we utilized the CLSI blood culture direct rapid antimicrobial susceptibility test to assess the susceptibility (rAST) of the most common Enterobacterales present in blood cultures. We chose this method for its simplicity in analysis, and our aim was to predict minimum inhibitory concentrations (MICs) using the rAST. As a benchmark, we assumed that Broth Macrodilution method (BMD) results were 100% accurate. For data evaluation, we employed the terms categorical agreement (CA), very major errors (VME), and major errors (ME). RESULTS: Our findings demonstrate that the CLSI rAST method is reliable for rapidly determining the in vitro susceptibility of Enterobacterales to common antimicrobial drugs in bloodstream infections. We achieved a concordance rate of 90% in classification within a 10-hour timeframe. We identified a total of 112 carbapenem-resistant Enterobacterales (CRE) strains, and there was no significant difference in the detection rate of CRE at 6, 10, and 16 hours. This suggests that CRE can be identified as early as 6 hours. CONCLUSION: The CLSI rAST is a valuable tool that can be utilized in clinical practice to quickly determine the susceptibility of Enterobacterales to antimicrobial drugs within 10 hours. This capability can greatly assist in the clinical management of patients with bloodstream infections.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , Humans , Microbial Sensitivity Tests/standards , Microbial Sensitivity Tests/methods , Blood Culture/methods , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Bacteremia/microbiology , Bacteremia/drug therapy
6.
Diagn Microbiol Infect Dis ; 109(3): 116306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735146

ABSTRACT

Rapid identification of microbial pathogens "directly" from positive blood cultures (PBCs) is critical for prompt initiation of empirical antibiotic therapy and clinical outcomes. Towards higher microbial identification rates, we modified a published initial serum separator tubes-based MALDI-TOF-MS protocol, for blood culture specimens received at a non-hospital based standalone diagnostic laboratory, Bangalore, India: (a) "Initial" protocol #1: From 28 PBCs, identification= 39% (Gram-negative= 43%: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa; Gram-positive: 36%: Enterococcus faecalis, Staphylococcus aureus, Staphylococcus haemolyticus); mis-identification= 14%; non-identification= 47%. (b) "Modified" protocol #2: Quality controls (ATCC colonies spiked in negative blood cultures) From 7 analysis, identification= 100% (Escherichia coli, Klebsiella pneumonia, Klebsiella oxytoca, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus); From 7 PBCs, identification= 57%; mis-identification= 14%; non-identification= 29%. Microbial preparations of highest quality and quantity for proteomic analysis and separate spectra matching reference databases for colonies and PBCs are needed for best clinical utility.


Subject(s)
Blood Culture , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Blood Culture/methods , India , Bacteria/isolation & purification , Bacteria/classification , Bacteremia/diagnosis , Bacteremia/microbiology
7.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791501

ABSTRACT

Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve outcomes in septic patients. However, current sepsis diagnostics based on blood culture is limited by low sensitivity and specificity while current molecular approaches fail to enter clinical routine. Therefore, we developed a suppression PCR-based selective enrichment sequencing approach (SUPSETS), providing a molecular method combining multiplex suppression PCR with Nanopore sequencing to identify most common sepsis-causative pathogens and AMRs using plasma cell-free DNA. Applying only 1 mL of plasma, we targeted eight pathogens across three kingdoms and ten AMRs in a proof-of-concept study. SUPSETS was successfully tested in an experimental research study on the first ten clinical samples and revealed comparable results to clinical metagenomics while clearly outperforming blood culture. Several clinically relevant AMRs could be additionally detected. Furthermore, SUPSETS provided first pathogen and AMR-specific sequencing reads within minutes of starting sequencing, thereby potentially decreasing time-to-results to 11-13 h and suggesting diagnostic potential in sepsis.


