Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.532
Filter
1.
PLoS One ; 19(6): e0303691, 2024.
Article in English | MEDLINE | ID: mdl-38843264

ABSTRACT

Both sexually selected traits and mate preferences for these traits can be context dependent, yet how variation in preferred traits could select for context dependent preferences has rarely been examined. The signal reliability hypothesis predicts that mate preferences vary across contexts (e.g., environments) in relation to the reliability of the information preferred traits provide in those contexts. Extensive variation in copy number of mc4r B alleles on the Y-chromosome that associates with male size in Xiphophorus multilineatus allowed us to use a split-sibling design to determine if male size is more likely to provide information about male genotype (i.e., dam) when males were reared in a warm as compared to a cold environment. We then examined strength of preference for male size by females reared in the same two environments. We found that males were larger in the cold environment, but male size was more variable across dams in the warm environment, and therefore male size would be a more reliable indicator of dam (i.e., genetics) in the warm environment. Females reared in the warm environment had stronger mate preferences based on male size than cold reared females, with a significant influence of dam on strength of preference. Therefore, strength of female preference for male size was influenced by the temperature in which they were reared, with the direction of the difference across treatments supporting the signal reliability hypothesis. Understanding how the reliability of male traits can select for contextual variation in the strength of the female mate preferences will further our discovery of adaptive mate preferences. For example, a relationship between the strength of a female's mate preference and their growth rates was detected in the context where females had a preference based on male size, supporting a hypothesis from previous work with this species of disassortative mating in relation to growth rates to mitigate a documented growth-mortality tradeoff.


Subject(s)
Mating Preference, Animal , Temperature , Animals , Female , Male , Mating Preference, Animal/physiology , Cyprinodontiformes/physiology , Body Size , Receptor, Melanocortin, Type 4/genetics , Genotype
2.
Ecol Lett ; 27(6): e14442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844373

ABSTRACT

Highly diverse and abundant organisms coexist in soils. However, the contribution of biotic interactions between soil organisms to microbial community assembly remains to be explored. Here, we assess the extent to which soil fauna can shape microbial community assembly using an exclusion experiment in a grassland field to sort soil biota based on body size. After 1 year, the exclusion of larger fauna favoured phagotrophic protists, with increases up to 32% in their proportion compared to the no-mesh treatment. In contrast, members of the bacterial community and to a lesser extent of the fungal community were negatively impacted. Shifts in bacterial but not in fungal communities were best explained by the response of the protistan community to exclusion. Our findings provide empirical evidence of top-down control on the soil microbial communities and underline the importance of integrating higher trophic levels for a better understanding of the soil microbiome assembly.


Subject(s)
Bacteria , Fungi , Grassland , Microbiota , Soil Microbiology , Fungi/physiology , Animals , Eukaryota/physiology , Soil/chemistry , Body Size
3.
PeerJ ; 12: e17479, 2024.
Article in English | MEDLINE | ID: mdl-38827295

ABSTRACT

Background: Body mass and surface area are among the most important biological properties, but such information is lacking for some extant organisms and most extinct species. Numerous methods have been developed for body size estimation of animals for this reason. There are two main categories of mass-estimating approaches: extant-scaling approaches and volumetric-density approaches. Extant-scaling approaches determine the relationships between linear skeletal measurements and body mass using regression equations. Volumetric-density approaches, on the other hand, are all based on models. The models are of various types, including physical models, 2D images, and 3D virtual reconstructions. Once the models are constructed, their volumes are acquired using Archimedes' Principle, math formulae, or 3D software. Then densities are assigned to convert volumes to masses. The acquisition of surface area is similar to volume estimation by changing math formulae or software commands. This article presents a new 2D volumetric-density approach called the cross-sectional method (CSM). Methods: The CSM integrates biological cross-sections to estimate volume and surface area accurately. It requires a side view or dorsal/ventral view image, a series of cross-sectional silhouettes and some measurements to perform the calculation. To evaluate the performance of the CSM, two other 2D volumetric-density approaches (Graphic Double Integration (GDI) and Paleomass) are compared with it. Results: The CSM produces very accurate results, with average error rates around 0.20% in volume and 1.21% in area respectively. It has higher accuracy than GDI or Paleomass in estimating the volumes and areas of irregular-shaped biological structures. Discussion: Most previous 2D volumetric-density approaches assume an elliptical or superelliptical approximation of animal cross-sections. Such an approximation does not always have good performance. The CSM processes the true profiles directly rather than approximating and can deal with any shape. It can process objects that have gradually changing cross-sections. This study also suggests that more attention should be paid to the careful acquisition of cross-sections of animals in 2D volumetric-density approaches, otherwise serious errors may be introduced during the estimations. Combined with 2D modeling techniques, the CSM can be considered as an alternative to 3D modeling under certain conditions. It can reduce the complexity of making reconstructions while ensuring the reliability of the results.


