Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47.105
Filter
1.
BMJ Paediatr Open ; 8(1)2024 May 31.
Article in English | MEDLINE | ID: mdl-38823799

ABSTRACT

OBJECTIVE: Body temperature for a known ambient temperature is not known for infants born at term. We aimed to determine the normal range and the incidences of hypothermia and hyperthermia during the first 24 hours of life in healthy term-born infants nursed according to WHO recommendations. DESIGN: Prospective observational study. SETTING: Norwegian single centre district hospital. Infants were observed during skin-to-skin care or when dressed in cots. PARTICIPANTS: Convenience sample of 951 healthy infants born at term. METHODS: Delivery room temperature was aimed at 26-30°C and rooming-in temperature at 24°C. We measured rectal and room temperatures at 2, 4, 8, 16 and 24 hours of age. MAIN OUTCOME MEASURES: Percentile curves for rectal temperature. Proportions and risk factors for hypothermia and hyperthermia. RESULTS: The mean (SD) room temperature was 24.0°C (1.1), 23.8°C (1.0), 23.8°C (1.0)., 23.7°C (0.9) and 23.8°C (0.9). The median (2.5, 97.5 percentile) rectal temperature was 36.9°C (35.7-37.9), 36.8°C (35.9-37.5), 36.9°C (36.1-37.5), 37.0°C (36.4-37.7) and 37.1°C (36.5-37.7). Hypothermia (<36.5°C) occurred in 28% of the infants, 82% of incidents during the first 8 hours. Risk factors for hypothermia were low birth weight (OR 3.1 (95% CI, 2.0 to 4.6), per kg), male sex, being born at night and nursed in a cot versus skin to skin. Hyperthermia (>37.5°C) occurred in 12% and most commonly in large infants after 8 hours of life. Risk factors for hyperthermia were high birth weight (OR 2.2 (95% CI, 1.4 to 3.5), per kg), being awake, nursed skin to skin and being born through heavily stained amniotic fluid. CONCLUSIONS: Term-born infants were at risk of hypothermia during the first hours after birth even when nursed in an assumed adequate thermal environment and at risk of hyperthermia after 8 hours of age.


Subject(s)
Body Temperature , Hypothermia , Humans , Infant, Newborn , Male , Female , Risk Factors , Hypothermia/epidemiology , Hypothermia/etiology , Prospective Studies , Hyperthermia/epidemiology , Norway/epidemiology , Reference Values , Term Birth , Delivery Rooms , Fever/epidemiology , Kangaroo-Mother Care Method
2.
BMJ Health Care Inform ; 31(1)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830766

ABSTRACT

BACKGROUND: Current approaches for initial coronary artery disease (CAD) assessment rely on pretest probability (PTP) based on risk factors and presentations, with limited performance. Infrared thermography (IRT), a non-contact technology that detects surface temperature, has shown potential in assessing atherosclerosis-related conditions, particularly when measured from body regions such as faces. We aim to assess the feasibility of using facial IRT temperature information with machine learning for the prediction of CAD. METHODS: Individuals referred for invasive coronary angiography or coronary CT angiography (CCTA) were enrolled. Facial IRT images captured before confirmatory CAD examinations were used to develop and validate a deep-learning IRT image model for detecting CAD. We compared the performance of the IRT image model with the guideline-recommended PTP model on the area under the curve (AUC). In addition, interpretable IRT tabular features were extracted from IRT images to further validate the predictive value of IRT information. RESULTS: A total of 460 eligible participants (mean (SD) age, 58.4 (10.4) years; 126 (27.4%) female) were included. The IRT image model demonstrated outstanding performance (AUC 0.804, 95% CI 0.785 to 0.823) compared with the PTP models (AUC 0.713, 95% CI 0.691 to 0.734). A consistent level of superior performance (AUC 0.796, 95% CI 0.782 to 0.811), achieved with comprehensive interpretable IRT features, further validated the predictive value of IRT information. Notably, even with only traditional temperature features, a satisfactory performance (AUC 0.786, 95% CI 0.769 to 0.803) was still upheld. CONCLUSION: In this prospective study, we demonstrated the feasibility of using non-contact facial IRT information for CAD prediction.