Subject(s)
Cell-Free Nucleic Acids , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Sepsis/blood , Cell-Free Nucleic Acids/blood , Drug Resistance, Bacterial/genetics , Blood Culture/methods , DNA, Bacterial/genetics , Multiplex Polymerase Chain Reaction/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Bacteria/isolation & purification , Polymerase Chain Reaction/methods , Nanopore Sequencing/methods
8.
BMC Microbiol ; 24(1): 187, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802760

ABSTRACT

BACKGROUND: Rapid antimicrobial susceptibility testing (AST) is urgently needed to provide safer treatment to counteract antimicrobial resistance. This is critical in septic patients, because resistance increases empiric therapy uncertainty and the risk of a poor outcome. We validate a novel 2h flow cytometry AST assay directly from positive blood cultures (PBC) by using a room temperature stable FASTgramneg and FASTgrampos kits (FASTinov® Porto, Portugal) in three sites: FASTinov (site-1), Hospital Ramon y Cajal, Madrid, Spain (site-2) and Centro Hospitalar S. João, Porto, Portugal (site-3). A total of 670 PBC were included: 333 spiked (site-1) and 337 clinical PBC (151 site-2 and 186 site-3): 367 gram-negative and 303 gram-positive. Manufacturer instructions were followed for sample preparation, panel inoculation, incubation (1h/37ºC) and flow cytometry analysis using CytoFlex (Site-1 and -2) or DxFlex (site-3) both instruments from Beckman-Coulter, USA. RESULTS: A proprietary software (bioFAST) was used to immediately generate a susceptibility report in less than 2 h. In parallel, samples were processed according to reference AST methods (disk diffusion and/or microdilution) and interpreted with EUCAST and CLSI criteria. Additionally, ten samples were spiked in all sites for inter-laboratory reproducibility. Sensitivity and specificity were >95% for all antimicrobials. Reproducibility was 96.8%/95.0% for FASTgramneg and 95.1%/95.1% for FASTgrampos regarding EUCAST/CLSI criteria, respectively. CONCLUSION: FASTinov® kits consistently provide ultra-rapid AST in 2h with high accuracy and reproducibility on both Gram-negative and Gram-positive bacteria. This technology creates a new paradigm in bacterial infection management and holds the potential to significantly impact septic patient outcomes and antimicrobial stewardship.


Subject(s)
Anti-Bacterial Agents , Blood Culture , Flow Cytometry , Microbial Sensitivity Tests , Humans , Flow Cytometry/methods , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/instrumentation , Blood Culture/methods , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Time Factors , Portugal , Spain , Reproducibility of Results
10.
Actual. Sida Infectol. (En linea) ; 32(114): 16-25, 20240000. tab
Article in Spanish | LILACS, BINACIS | ID: biblio-1551795

ABSTRACT

Introducción. El problema de la contaminación de los hemocultivos es muy frecuente en establecimientos de atención hospitalaria, da lugar a la administración de antibióticos innecesarios y prolonga la hospitalización. Objetivo principal. Aplicar un bundle para reducir la proporción de contaminación de hemocultivos. Objetivo secundario. Realizar una encuesta anónima para detectar oportunidades de mejora en la técnica de extracción de hemocultivos. Metodología. Diseño del estudio: Estudio cuasi experimental que evaluó la proporción de contaminación de hemocultivos antes y después de implementar un bundle propio. Se determinó la proporción basal de contaminación de hemocultivos (ene-jul 2022), se realizó la intervención (agosto 2022) y se estableció la proporción de contaminación post intervención (sep.-abril 2023). Intervención: Se analizó la estructura, procedimiento y conocimiento del personal mediante una encuesta propia para detectar áreas de mejora. Se capacitó, a los técnicos de laboratorio, sobre el procedimiento de la toma de muestra mediante una simulación utilizando un brazo artificial. Se diseñó un bundle de seis medidas, se adaptó el procedimiento de toma de hemocultivo y se capacitó al personal. Análisis estadístico. Se analizó la proporción de hemocultivos contaminados entre los periodos pre y post utilizando Chi2 y la relación entre la proporción del periodo pre y post vs la literatura (3.00% contaminación aceptable) utilizando test Z para una proporción. Se consideró un p<0.05 como estadísticamente significativa. Se utilizo el software Stata 8. Resultados. Durante el estudio se analizaron un total de 3,965 hemocultivos. De estos, 1,978 corresponden al periodo pre-intervención y 1,987 corresponden al periodo post intervención. Durante la pre-intervención se detectaron 61 hemocultivos contaminados (3.08% vs 3.00% bibliografía, p:0.5866) mientras que en la etapa post intervención fue de 30 hemocultivos contaminados (1.51% vs 3.00% bibliografía, p:0.0000). La proporción de hemocultivos contaminados se redujo a la mitad, 3.08% vs 1.51%, p: 0.001. Se realizó una encuesta anónima pre y post intervención logrando mejoras en la técnica de toma de hemocultivos. Conclusión. La implementación del bundle propio para la extracción de hemocultivos, permitió reducir la proporción de contaminación a la mitad. El análisis de la encuesta nos permitió identificar oportunidades de mejora en la técnica de recolección de muestra de hemocultivos