Subject(s)
Body Size , Animals , Body Surface Area , Imaging, Three-Dimensional/methods
4.
Glob Chang Biol ; 30(6): e17366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847450

ABSTRACT

Changes in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05-0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.


Subject(s)
Body Size , Climate Change , Whales , Animals , Female , Male , Whales/physiology , Ecosystem , Models, Biological , Pacific Ocean
5.
PLoS One ; 19(5): e0303864, 2024.
Article in English | MEDLINE | ID: mdl-38758759

ABSTRACT

Nematodes disperse passively and are amongst the smallest invertebrates on Earth. Free-living nematodes in mountain lakes are highly tolerant of environmental variations and are thus excellent model organisms in dispersal studies, since species-environment relationships are unlikely to interfere. In this study, we investigated how population or organism traits influence the stochastic physical nature of passive dispersal in a topologically complex environment. Specifically, we analyzed the influence of female proportion and body size on the geographical distribution of nematode species in the mountain lakes of the Pyrenees. We hypothesized that dispersal is facilitated by (i) a smaller body size, which would increase the rate of wind transport, and (ii) a higher female proportion within a population, which could increase colonization success because many nematode species are capable of parthenogenetic reproduction. The results showed that nematode species with a low proportion of females tend to have clustered spatial distributions that are not associated with patchy environmental conditions, suggesting greater barriers to dispersal. When all species were pooled, the overall proportion of females tended to increase at the highest elevations, where dispersal between lakes is arguably more difficult. The influence of body size was barely relevant for nematode distributions. Our study highlights the relevance of female proportion as a mechanism that enhances the dispersal success of parthenogenetic species, and that female sex is a determining factor in metacommunity connectivity.


Subject(s)
Body Size , Lakes , Nematoda , Animals , Female , Body Size/physiology , Nematoda/physiology , Male , Animal Distribution/physiology , Ecosystem
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791179

ABSTRACT

In holometabolous insects, such as Drosophila and Bombyx, prothoracicotropic hormone (PTTH) is well established to be critical in controlling developmental transitions and metamorphosis by stimulating the biosynthesis of ecdysone in the prothoracic glands (PGs). However, the physiological role of PTTH and the receptor Torso in hemimetabolous insects remains largely unexplored. In this study, homozygous PTTH- and Torso-null mutants of the brown planthopper (BPH), Nilaparvata lugens, were successfully generated by employing clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR-Cas9). Further characterization showed that both NlPTTH-/- and NlTorso-/- mutants exhibited prolonged nymphal duration and increased final adult size. Enzyme-linked immunosorbent assay (ELISA) revealed that NlPTTH-/- and NlTorso-/- mutants exhibited a significant reduction in 20-hydroxyecdysone (20E) in fifth-instar nymphs at 48 h post-ecdysis compared to Wt controls. Furthermore, our results indicated that both NlPTTH-/- and NlTorso-/- mutants had shortened lifespan, reduced female fecundity, and reduced egg hatching rates in adults. These findings suggest a conserved role for the PTTH-Torso signaling system in the regulation of developmental transitions by stimulating ecdysone biosynthesis in hemimetabolous insects.


Subject(s)
Body Size , Ecdysone , Hemiptera , Homeostasis , Insect Hormones , Insect Proteins , Reproduction , Signal Transduction , Animals , Hemiptera/growth & development , Hemiptera/genetics , Hemiptera/metabolism , Ecdysone/metabolism , Reproduction/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Male , Metamorphosis, Biological/genetics
7.
Nat Commun ; 15(1): 4208, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806471