Subject(s)
Coronary Artery Disease , Face , Thermography , Humans , Thermography/methods , Coronary Artery Disease/diagnostic imaging , Male , Female , Middle Aged , Face/diagnostic imaging , Aged , Predictive Value of Tests , Feasibility Studies , Body Temperature , Machine Learning , Coronary Angiography , Computed Tomography Angiography , Prospective Studies , Infrared Rays
3.
PLoS One ; 19(5): e0300373, 2024.
Article in English | MEDLINE | ID: mdl-38696403

ABSTRACT

Captive and domestic animals are often required to engage in physical activity initiated or organised by humans, which may impact their body temperature, with consequences for their health and welfare. This is a particular concern for animals such as elephants that face thermoregulatory challenges because of their body size and physiology. Using infrared thermography, we measured changes in skin temperature associated with two types of physical activity in ten female Asian elephants (Elephas maximus) at an eco-tourism lodge in Nepal. Six elephants took part in an activity relatively unfamiliar to the elephants-a polo tournament-and four participated in more familiar ecotourism activities. We recorded skin temperatures for four body regions affected by the activities, as well as an average skin temperature. Temperature change was used as the response variable in the analysis and calculated as the difference in elephant temperature before and after activity. We found no significant differences in temperature change between the elephants in the polo-playing group and those from the non-polo playing group. However, for both groups, when comparing the average skin body temperature and several different body regions, we found significant differences in skin temperature change before and after activity. The ear pinna was the most impacted region and was significantly different to all other body regions. This result highlights the importance of this region in thermoregulation for elephants during physical activity. However, as we found no differences between the average body temperatures of the polo and non-polo playing groups, we suggest that thermoregulatory mechanisms can counteract the effects of both physical activities the elephants engaged in.


Subject(s)
Elephants , Skin Temperature , Animals , Elephants/physiology , Female , Skin Temperature/physiology , Physical Conditioning, Animal/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Thermography/methods
4.
Sci Rep ; 14(1): 10449, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714775

ABSTRACT

The body temperature of infants at equilibrium with their surroundings is balanced between heat production from metabolism and the transfer of heat to the environment. Total heat production is related to body size, which is closely related to metabolic rate and oxygen consumption. Body temperature control is a crucial aspect of neonatal medicine but we have often struggled with temperature measures. Contactless infrared thermography (IRT) is useful for vulnerable neonates and may be able to assess their spontaneous thermal metabolism. The present study focused on heat oscillations and their cause. IRT was used to measure the skin temperature every 15 s of neonates in an incubator. We analyzed the thermal data of 27 neonates (32 measurements), calculated the average temperature within specified regions, and extracted two frequency components-Components A and B-using the Savitzky-Golay method. Furthermore, we derived an equation describing the cycle-named cycle T-for maintaining body temperature according to body weight. A positive correlation was observed between cycle T and Component B (median [IQR]: 368 [300-506] s). This study sheds light on the physiological thermoregulatory function of newborns and will lead to improved temperature management methods for newborns, particularly premature, low-birth-weight infants.


Subject(s)
Body Temperature Regulation , Thermography , Humans , Infant, Newborn , Thermography/methods , Body Temperature Regulation/physiology , Female , Male , Monitoring, Physiologic/methods , Body Temperature/physiology , Skin Temperature/physiology
5.
Clin Exp Dent Res ; 10(3): e891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706420

ABSTRACT

OBJECTIVES: Periodontal inflammation may be assessed by bleeding on probing and subgingival temperature. This pilot study evaluated the intrapatient relationship between subgingival temperature and selected bacterial groups/species in deep periodontal pockets with bleeding on probing. MATERIALS AND METHODS: In each of eight adults, an electronic temperature probe identified three "hot" pockets with elevated subgingival temperature and three "cool" pockets with normal subgingival temperature among premolars/molars with 6‒10 mm probing depths and bleeding on probing. Microbial samples collected separately from the hot and cool periodontal pockets were cultured for selected periodontal pathogens. RESULTS: Hot compared to cool periodontal pockets revealed significantly higher absolute and normalized subgingival temperatures and yielded higher mean proportions of Porphyromonas gingivalis (10.2% for hot vs. 2.5% for cool, p = 0.030) and total red/orange complex periodontal pathogens (48.0% for hot vs. 24.6% for cool, p = 0.012). CONCLUSIONS: Hot versus cool deep periodontal pockets harbored significantly higher levels of major periodontal pathogens. Subgingival temperature measurements may potentially be useful to assess risk of periodontitis progression and the efficacy of periodontal therapy.