Introduction: Contamination of blood cultures is very common in hospital care settings and results in the administration of unnecessary antibiotics and prolongs hospitalization. Main goal: Apply a bundle to reduce the rate of contamination of blood cultures. Secondary objective: Conduct an anonymous survey to detect opportunities for improvement in the blood culture extraction technique. Methodology: Study design: Quasi-experimental study that evaluated the proportion of blood culture contamination before and after implementing its own bundle. The baseline proportion of blood culture contamination was determined (Jan-July 2022), the intervention was performed (August 2022) and the post-intervention contamination proportion was established (September-April 2023). Intervention: The structure, procedure and knowledge of the staff was analyzed through an own survey to detect areas for improvement. Laboratory technicians were trained on the sample collection procedure through a simulation using an artificial arm. A bundle of six measures was designed: (hand hygiene with alcohol gel, use of common gloves and sterile gloves during extraction, antisepsis with alcoholic chlorhexidine gluconate, marking of the blood culture bottle up to the filling level, disinfection of the bottle cap). blood culture bottle with 70% alcohol, safety-lok kit with vacuum extraction system). The procedure was adapted and staff trained. Statistic analysis: The proportion of contaminated blood cultures between the pre and post periods was analyzed using Chi2 and the relationship between the proportion of the pre and post period vs the literature (3.00% acceptable contamination) using Z test for a proportion. P<0.05 was considered statistically significant. Stata 8 software was used.Results: A total of 3,965 blood cultures were analyzed during the study. Of these, 1,978 correspond to the pre-intervention period and 1,987 correspond to the post-intervention period. During the pre-intervention, 61 contaminated blood cultures were detected (3.08%) while in the post-intervention stage there were 30 contaminated blood cultures (1.51%). The proportion of contaminated blood cultures was reduced by half, 3.08% vs 1.51%, p: 0.001. An anonymous survey was carried out pre and post intervention, achieving improvements in the technique of taking blood cultures. Conclusion: The implementation of the own bundle for the extraction of blood cultures allowed the contamination rate to be reduced by ha


Subject(s)
Humans , Male , Female , Blood Specimen Collection/methods , Blood Culture/methods , Blood Culture/statistics & numerical data
11.
Clin Lab ; 70(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38623666

ABSTRACT

BACKGROUND: We evaluated the diagnostic performance of the FilmArray Blood Culture Identification Panel (BCID; bioMerieux) for the detection of bloodstream pathogens. METHODS: From May to August 2022, up to 67 samples from positive blood cultures previously processed with BACTEC FX (BD) were collected and submitted to the BCID panel. BCID panel results were compared with traditional culture results. RESULTS: We tested 67 positive blood culture samples; 13 samples were from pediatric bottles of BACTEC Peds Plus/F media (BD). The overall sensitivity of the BCID panel was 89.9% (62/69; 95% CI, 80.2 - 95.3%). For blood-stream pathogens targeted by the BCID panel, sensitivity was 98.4% (62/63; 95% CI, 90.7 - > 99.9%). Interestingly, Proteus species were additionally detected in 6 samples from pediatric blood culture bottles. CONCLUSIONS: BCID demonstrated high clinical sensitivity for target pathogens, but positive findings for unexpected multiple targets or Proteus species require cautious interpretation to avoid false positives.