ABSTRACT

Birds are represented by 11,000 species and a great variety of body masses. Modular organisation of trait evolution across birds has facilitated simultaneous adaptation of different body regions to divergent ecological requirements. However, the role modularity has played in avian body size evolution, especially small-bodied, rapidly evolving and diverse avian subclades, such as hummingbirds and songbirds, is unknown. Modularity is influenced by the intersection of biomechanical restrictions, adaptation, and developmental controls, making it difficult to uncover the contributions of single factors such as body mass to skeletal organisation. We develop a novel framework to decompose this complexity, assessing factors underlying the modularity of skeletal proportions in fore-limb propelled birds distributed across a range of body masses. We demonstrate that differences in body size across birds triggers a modular reorganisation of flight apparatus proportions consistent with biomechanical expectations. We suggest weakened integration within the wing facilitates radiation in small birds. Our framework is generalisable to other groups and has the capacity to untangle the multi-layered complexity intrinsic to modular evolution.


Subject(s)
Biological Evolution , Birds , Body Size , Flight, Animal , Wings, Animal , Animals , Wings, Animal/anatomy & histology , Birds/anatomy & histology , Birds/physiology , Flight, Animal/physiology , Biomechanical Phenomena
8.
PLoS One ; 19(5): e0303690, 2024.
Article in English | MEDLINE | ID: mdl-38809838

ABSTRACT

Sexual dimorphism is common throughout the animal kingdom, leading to sex-specific phenotypic differences. The common whitetail skimmer dragonfly, Plathemis lydia (Drury, 1773), is sexually dichromatic, where males of this species display a conspicuous white abdomen and females display a dark brown abdomen. Differences in abdomen conspicuousness between male and female P. lydia are likely attributed to differences in selective pressure where males use their white conspicuous abdomen during male-male territorial chases. We hypothesized that male P. lydia would exhibit wing morphology adaptations to better offset the costs of predation and territoriality and that these adaptations would differ from females. We used field-collected images to quantify differences in body length, wing length, wing area, wing shape, and wing loading between male and female P. lydia. Our results show that male P. lydia have significantly shorter fore and hind wings relative to body size with a higher wing loading when compared to females. We also found that male P. lydia have narrower and pointier fore and hind wings compared to females. These results are consistent with the idea that males are adapted for faster flight, specifically higher acceleration capacity, and higher agility whereas females are adapted for higher maneuverability.


Subject(s)
Odonata , Sex Characteristics , Wings, Animal , Animals , Male , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Odonata/anatomy & histology , Odonata/physiology , Female , Body Size/physiology
9.
Nat Commun ; 15(1): 4021, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740751

ABSTRACT

The unexplained protective effect of childhood adiposity on breast cancer risk may be mediated via mammographic density (MD). Here, we investigate a complex relationship between adiposity in childhood and adulthood, puberty onset, MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)), and their effects on breast cancer. We use Mendelian randomization (MR) and multivariable MR to estimate the total and direct effects of adiposity and age at menarche on MD phenotypes. Childhood adiposity has a decreasing effect on DA, while adulthood adiposity increases NDA. Later menarche increases DA/PD, but when accounting for childhood adiposity, this effect is attenuated. Next, we examine the effect of MD on breast cancer risk. DA/PD have a risk-increasing effect on breast cancer across all subtypes. The MD SNPs estimates are heterogeneous, and additional analyses suggest that different mechanisms may be linking MD and breast cancer. Finally, we evaluate the role of MD in the protective effect of childhood adiposity on breast cancer. Mediation MR analysis shows that 56% (95% CIs [32%-79%]) of this effect is mediated via DA. Our finding suggests that higher childhood adiposity decreases mammographic DA, subsequently reducing breast cancer risk. Understanding this mechanism is important for identifying potential intervention targets.


Subject(s)
Adiposity , Breast Density , Breast Neoplasms , Mammography , Menarche , Mendelian Randomization Analysis , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Female , Adiposity/genetics , Risk Factors , Child , Body Size , Adult , Polymorphism, Single Nucleotide , Middle Aged
10.
Nat Commun ; 15(1): 3979, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729972

ABSTRACT

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.