Subject(s)
Periodontal Pocket , Porphyromonas gingivalis , Humans , Male , Female , Pilot Projects , Middle Aged , Periodontal Pocket/microbiology , Porphyromonas gingivalis/isolation & purification , Adult , Periodontitis/microbiology , Body Temperature , Bacterial Load , Gingiva/microbiology , Aged
6.
Narra J ; 4(1): e574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798847

ABSTRACT

Respiratory droplets, naturally produced during expiration, can transmit pathogens from infected individuals. Wearing a face mask is crucial to prevent such transmission, yet the perception of dyspnea and uncomfortable breathing remains a common concern, particularly during epidemics. The aim of this study was to investigate the impact of face mask use on the perception of dyspnea, cardiopulmonary parameters, and facial temperature during physical activity. A randomized crossover study was conducted on healthy adults at a physiology laboratory located in the Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia, in November 2022. Participants underwent five stages of physical exercise tests based on the Bruce Protocol under three conditions: without any face mask (control), wearing a surgical mask, and an N95 mask, forming the study's main groups. Dyspnea perception (measured by the Modified Borg Dyspnea Scale), cardiopulmonary parameters (heart rate, oxygen saturation, respiratory rate, blood pressure, and mean arterial pressure) and facial temperature were measured before the exercise test (pre-workout), at the end of stage 1, 2, 3, 4, 5, and after the whole exercise test (post-workout). A two-way repeated measures ANOVA was conducted, considering two factors: the type of mask (control, surgical mask, N95 mask) and the various stages of the exercise test. A total of 36 healthy adults were included in the study. We found that dyspnea perception was much worse in the N95 mask group, particularly during vigorous exercise. There was no significant difference between groups in cardiopulmonary parameters. However, participants wearing N95 had a greater supralabial temperature than those wearing surgical masks or no mask at all. It is recommended to undertake a more in-depth evaluation of cardiopulmonary physiological measures.


Subject(s)
Cross-Over Studies , Dyspnea , Heart Rate , Masks , Humans , Masks/adverse effects , Dyspnea/prevention & control , Male , Female , Adult , Heart Rate/physiology , Body Temperature , Indonesia , Healthy Volunteers , Perception , Exercise Test , Young Adult , Exercise/physiology , Blood Pressure/physiology , Respiratory Rate/physiology
7.
BMC Vet Res ; 20(1): 199, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745195

ABSTRACT

BACKGROUND: Rectal temperature (RT) is an important index of core temperature, which has guiding significance for the diagnosis and treatment of pet diseases. OBJECTIVES: Development and evaluation of an alternative method based on machine learning to determine the core temperatures of cats and dogs using surface temperatures. ANIMALS: 200 cats and 200 dogs treated between March 2022 and May 2022. METHODS: A group of cats and dogs were included in this study. The core temperatures and surface body temperatures were measured. Multiple machine learning methods were trained using a cross-validation approach and evaluated in one retrospective testing set and one prospective testing set. RESULTS: The machine learning models could achieve promising performance in predicting the core temperatures of cats and dogs using surface temperatures. The root mean square errors (RMSE) were 0.25 and 0.15 for cats and dogs in the retrospective testing set, and 0.15 and 0.14 in the prospective testing set. CONCLUSION: The machine learning model could accurately predict core temperatures for companion animals of cats and dogs using easily obtained body surface temperatures.


Subject(s)
Body Temperature , Machine Learning , Animals , Cats/physiology , Dogs/physiology , Retrospective Studies , Male , Female , Prospective Studies
8.
J Nanobiotechnology ; 22(1): 251, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750597

ABSTRACT

BACKGROUND: Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS: Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS: This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION: Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.


Subject(s)
Blood-Brain Barrier , Brain Injuries, Traumatic , Hydrogels , Hypothermia, Induced , Animals , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/drug therapy , Mice , Hydrogels/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Male , Hypothermia, Induced/methods , Neuroprotection/drug effects , Brain/pathology , Disease Models, Animal , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Body Temperature , Mice, Inbred C57BL
9.
J Strength Cond Res ; 38(6): 1019-1024, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38781465