Subject(s)
Bacteremia , Multiplex Polymerase Chain Reaction , Humans , Child , Multiplex Polymerase Chain Reaction/methods , Bacteria/genetics , Blood Culture/methods , Bacteremia/diagnosis
12.
Diagn Microbiol Infect Dis ; 109(2): 116247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484476

ABSTRACT

In this study, rapid diagnostic of multidrug-resistant (MDR) sepsis pathogens, directly from positive blood culture (BC) bottles, was evaluated by combining MALDI-TOF and the EUCAST Rapid Antimicrobial Susceptibility Testing (RAST). Carbapenemase production in Escherichia coli and Klebsiella pneumoniae isolates was also evaluated by RAST. From 171 positive BC bottles analyzed, 79 (46 %) MDR species, including E. coli (4/34, 12 %), K. pneumoniae (33/48, 69 %), Pseudomonas aeruginosa (12/12, 100 %), Acinetobacter baumannii (15/15, 100 %), and Staphylococcus aureus (14/37, 38 %) displaying resistance to beta-lactams, fluoroquinolones, aminoglycosides, and/or trimethoprim/sulphamethoxazole, were identified. In this regard, turnaround time of direct MALDI-TOF identification and RAST was < 7 h, which was significantly (p< 0.05) lower than our routine method. Carbapenemase detection by RAST displayed 100% sensitivity and 88.7 % specificity at 8 h. This protocol could offer advantages for the treatment and clinical outcomes of septic patients, improving the rapid diagnostic of sepsis by MDR pathogens.


Subject(s)
Blood Culture , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Sensitivity and Specificity , Sepsis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sepsis/microbiology , Sepsis/diagnosis , Blood Culture/methods , Microbial Sensitivity Tests/methods , Bacterial Proteins , Anti-Bacterial Agents/pharmacology , beta-Lactamases , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Time Factors , Rapid Diagnostic Tests
13.
Diagn Microbiol Infect Dis ; 109(2): 116271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522370

ABSTRACT

This study aimed to develop and validate a rapid method for identification by MALDI-TOF system and determination of the susceptibility to Fluconazole and Micafungin by broth microdilution among Candidaspecies causing bloodstream infections. Subcultures from blood culture bottles were incubated for 5 hours (+/- 1h) and used to perform the tests, so that the turnaround time of rapid identification and susceptibility profile was about 5 and 24 hours, respectively. The rapid identification showed agreement of 92.05 %. Regarding the rapid broth microdilution for Fluconazole and Micafungin, the agreement was 97.06 % (p<0.001) and 100 % (p<0.001), and the Kappa coefficient was 0.91 (p<0.001) and 1.0 (p<0.001), respectively. To conclude, both rapid methods showed to be reproducible, inexpensive, easy to perform and time-saving. Thus, these methodologies could be useful to guide and adjust empirical antifungal therapy.


Subject(s)
Antifungal Agents , Blood Culture , Candida , Echinocandins , Fluconazole , Lipopeptides , Micafungin , Microbial Sensitivity Tests , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Micafungin/pharmacology , Humans , Microbial Sensitivity Tests/methods , Candida/drug effects , Candida/classification , Antifungal Agents/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Blood Culture/methods , Lipopeptides/pharmacology , Echinocandins/pharmacology , Fluconazole/pharmacology , Candidemia/microbiology , Candidemia/diagnosis , Time Factors , Reproducibility of Results
14.
J Clin Microbiol ; 62(4): e0161123, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38470149

ABSTRACT

Rapid identification of pathogens in normally sterile body fluid (NSBF) is essential for appropriate patient management, specifically antimicrobial therapy. Limited sensitivity and increased time to detection of traditional culture prompted us to evaluate additional testing to contribute to the diagnosis of infection. The purpose of this study was to evaluate the GenMark Dx ePlex Blood Culture Identification (BCID) Panels on positive body fluids inoculated into blood culture bottles for the detection of microorganisms. A total of 88 positive body fluids from blood culture bottles were analyzed using a Gram-Positive, Gram-Negative, and/or Fungal pathogen BCID Panel based on the Gram stain result. Each result was compared to routine culture performed from the positive bottle. When using culture as a reference standard, we found the ePlex multiplex panel performed with a positive percent agreement of 96.5% and a negative percent agreement of 99.8%. The use of multiplex PCR may be a useful supplement to routine culture for NSBF in blood culture bottles. IMPORTANCE: The identification of pathogens in normally sterile body fluid (NSBF) is performed using routine culture, the current gold standard. Limitations of this method include sensitivity and increased turnaround times which could potentially delay vital patient care, especially antimicrobial therapy. Adaptations of NSBF in blood culture bottles prompted us to consider the utility of additional methods to bridge the gap in diagnostic challenges for these life-threatening infections. Multiplex molecular panels have been manufactured for use with multiple specimen types including blood, cerebral spinal fluid, stool, and respiratory. Therefore, the purpose of this study was to evaluate the off-label use of ePlex Blood Culture Identification Panels on positive body fluids grown in blood culture bottles for the detection of microorganisms for research purposes.