Subject(s)
Body Size , Fishes , Oceans and Seas , Predatory Behavior , Temperature , Animals , Predatory Behavior/physiology , Body Size/physiology , Fishes/physiology , Food Chain , Ecosystem , Population Dynamics
11.
Glob Chang Biol ; 30(5): e17305, 2024 May.
Article in English | MEDLINE | ID: mdl-38712651

ABSTRACT

Anthropogenic climate change is altering precipitation regimes at a global scale. While precipitation changes have been linked to changes in the abundance and diversity of soil and litter invertebrate fauna in forests, general trends have remained elusive due to mixed results from primary studies. We used a meta-analysis based on 430 comparisons from 38 primary studies to address associated knowledge gaps, (i) quantifying impacts of precipitation change on forest soil and litter fauna abundance and diversity, (ii) exploring reasons for variation in impacts and (iii) examining biases affecting the realism and accuracy of experimental studies. Precipitation reductions led to a decrease of 39% in soil and litter fauna abundance, with a 35% increase in abundance under precipitation increases, while diversity impacts were smaller. A statistical model containing an interaction between body size and the magnitude of precipitation change showed that mesofauna (e.g. mites, collembola) responded most to changes in precipitation. Changes in taxonomic richness were related solely to the magnitude of precipitation change. Our results suggest that body size is related to the ability of a taxon to survive under drought conditions, or to benefit from high precipitation. We also found that most experiments manipulated precipitation in a way that aligns better with predicted extreme climatic events than with predicted average annual changes in precipitation and that the experimental plots used in experiments were likely too small to accurately capture changes for mobile taxa. The relationship between body size and response to precipitation found here has far-reaching implications for our ability to predict future responses of soil biodiversity to climate change and will help to produce more realistic mechanistic soil models which aim to simulate the responses of soils to global change.


Subject(s)
Body Size , Climate Change , Forests , Rain , Soil , Animals , Soil/chemistry , Biodiversity , Invertebrates/physiology
12.
Parasitol Res ; 123(6): 228, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819616

ABSTRACT

A number of studies have been conducted on monogenean seasonality, though primarily in continental regions with wide annual temperatures ranges. We investigated seasonal changes in the prevalence and intensity of Salsuginus seculus infesting sexually dimorphic western mosquitofish (Gambusia affinis) in New Zealand. This represents the first examination of seasonality for this species globally, and the first seasonal assessment of any monogenean population in New Zealand, a temperate country with a mild oceanic climate. Prevalence and intensity of S. seculus with respect to fish size and sex was also examined. Prevalence of S. seculus changed temporally, peaking in summer, and was strongly positively correlated with algal concentrations. This relationship may be associated with increasing food levels, leading to an increase in fish courting and mating, resulting in high numbers and close physical associations of G. affinis individuals, facilitating transmission of the monogeneans. Thus, biotic factors may be important in determining temporal changes in S. seculus prevalence in New Zealand. Female G. affinis had a significantly higher prevalence and mean intensity of S. seculus than males. Longer fish had a higher mean intensity and prevalence of S. seculus. Female G. affinis likely host disproportionately more monogeneans as they are larger than males. Alternatively, females may have a compromised immune response during reproductive periods. Overall, seasonal change was observed in S. seculus prevalence and intensity under New Zealand's mild climatic conditions, and the larger female G. affinis in this dimorphic species supported a greater prevalence and intensity of infestation than males.


Subject(s)
Cyprinodontiformes , Fish Diseases , Seasons , Animals , New Zealand/epidemiology , Male , Female , Prevalence , Fish Diseases/parasitology , Fish Diseases/epidemiology , Cyprinodontiformes/parasitology , Sex Factors , Body Size , Trematoda/isolation & purification , Trematoda/classification , Trematoda/physiology
13.
Sci Total Environ ; 934: 173124, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729367

ABSTRACT

It was assessed how the size of perch (Perca fluviatilis) is related to levels of four per- and polyfluorinated substances (PFAS) in its muscle tissue. These were PFOS, PFNA, PFOA, and PFHxS, for which the sum, denoted as ΣPFAS4, has a tolerable intake derived by the European Food Safety Authority. The results indicate that, in contrast to, e.g., mercury levels, ΣPFAS4 levels in perch muscle do not increase with increasing weight of the fish, which implies that consuming larger perch does not increase the risk of exceeding the TWI of ΣPFAS4, in relation to consuming smaller perch. Therefore, for risk assessment, analyzing samples of smaller perch is sufficient, demanding less effort to catch. The credibility of the results was strengthened by applying the same statistical model to mercury levels in the same samples. As expected, larger fish had generally higher levels than small fish for mercury.