ABSTRACT

ABSTRACT: Sweet, DK, Qiao, J, Rosbrook, P, and Pryor, JL. Load-velocity profiles before and after heated resistance exercise. J Strength Cond Res 38(6): 1019-1024, 2024-This study examined neuromuscular performance using load-velocity (L-V) profiles in men and women before and after resistance exercise (RE) in hot (HOT; 40° C) and temperate (TEMP; 21° C) environments. Sixteen (f = 8, m = 8) resistance-trained individuals completed a single 70-minute whole-body high-volume load (6 exercises, 4 sets of 10 repetitions) RE bout in HOT and TEMP. Before and after RE, rectal temperature (TRE), muscle temperature of the vastus lateralis (TVL) and triceps brachii (TTB), and an L-V profile for the deadlift and bench press were recorded. Thermoregulatory and L-V data were analyzed using separate 2-way repeated measures analysis of variances (ANOVAs; condition [hot, temperate] and time [pre, post]) with significance level set at p ≤ 0.05. Deadlift peak velocity was reduced at 60% 1 repetition maximum (1RM) after RE in HOT but not TEMP. Peak velocity of 40% 1RM bench press was lower in TEMP vs. HOT pre-RE (p < 0.01). Peak velocity was decreased at all loads in the deadlift L-V profile after RE, regardless of condition. Despite elevated TRE (TEMP; 37.58 ± 0.35, HOT; 38.20 ± 0.39° C), TVL (TEMP; 35.24 ± 0.62, HOT; 37.92 ± 0.55° C), and TTB (TEMP; 35.05 ± 0.78, HOT; 38.00 ± 0.16° C) after RE in HOT vs. TEMP (p < 0.01), RE in HOT did not broadly affect L-V profiles. This indicates heated resistance exercise can be performed with high-volume load and high ambient temperature with minimal performance impairment.


Subject(s)
Hot Temperature , Muscle, Skeletal , Resistance Training , Humans , Resistance Training/methods , Male , Female , Young Adult , Muscle, Skeletal/physiology , Adult , Body Temperature/physiology , Weight Lifting/physiology , Body Temperature Regulation/physiology , Muscle Strength/physiology
10.
J Med Primatol ; 53(3): e12711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38790083

ABSTRACT

BACKGROUND: This study used infrared thermography (IRT) for mapping the facial and ocular temperatures of howler monkeys, to determine parameters for the diagnosis of febrile processes. There are no published IRT study in this species. METHODS: Were evaluated images of a group of monkeys kept under human care at Sorocaba Zoo (São Paulo, Brazil). The images were recorded during 1 year, in all seasons. Face and eye temperatures were evaluated. RESULTS: There are statistically significant differences in face and eye temperatures. Mean values and standard deviations for facial and ocular temperature were respectively: 33.0°C (2.1) and 36.5°C (1.9) in the summer; 31.5°C (4.5) and 35.3°C (3.6) in the autumn; 30.0°C (4.3) and 35.6°C (3.9) in the winter; 30.8°C (2.9) and 35.5°C (2.1) in the spring. CONCLUSIONS: The IRT was effective to establish a parameter for facial and ocular temperatures of black-and-gold howler monkeys kept under human care.


Subject(s)
Alouatta , Body Temperature , Eye , Face , Infrared Rays , Thermography , Animals , Thermography/veterinary , Thermography/methods , Alouatta/physiology , Male , Seasons , Female , Fever/veterinary , Fever/diagnosis , Animals, Zoo
11.
J Therm Biol ; 121: 103867, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38744026

ABSTRACT

Infrared thermography (IRT) has become more accessible due to technological advancements, making thermal cameras more affordable. Infrared thermal cameras capture the infrared rays emitted by objects and convert it into temperature representations. IRT has emerged as a promising and non-invasive approach for examining the human eye. Ocular surface temperature assessment based on IRT is vital for the diagnosis and monitoring of various eye conditions like dry eye, diabetic retinopathy, glaucoma, allergic conjunctivitis, and inflammatory diseases. A collective sum of 192 articles was sourced from various databases, and through adherence to the PRISMA guidelines, 29 articles were ultimately chosen for systematic analysis. This systematic review article seeks to provide readers with a thorough understanding of IRT's applications, advantages, limitations, and recent developments in the context of eye examinations. It covers various aspects of IRT-based eye analysis, including image acquisition, processing techniques, ocular surface temperature measurement, three different approaches to identifying abnormalities, and different evaluation metrics used. Our review also delves into recent advancements, particularly the integration of machine learning and deep learning algorithms into IRT-based eye examinations. Our systematic review not only sheds light on the current state of research but also outlines promising future prospects for the integration of infrared thermography in advancing eye health diagnostics and care.