Subject(s)
Anti-Infective Agents , Body Fluids , Humans , Multiplex Polymerase Chain Reaction , Body Fluids/microbiology , Blood Culture/methods
15.
Clin Microbiol Infect ; 30(6): 816-821, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432432

ABSTRACT

OBJECTIVES: The diagnosis of invasive Candida infection remains challenging because of tests with slow turnaround times or mediocre performance. T2magnetic resonance imaging is a new diagnostic tool. We investigated the diagnostic accuracy of the T2Candida panel (T2) in comparison with blood culture (BC) and the SeptiFast (SF) for the detection of five different Candida species among high-risk intensive care unit patients with suspected candidemia. METHODS: We analysed blood samples collected from patients with suspected candidemia (177 samples from 138 patients) from August 2018 to April 2020. Blood samples were collected and analysed concurrently by BC, SF, and T2Candida. Subsequently, based on clinical and microbiological findings, patient samples were assigned to specific risk categories (proven, probable, and no candidemia). RESULTS: Twenty-two samples from 17 patients were classified as proven candidemia, and 15 samples from 14 patients were classified as probable candidemia. A sensitivity of 68.2% (95% CI, 45-86%) was observed for the BC and the SF, and a sensitivity of 63.6% (95% CI, 41-83%) was observed for the T2 when only cases with proven candidemia were evaluated. For proven and probable candidemia, the sensitivity was 40.5% (95% CI, 23-58%) for BC, 81.1% (95% CI, 65-92%) for SF, and 73.0% (95% CI, 56-86%) for T2. DISCUSSION: The diagnostic performance of SF and T2 was similar. For samples with proven/probable candidemia, SF and T2 had a higher sensitivity compared to BC. Used in conjunction with other diagnostic methods, T2 can replace the no longer available SF for the diagnosis of candidemia, enabling the timely initiation of targeted antifungal therapy.


Subject(s)
Blood Culture , Candida , Candidemia , Sensitivity and Specificity , Humans , Candidemia/diagnosis , Candida/isolation & purification , Candida/classification , Male , Female , Middle Aged , Aged , Blood Culture/methods , Adult , Aged, 80 and over , Intensive Care Units , Magnetic Resonance Imaging
16.
Microbiol Spectr ; 12(4): e0308123, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446069

ABSTRACT

Bloodstream infections are associated with high mortality, which can be reduced by targeted antibiotic therapy in the early stages of infection. Direct antibiotic susceptibility testing (AST) from flagged positive blood cultures may facilitate the administration of early effective antimicrobials much before the routine AST. This study aimed to evaluate three different direct AST protocols for Gram-negative rods from flagged positive blood culture broths. Blood culture broths showing Gram-negative rods only were subjected to direct AST by Clinical and Laboratory Standards Institute-recommended direct disk diffusion (protocol A). Additionally, automated AST (protocol B) and Kirby-Bauer disk diffusion (protocol C) were performed with standard inoculum prepared from bacterial pellets obtained by centrifuging blood culture broths in serum separator vials. For comparison, conventional AST of isolates from solid media subculture was also performed with Kirby-Bauer disk diffusion (reference standard) and the automated method. Overall, categorical agreements of protocols A, B, and C were 97.6%, 95.7%, and 95.9%, respectively. Among Enterobacterales, minor error, major error, and very major error rates of protocol B were 3.5%, 0.36%, and 0.43%, respectively, whereas minor error, major error, and very major error rates of protocol C were 3.4%, 0.72%, and 0.21%, respectively, and among non-fermenters, protocol B had a minor error rate of 6.5%, and protocol C had a minor error rate of 4.1% and major error rate of 1.9%. All three direct AST protocols demonstrated excellent categorical agreements with the reference method. Performance of protocols B and C between Enterobacterales and non-fermenters was not statistically different. IMPORTANCE: Bloodstream infections are associated with high mortality that can be reduced by targeted antibiotic therapy in the early stages of infection. Direct antibiotic susceptibility testing (AST) from flagged positive blood cultures may facilitate the administration of early effective antimicrobials much before the routine AST. Clinical and Laboratory Standards Institute-recommended direct AST can be performed with a limited number of antibiotic disks only. On the other hand, using an automated system for direct AST will not only allow effective laboratory workflow with reduced turnaround time but also provide the minimum inhibitory concentration values of tested antibiotics. However, using expensive automated systems for direct AST may not be feasible for resource-limited laboratories. Therefore, in this study, we aimed to evaluate the CLSI-recommended method and two other direct AST protocols (one with an automated system and the other with disk diffusion) for Gram-negative rods from flagged positive blood cultures.