Subject(s)
Fluorocarbons , Perches , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Environmental Monitoring , Body Size
14.
Sci Rep ; 14(1): 12013, 2024 05 26.
Article in English | MEDLINE | ID: mdl-38797736

ABSTRACT

Cyclic rodent populations exhibit pronounced changes in body mass associated with the population cycle phase, long-known as Chitty effect. Although Chitty effect is a common epiphenomenon in both America and Europe, there is still incomplete evidence about the generality of these patterns across the entire range of most species. Moreover, despite decades of research, the underlying factors driving Chitty effect remains poorly understood. Here, we examined the influence of intrinsic and extrinsic factors that may underlie observed patterns in vole size variation in the Iberian common vole Microtus arvalis asturianus. We weighed and measured 2816 adult voles that were captured during 6 trapping periods. Vole numbers and body mass showed strong period- and phase-related variation both in females and males, demonstrating marked Chitty effect in the studied population. Body mass of adult males correlated with body length, evidencing that heavier males are also structurally larger. Statistical models showed that probability of occurrence of large-sized vole (> 37 g) was significantly more likely in reproductive males, during increase and peak phases, and it was modulated by habitat, with crop fields and field margins between crops showing an increased likelihood. We suggest an effect of the habitat on vole body mass mediated by predation.


Subject(s)
Arvicolinae , Body Weight , Ecosystem , Animals , Arvicolinae/physiology , Male , Female , Body Size/physiology , Population Dynamics
15.
Sci Rep ; 14(1): 12162, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38802448

ABSTRACT

Many fisheries exert directional selection on traits such as body size and growth rate. Whether directional selection impacts regions of the genome associated with traits related to growth is unknown. To address this issue, we characterised copy number variation in three regions of the genome associated with cell division, (1) telomeric DNA, (2) loci transcribed as ribosomal RNA (rDNA), and (3) mitochondrial DNA (mtDNA), in three selection lines of zebrafish reared at three temperatures (22 °C, 28 °C, and 34 °C). Selection lines differed in (1) the direction of selection (two lines experienced directional selection for large or small body size) and (2) whether they experienced any directional selection itself. Lines that had experienced directional selection were smaller, had lower growth rate, shorter telomeres, and lower rDNA copy number than the line that experiencing no directional selection. Neither telomere length nor rDNA copy number were affected by temperature. In contrast, mtDNA content increased at elevated temperature but did not differ among selection lines. Though directional selection impacts rDNA and telomere length, direction of such selection did not matter, whereas mtDNA acts as a stress marker for temperature. Future work should examine the consequences of these genomic changes in natural fish stocks.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , RNA, Ribosomal , Selection, Genetic , Telomere , Zebrafish , Animals , Telomere/genetics , Zebrafish/genetics , DNA, Mitochondrial/genetics , RNA, Ribosomal/genetics , Temperature , Telomere Homeostasis , Body Size/genetics
16.
J Hazard Mater ; 472: 134474, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696961

ABSTRACT

Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.


Subject(s)
Bacteria , Body Size , Drug Resistance, Microbial , Fertilizers , Fungi , Nematoda , Soil Microbiology , Soil , Body Size/drug effects , Bacteria/genetics , Bacteria/drug effects , Animals , Soil/chemistry , Fungi/genetics , Fungi/drug effects , Nematoda/drug effects , Nematoda/genetics , Drug Resistance, Microbial/genetics
17.
Oecologia ; 205(1): 149-162, 2024 May.
Article in English | MEDLINE | ID: mdl-38796612

ABSTRACT

Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee-flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.


Subject(s)
Body Size , Diet , Animals , Bees , Montana , Flowers
18.
PeerJ ; 12: e17432, 2024.
Article in English | MEDLINE | ID: mdl-38799056