Subject(s)
Eye Diseases , Infrared Rays , Thermography , Humans , Thermography/methods , Eye Diseases/diagnosis , Eye Diseases/diagnostic imaging , Eye/diagnostic imaging , Machine Learning , Body Temperature
12.
PLoS One ; 19(5): e0301083, 2024.
Article in English | MEDLINE | ID: mdl-38787875

ABSTRACT

Resilience of mammals to anthropogenic climate and land-use changes is associated with the maintenance of adequate responses of several fitness-related traits such as those related to immune functions. Isolated and combined effects of decreased food availability and increased ambient temperature can lead to immunosuppression and greater susceptibility to disease. Our study tested the general hypothesis that decreased food availability, increased ambient temperature and the combined effect of both factors would affect selected physiological and behavioral components associated with the innate immune system of fruit-eating bats (Carollia perspicillata). Physiological (fever, leukocytosis and neutrophil/lymphocyte ratio) and behavioral (food intake) components of the acute phase response, as well as bacterial killing ability of the plasma were assessed after immune challenge with lipopolysaccharide (LPS: 10 mg/kg) in experimental groups kept at different short-term conditions of food availability (ad libitum diet or 50% food-deprived) and ambient temperature (27 and 33°C). Our results indicate that magnitude of increase in body temperature was not affected by food availability, ambient temperature or the interaction of both factors, but the time to reach the highest increase took longer in LPS-injected bats that were kept under food restriction. The magnitude of increased neutrophil/lymphocyte ratio was affected by the interaction between food availability and ambient temperature, but food intake, total white blood cell count and bacterial killing ability were not affected by any factor or interaction. Overall, our results suggest that bacterial killing ability and most components of acute phase response examined are not affected by short-term changes in food availability and ambient temperature within the range evaluated in this study, and that the increase of the neutrophil/lymphocyte ratio when bats are exposed to low food availability and high ambient temperature might represent an enhancement of cellular response to deal with infection.


Subject(s)
Chiroptera , Immunity, Innate , Lipopolysaccharides , Temperature , Animals , Chiroptera/immunology , Chiroptera/physiology , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Neutrophils/immunology , Male , Eating , Fruit/immunology , Body Temperature , Acute-Phase Reaction/immunology
13.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732079

ABSTRACT

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Mitophagy , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Rats , Circadian Rhythm/physiology , Male , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Weightlessness Simulation , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Body Temperature , Heart Rate , Rats, Sprague-Dawley , Proteolysis
14.
Bull Exp Biol Med ; 176(5): 543-547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38717566

ABSTRACT

We studied the dynamics of the main hemodynamic parameters in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats with visceral obesity and chemically induced colitis (CIC) against the background of probiotic therapy. Systolic BP, HR, and body temperature were recorded over 36 days using a wireless telemetry system. During 8 days (3 days before CIC induction and until the end of the experiment) the animals were intragastrically administered a probiotic based on Lactobacillus delbrueckii D5 strain. At baseline, systolic BP was significantly higher in the SHR group, while HR and body temperature did not differ in SHR and WKY rats. On day 8 after CIC induction, systolic BP, HR, and body temperature in SHR were significantly increased in comparison with the initial values. In the group of WKY rats, all indices at the end of the experiment remained at the initial levels. Probiotic therapy in SHR, in contrast to WKY rats, did not lead to normalization of body temperature and hemodynamic disorders resulting from CIC.


Subject(s)
Body Temperature , Colitis , Hemodynamics , Probiotics , Rats, Inbred SHR , Rats, Inbred WKY , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Rats , Male , Colitis/chemically induced , Colitis/physiopathology , Colitis/microbiology , Hemodynamics/drug effects , Body Temperature/drug effects , Blood Pressure/drug effects , Blood Pressure/physiology , Heart Rate/drug effects , Lactobacillus delbrueckii , Obesity/physiopathology , Obesity, Abdominal/physiopathology , Obesity, Abdominal/chemically induced
15.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745199

ABSTRACT

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Subject(s)
Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
16.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38812469

