Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.081
Filter
1.
Physiol Rep ; 12(11): e16107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849294

ABSTRACT

July 2023 has been confirmed as Earth's hottest month on record, and it was characterized by extraordinary heatwaves across southern Europe. Field data collected under real heatwave periods could add important evidence to understand human adaptability to extreme heat. However, field studies on human physiological responses to heatwave periods remain limited. We performed field thermo-physiological measurements in a healthy 37-years male undergoing resting and physical activity in an outdoor environment in the capital of Sicily, Palermo, during (July 21; highest level of local heat-health alert) and following (August 10; lowest level of local heat-health alert) the peak of Sicily's July 2023 heatwave. Results indicated that ~40 min of outdoor walking and light running in 33.8°C Wet Bulb Globe Temperature (WBGT) conditions (July 21) resulted in significant physiological stress (i.e., peak heart rate: 209 bpm; core temperature: 39.13°C; mean skin temperature: 37.2°C; whole-body sweat losses: 1.7 kg). Importantly, significant physiological stress was also observed during less severe heat conditions (August 10; WBGT: 29.1°C; peak heart rate: 190 bpm; core temperature: 38.48°C; whole-body sweat losses: 2 kg). These observations highlight the physiological strain that current heatwave conditions pose on healthy young individuals. This ecologically-valid empirical evidence could inform more accurate heat-health planning.


Subject(s)
Extreme Heat , Heart Rate , Humans , Male , Adult , Sicily , Heart Rate/physiology , Extreme Heat/adverse effects , Sweating/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Skin Temperature/physiology , Hot Temperature/adverse effects
7.
J Exp Biol ; 227(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826104

ABSTRACT

Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.


Subject(s)
Body Temperature , Feathers , Molting , Spheniscidae , Animals , Spheniscidae/physiology , Molting/physiology , Feathers/physiology , Body Temperature Regulation/physiology , Male , Female
8.
Neuron ; 112(11): 1727-1729, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843778

ABSTRACT

While effective analgesics, TRPV1 antagonists can dangerously alter thermoregulation. In this issue of Neuron, Huang et al.1 demonstrate that interaction with the S4-S5 linker of TRPV1 determines whether an antagonist affects core body temperature, with promising implications for analgesic development.


Subject(s)
Body Temperature Regulation , Hyperthermia , TRPV Cation Channels , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Hyperthermia/chemically induced , Animals , Body Temperature Regulation/drug effects , Body Temperature Regulation/physiology , Humans , Body Temperature/drug effects , Analgesics/pharmacology
11.
Curr Biol ; 34(11): 2517-2527.e4, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38754424

ABSTRACT

A fundamental question in dinosaur evolution is how they adapted to long-term climatic shifts during the Mesozoic and when they developed environmentally independent, avian-style acclimatization, becoming endothermic.1,2 The ability of warm-blooded dinosaurs to flourish in harsher environments, including cold, high-latitude regions,3,4 raises intriguing questions about the origins of key innovations shared with modern birds,5,6 indicating that the development of homeothermy (keeping constant body temperature) and endothermy (generating body heat) played a crucial role in their ecological diversification.7 Despite substantial evidence across scientific disciplines (anatomy,8 reproduction,9 energetics,10 biomechanics,10 osteohistology,11 palaeobiogeography,12 geochemistry,13,14 and soft tissues15,16,17), a consensus on dinosaur thermophysiology remains elusive.1,12,15,17,18,19 Differential thermophysiological strategies among terrestrial tetrapods allow endotherms (birds and mammals) to expand their latitudinal range (from the tropics to polar regions), owing to their reduced reliance on environmental temperature.20 By contrast, most reptilian lineages (squamates, turtles, and crocodilians) and amphibians are predominantly constrained by temperature in regions closer to the tropics.21 Determining when this macroecological pattern emerged in the avian lineage relies heavily on identifying the origin of these key physiological traits. Combining fossils with macroevolutionary and palaeoclimatic models, we unveil distinct evolutionary pathways in the main dinosaur lineages: ornithischians and theropods diversified across broader climatic landscapes, trending toward cooler niches. An Early Jurassic shift to colder climates in Theropoda suggests an early adoption of endothermy. Conversely, sauropodomorphs exhibited prolonged climatic conservatism associated with higher thermal conditions, emphasizing temperature, rather than plant productivity, as the primary driver of this pattern, suggesting poikilothermy with a stronger dependence on higher temperatures in sauropods.