ABSTRACT

Background: Warming generally induces faster developmental and growth rates, resulting in smaller asymptotic sizes of adults in warmer environments (a pattern known as the temperature-size rule). However, whether temperature-size responses are affected across generations, especially when thermal environments differ from one generation to the next, is unclear. Here, we tested temperature-size responses at different ontogenetic stages and in two consecutive generations using two soil-living Collembola species from the family Isotomidae: Folsomia candida (asexual) and Proisotoma minuta (sexually reproducing). Methods: We used individuals (progenitors; F0) from cultures maintained during several generations at 15 °C or 20 °C, and exposed their offspring in cohorts (F1) to various thermal environments (15 °C, 20 °C, 25 °C and 30 °C) during their ontogenetic development (from egg laying to first reproduction; i.e., maturity). We measured development and size traits in the cohorts (egg diameter and body length at maturity), as well as the egg diameters of their progeny (F2). We predicted that temperature-size responses would be predominantly determined by within-generation plasticity, given the quick responsiveness of growth and developmental rates to changing thermal environments. However, we also expected that mismatches in thermal environments across generations would constrain temperature-size responses in offspring, possibly due to transgenerational plasticity. Results: We found that temperature-size responses were generally weak in the two Collembola species, both for within- and transgenerational plasticity. However, egg and juvenile development were especially responsive at higher temperatures and were slightly affected by transgenerational plasticity. Interestingly, plastic responses among traits varied non-consistently in both Collembola species, with some traits showing plastic responses in one species but not in the other and vice versa. Therefore, our results do not support the view that the mode of reproduction can be used to explain the degree of phenotypic plasticity at the species level, at least between the two Collembola species used in our study. Our findings provide evidence for a general reset of temperature-size responses at the start of each generation and highlight the importance of measuring multiple traits across ontogenetic stages to fully understand species' thermal responses.


Subject(s)
Arthropods , Temperature , Animals , Arthropods/growth & development , Body Size/physiology , Reproduction/physiology , Female
19.
Nat Commun ; 15(1): 2864, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580657

ABSTRACT

Global climate patterns fundamentally shape the distribution of species and ecosystems. For example, Bergmann's rule predicts that homeothermic animals, including birds and mammals, inhabiting cooler climates are generally larger than close relatives from warmer climates. The modern world, however, lacks the comparative data needed to evaluate such macroecological rules rigorously. Here, we test for Bergmann's rule in Mesozoic dinosaurs and mammaliaforms that radiated within relatively temperate global climate regimes. We develop a phylogenetic model that accounts for biases in the fossil record and allows for variable evolutionary dispersal rates. Our analysis also includes new fossil data from the extreme high-latitude Late Cretaceous Arctic Prince Creek Formation. We find no evidence for Bergmann's rule in Mesozoic dinosaurs or mammaliaforms, the ancestors of extant homeothermic birds and mammals. When our model is applied to thousands of extant dinosaur (bird) and mammal species, we find that body size evolution remains independent of latitude. A modest temperature effect is found in extant, but not in Mesozoic, birds, suggesting that body size evolution in modern birds was influenced by Bergmann's rule during Cenozoic climatic change. Our study provides a general approach for studying macroecological rules, highlighting the fossil record's power to address longstanding ecological principles.


Subject(s)
Dinosaurs , Animals , Phylogeny , Ecosystem , Models, Biological , Body Size , Mammals , Biological Evolution
20.
BMC Ecol Evol ; 24(1): 44, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622513

ABSTRACT

BACKGROUND: Body size and echolocation call frequencies are related in bats. However, it is unclear if this allometry applies to the entire clade. Differences have been suggested between nasal and oral emitting bats, as well as between some taxonomic families. Additionally, the scaling of other echolocation parameters, such as bandwidth and call duration, needs further testing. Moreover, it would be also interesting to test whether changes in body size have been coupled with changes in these echolocation parameters throughout bat evolution. Here, we test the scaling of peak frequency, bandwidth, and call duration with body mass using phylogenetically informed analyses for 314 bat species. We specifically tested whether all these scaling patterns differ between nasal and oral emitting bats. Then, we applied recently developed Bayesian statistical techniques based on large-scale simulations to test for the existence of correlated evolution between body mass and echolocation. RESULTS: Our results showed that echolocation peak frequencies, bandwidth, and duration follow significant allometric patterns in both nasal and oral emitting bats. Changes in these traits seem to have been coupled across the laryngeal echolocation bats diversification. Scaling and correlated evolution analyses revealed that body mass is more related to peak frequency and call duration than to bandwidth. We exposed two non-exclusive kinds of mechanisms to explain the link between size and each of the echolocation parameters. CONCLUSIONS: The incorporation of Bayesian statistics based on large-scale simulations could be helpful for answering macroevolutionary patterns related to the coevolution of traits in bats and other taxonomic groups.


Subject(s)
Chiroptera , Echolocation , Humans , Animals , Bayes Theorem , Body Size
SELECTION OF CITATIONS
SEARCH DETAIL
...