ABSTRACT

Study objectives were to characterize the effects of citrulline (CIT) on physiological and intestinal morphology metrics during heat stress (HS) and feed restriction. Forty crossbred gilts (30 ±â€…2 kg body weight [BW]) were assigned to one of five treatments: (1) thermoneutral (TN) fed ad libitum (AL) with control (CON) supplement (TNAL; n = 8), (2) TN pair-fed (PF) with CON (PF-CON; n = 8), (3) TN PF with CIT (PF-CIT; n = 8), (4) HS AL with CON (HS-CON; n = 8), and (5) HS AL with CIT (HS-CIT; n = 8). During the period (P) 1 (7 d), pigs were in TN conditions (23.6 °C) and fed AL their respective supplemental treatments. During P2 (2.5 d), HS-CON and HS-CIT pigs were fed AL and exposed to cyclical HS (33.6 to 38.3 °C), while TNAL, PF-CON, and PF-CIT remained in TN and were fed either AL or PF to their HS counterparts. Citrulline (0.13 g/kg BW) was orally administered twice daily during P1 and P2. HS increased rectal temperature (Tr), skin temperature (Ts), and respiration rate (RR) relative to TN pigs (0.8 °C, 4.7 °C, and 47 breaths/min, respectively; P < 0.01). However, HS-CIT had decreased RR (7 breaths/min, P = 0.04) and a tendency for decreased Tr (0.1 °C, P = 0.07) relative to HS-CON pigs. During P2, HS pigs had decreased feed intake (22%; P < 0.01) and a tendency for decreased average daily gain (P = 0.08) relative to TNAL pigs, and by experimental design, PF pigs followed this same pattern. Circulating lipopolysaccharide-binding protein tended to be decreased (29%; P = 0.08) in PF relative to TNAL pigs and was increased (41%; P = 0.03) in HS compared to PF pigs. Jejunum villus height was decreased in PF relative to TNAL pigs (15%; P = 0.03); however, CIT supplementation improved this metric during feed restriction (16%; P = 0.10). Jejunum mucosal surface area decreased in PF (16%; P = 0.02) and tended to decrease in HS (11%; P = 0.10) compared to TNAL pigs. Ileum villus height and mucosal surface area decreased in HS compared to TNAL pigs (10 and 14%, respectively; P ≤ 0.04), but both parameters were rescued by CIT supplementation (P ≤ 0.08). Intestinal myeloperoxidase and goblet cell area remained similar among treatments and intestinal segments (P > 0.24). In summary, CIT supplementation slightly improved RR and Tr during HS. Feed restriction and HS differentially affected jejunum and ileum morphology and while CIT ameliorated some of these effects, the benefit appeared dependent on intestinal section and stressor type.


Heat stress (HS) negatively affects animal health and production efficiency and is a significant economic burden to global animal agriculture. Although the mechanisms responsible for reduced animal productivity during HS are complex and multifaceted, increasing evidence points to decreased intestinal barrier function as an important mediator of this response. Furthermore, HS causes a voluntary reduction in feed intake, and feed restriction independently induces gastrointestinal hyperpermeability. Loss of intestinal barrier integrity facilitates bacteria translocation across the epithelium into local and systemic circulation, thus initiating an immune response. Dietary citrulline has been shown to support gut health by improving intestinal barrier integrity and modulating intestinal inflammation. Therefore, the current study investigated the effects of citrulline supplementation on physiological and intestinal morphology parameters in heat-stressed and feed-restricted growing pigs. Herein, citrulline supplementation reduced respiration rate and rectal temperature in pigs exposed to the thermal load. Heat stress and feed restriction compromised small intestinal morphology, and while supplementing citrulline improved some of these parameters, the effects depended on the intestinal region and stressor type. Additional research is needed to evaluate the potential effects of citrulline supplementation on gut health during HS or nutrient restriction.


Subject(s)
Animal Feed , Citrulline , Dietary Supplements , Animals , Citrulline/pharmacology , Citrulline/administration & dosage , Dietary Supplements/analysis , Female , Animal Feed/analysis , Swine/physiology , Diet/veterinary , Food Deprivation , Hot Temperature , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Body Temperature/drug effects , Heat-Shock Response/drug effects
17.
Sci Rep ; 14(1): 12418, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816453