Subject(s)
Anti-Infective Agents , Bacteremia , Sepsis , Humans , Blood Culture/methods , Bacteremia/diagnosis , Bacteremia/microbiology , Gram-Negative Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology
18.
Am J Infect Control ; 52(6): 664-669, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38232901

ABSTRACT

BACKGROUND: Blood cultures (BCs) are essential microbiologic tests, but blood culturing diagnostic stewardship is frequently poor. We aimed to study the process-related failures and to evaluate the effect of an emergency department (ED) intervention on BCs collection practices and yield. METHODS: We implemented an ED-quality improvement intervention including educational sessions, phlebotomists addition, promoting single-site strategy for BC-collection and preanalytical data feedback. BC-bottles collected, positive BCs, blood volumes and documentation of collection times were measured, before (December 2021-August 2022) and after (September 2022-July 2023) intervention. Results were corrected to hospitalizations admissions or days. We used interrupted-time series analyses for comparisons. RESULTS: A total of 64,295 BC bottles were evaluated, 26,261 before and 38,034 postintervention. The median ED-BCs collected per week increased from 88 to 105 BCs (P < .0001), resulting from increased early sampling (P = .0001). Solitary BCs decreased (95%-28%), documented times increased (2.8%-25%), and average blood volume increased (3 mL to 4.5 mL) postintervention. Community-onset Bloodstream infections (BSIs) increased (39.6-52 bottles/1,000 admissions, P = .0001), while Health care-associated BSIs decreased (39-27 bottles/10,000 days, P = .0042). Contamination rates did not change. CONCLUSIONS: An ED-focused intervention based on the education sessions and single-site strategy improved culturing stewardship and facilitated the early identification of BSI without an increase in contamination.


Subject(s)
Blood Culture , Community-Acquired Infections , Emergency Service, Hospital , Humans , Blood Culture/methods , Blood Culture/standards , Community-Acquired Infections/diagnosis , Community-Acquired Infections/microbiology , Early Diagnosis , Bacteremia/diagnosis , Sepsis/diagnosis , Quality Improvement , Hospitalization
19.
Microbiol Spectr ; 12(2): e0306523, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38193658