ABSTRACT

Body core temperature (Tc) monitoring is crucial for minimizing heat injury risk. However, validated strategies are invasive and expensive. Although promising, aural canal temperature (Tac) is susceptible to environmental influences. This study investigated whether incorporation of external auricle temperature (Tea) into an ear-based Tc algorithm enhances its accuracy during multiple heat stress conditions. Twenty males (mean ± SD; age = 25 ± 3 years, BMI = 21.7 ± 1.8, body fat = 12 ± 3%, maximal aerobic capacity (VO2max) = 64 ± 7 ml/kg/min) donned an ear-based wearable and performed a passive heating (PAH), running (RUN) and brisk walking trial (WALK). PAH comprised of immersion in hot water (42.0 ± 0.3 °C). RUN (70 ± 3%VO2max) and WALK (50 ± 10%VO2max) were conducted in an environmental chamber (Tdb = 30.0 ± 0.2 °C, RH = 71 ± 2%). Several Tc models, developed using Tac, Tea and heart rate, were validated against gastrointestinal temperature. Inclusion of Tea as a model input improved the accuracy of the ear-based Tc algorithm. Our best performing model (Trf3) displayed good group prediction errors (mean bias error = - 0.02 ± 0.26 °C) but exhibited individual prediction errors (percentage target attainment ± 0.40 °C = 88%) that marginally exceeded our validity criterion. Therefore, Trf3 demonstrates potential utility for group-based Tc monitoring, with additional refinement needed to extend its applicability to personalized heat strain monitoring.


Subject(s)
Body Temperature , Ear Auricle , Hot Temperature , Wearable Electronic Devices , Humans , Male , Adult , Body Temperature/physiology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Ear Auricle/physiology , Young Adult , Heart Rate/physiology , Algorithms
18.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806495

ABSTRACT

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Subject(s)
Bipolar Disorder , Body Temperature , Cadherins , Disease Models, Animal , Locomotion , Mice, Knockout , Animals , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Mice , Cadherins/genetics , Locomotion/genetics , Protocadherins , Male , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Behavior, Animal , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Prepulse Inhibition/genetics
19.
Science ; 384(6699): 1023-1030, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815037

ABSTRACT

Seamless interfaces between electronic devices and biological tissues stand to revolutionize disease diagnosis and treatment. However, biological and biomechanical disparities between synthetic materials and living tissues present challenges at bioelectrical signal transduction interfaces. We introduce the active biointegrated living electronics (ABLE) platform, encompassing capabilities across the biogenic, biomechanical, and bioelectrical properties simultaneously. The living biointerface, comprising a bioelectronics layout and a Staphylococcus epidermidis-laden hydrogel composite, enables multimodal signal transduction at the microbial-mammalian nexus. The extracellular components of the living hydrogels, prepared through thermal release of naturally occurring amylose polymer chains, are viscoelastic, capable of sustaining the bacteria with high viability. Through electrophysiological recordings and wireless probing of skin electrical impedance, body temperature, and humidity, ABLE monitors microbial-driven intervention in psoriasis.


Subject(s)
Hydrogels , Staphylococcus epidermidis , Hydrogels/chemistry , Animals , Wearable Electronic Devices , Humans , Inflammation , Electric Impedance , Skin , Body Temperature , Mice , Wireless Technology , Electronics , Humidity
20.
Article in English | MEDLINE | ID: mdl-38791809

ABSTRACT

Accurate body temperature measurement is essential for monitoring and managing safety during outdoor activities. Physical activities are an essential consideration for public health, with sports taking up an important proportion of these. Athletes' performances can be directly affected by body temperature fluctuations, with overheating or hypothermia posing serious health risks. Monitoring these temperatures allows coaches and medical staff to make decisions that enhance performance and safety. Traditional methods, like oral, axillary, and tympanic readings, are widely used, but face challenges during intense physical activities in real-world environments. This study evaluated the agreement, correlation, and interchangeability of oral, axillary, and tympanic temperature measurements in outdoor exercise conditions. Systems developed for specific placements might generate different sensor readouts. Conducted as an observational field study, it involved 21 adult participants (11 males and 10 females, average age 25.14 ± 5.80 years) that underwent the Yo-Yo intermittent recovery test protocol on an outdoor court. The main outcomes measured were the agreement and correlation between temperature readings from the three methods, both before and after exercise. The results indicate poor agreement between the measurement sites, with significant deviations observed post-exercise. Although the Spearman correlation coefficients showed consistent temperature changes post-exercise across all methods, the standard deviations in the pairwise comparisons exceeded 0.67 °C. This study concluded that widely used temperature measurement methods are challenging to use during outdoor exercises and should not be considered interchangeable. This variability, especially after exercise, underscores the need for further research using gold standard temperature measurement methods to determine the most suitable site for accurate readings. Care should thus be taken when temperature screening is done at scale using traditional methods, as each measurement site should be considered within its own right.


Subject(s)
Body Temperature , Exercise , Humans , Male , Adult , Female , Young Adult , Mouth/physiology , Ear/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...