ABSTRACT

We aimed to evaluate the performance of Oxford Nanopore Technologies (ONT) sequencing from positive blood culture (BC) broths for bacterial identification and antimicrobial susceptibility prediction. Patients with suspected sepsis in four intensive care units were prospectively enrolled. Human-depleted DNA was extracted from positive BC broths and sequenced using ONT (MinION). Species abundance was estimated using Kraken2, and a cloud-based system (AREScloud) provided in silico predictive antimicrobial susceptibility testing (AST) from assembled contigs. Results were compared to conventional identification and phenotypic AST. Species-level agreement between conventional methods and AST predicted from sequencing was 94.2% (49/52), increasing to 100% in monomicrobial infections. In 262 high-quality AREScloud AST predictions across 24 samples, categorical agreement (CA) was 89.3%, with major error (ME) and very major error (VME) rates of 10.5% and 12.1%, respectively. Over 90% CA was achieved for some taxa (e.g., Staphylococcus aureus) but was suboptimal for Pseudomonas aeruginosa. In 470 AST predictions across 42 samples, with both high quality and exploratory-only predictions, overall CA, ME, and VME rates were 87.7%, 8.3%, and 28.4%. VME rates were inflated by false susceptibility calls in a small number of species/antibiotic combinations with few representative resistant isolates. Time to reporting from sequencing could be achieved within 8-16 h from BC positivity. Direct sequencing from positive BC broths is feasible and can provide accurate predictive AST for some species. ONT-based approaches may be faster but significant improvements in accuracy are required before it can be considered for clinical use.IMPORTANCESepsis and bloodstream infections carry a high risk of morbidity and mortality. Rapid identification and susceptibility prediction of causative pathogens, using Nanopore sequencing direct from blood cultures, may offer clinical benefit. We assessed this approach in comparison to conventional phenotypic methods and determined the accuracy of species identification and susceptibility prediction from genomic data. While this workflow holds promise, and performed well for some common bacterial species, improvements in sequencing accuracy and more robust predictive algorithms across a diverse range of organisms are required before this can be considered for clinical use. However, results could be achieved in timeframes that are faster than conventional phenotypic methods.


Subject(s)
Nanopore Sequencing , Sepsis , Humans , Blood Culture/methods , Microbial Sensitivity Tests , Sepsis/microbiology , Anti-Bacterial Agents , Critical Care
20.
Rev Med Liege ; 79(1): 17-22, 2024 Jan.
Article in French | MEDLINE | ID: mdl-38223965

ABSTRACT

BACKGROUND: We evaluated the contribution of a rapid antibiotic susceptibility test performed directly from a positive blood culture (PBC), the dRAST™, in the management of patients with bacteremia. METHODS: We retrospectively compared the time from sampling to availability of antibiotic susceptibility test (AST) results («time-to-result¼, TTR) between dRAST™ and classic AST (Vitek®2), in 150 patients with bacteremia. The antibiotic treatment of these 150 patients was classified into three categories (optimal, suboptimal, ineffective) according to the time of availability of AST results. RESULTS: Adaptation of antibiotic treatment to optimal therapy following AST results occurred in 46/100 (46 %) of Gram-negative PBC and in 4/50 (2 %) of Gram-positive HP. TTR was significantly lower with dRAST™ compared with classic AST (29:35 (± 08:48) hours versus 50:55 (± 12:45) hours, p < 0.001). CONCLUSION: For patients with bacteremia requiring adjustment of empirical antibiotic therapy based on AST, dRAST™ could allow a faster administration of optimal therapy.


CONTEXTE: Nous avons évalué la contribution d'un antibiogramme rapide réalisé directement à partir d'une hémoculture positive (HP), le dRAST™, dans la prise en charge des patients présentant une bactériémie. Méthodes: Nous avons comparé, rétrospectivement, le délai entre le prélèvement et la disponibilité des résultats d'antibiogramme («temps-pour-résultats¼, TPR) entre le dRAST™ et l'antibiogramme classique (Vitek®2), auprès de 150 patients présentant une bactériémie. Les antibiothérapies de ces 150 patients ont été classés en trois catégories (optimale, suboptimale, inefficace) en fonction du moment d'obtention des résultats de l'antibiogramme. Résultats : L'adaptation du traitement antibiotique en thérapie optimale suite au résultat de l'antibiogramme est survenue chez 46/100 (46 %) des HP à Gram négatif et chez 4/50 (2 %) des HP à Gram positif. Le TPR était significativement plus faible avec le dRAST™ par rapport à l'antibiogramme classique (29:35 (± 08:48) heures versus 50:55 (± 12:45) heures, p < 0,001). CONCLUSION: Pour les patients avec bactériémie nécessitant une adaptation de l'antibiothérapie empirique basée sur l'antibiogramme, le dRAST™ permettrait une administration plus rapide du traitement optimal.


Subject(s)
Bacteremia , Gram-Negative Bacteria , Humans , Retrospective Studies , Microbial Sensitivity Tests , Blood Culture/methods , Bacteremia/drug therapy , Anti-Bacterial Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...