Subject(s)
Biological Evolution , Birds , Dinosaurs , Fossils , Animals , Dinosaurs/anatomy & histology , Dinosaurs/physiology , Birds/physiology , Birds/anatomy & histology , Fossils/anatomy & histology , Body Temperature Regulation/physiology , Acclimatization
12.
Article in English | MEDLINE | ID: mdl-38723743

ABSTRACT

Ambient temperatures have great impacts on thermoregulation of small mammals. Brown adipose tissue (BAT), an obligative thermogenic tissue for small mammals, is localized not only in the interscapular depot (iBAT), but also in supraclavicular, infra/subscapular, cervical, paravertebral, and periaortic depots. The iBAT is known for its cold-induced thermogenesis, however, less has been paid attention to the function of BAT at other sites. Here, we investigated the function of BAT at different sites of the body during cold acclimation in a small rodent species. As expected, Brandt's voles (Lasiopodomys brandtii) consumed more food and reduced the body mass gain when they were exposed to cold. The voles increased resting metabolic rate and maintained a relatively lower body temperature in the cold (36.5 ± 0.27 °C) compared to those in the warm condition (37.1 ± 0.36 °C). During cold acclimation, the uncoupling protein 1 (UCP1) increased in aBAT (axillary), cBAT (anterior cervical), iBAT (interscapular), nBAT (supraclavicular), and sBAT (suprascapular). The levels of proliferating cell nuclear antigen (PCNA), a marker for cell proliferation, were higher in cBAT and iBAT in the cold than in the warm group. The pAMPK/AMPK and pCREB/CREB were increased in cBAT and iBAT during cold acclimation, respectively. These data indicate that these different sites of BAT play the cold-induced thermogenic function for small mammals.


Subject(s)
Acclimatization , Adipose Tissue, Brown , Arvicolinae , Cold Temperature , Thermogenesis , Uncoupling Protein 1 , Animals , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Arvicolinae/physiology , Acclimatization/physiology , Uncoupling Protein 1/metabolism , Thermogenesis/physiology , Male , Body Temperature Regulation/physiology , Basal Metabolism
13.
PLoS One ; 19(5): e0300373, 2024.
Article in English | MEDLINE | ID: mdl-38696403

ABSTRACT

Captive and domestic animals are often required to engage in physical activity initiated or organised by humans, which may impact their body temperature, with consequences for their health and welfare. This is a particular concern for animals such as elephants that face thermoregulatory challenges because of their body size and physiology. Using infrared thermography, we measured changes in skin temperature associated with two types of physical activity in ten female Asian elephants (Elephas maximus) at an eco-tourism lodge in Nepal. Six elephants took part in an activity relatively unfamiliar to the elephants-a polo tournament-and four participated in more familiar ecotourism activities. We recorded skin temperatures for four body regions affected by the activities, as well as an average skin temperature. Temperature change was used as the response variable in the analysis and calculated as the difference in elephant temperature before and after activity. We found no significant differences in temperature change between the elephants in the polo-playing group and those from the non-polo playing group. However, for both groups, when comparing the average skin body temperature and several different body regions, we found significant differences in skin temperature change before and after activity. The ear pinna was the most impacted region and was significantly different to all other body regions. This result highlights the importance of this region in thermoregulation for elephants during physical activity. However, as we found no differences between the average body temperatures of the polo and non-polo playing groups, we suggest that thermoregulatory mechanisms can counteract the effects of both physical activities the elephants engaged in.


Subject(s)
Elephants , Skin Temperature , Animals , Elephants/physiology , Female , Skin Temperature/physiology , Physical Conditioning, Animal/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Thermography/methods
14.
Sci Rep ; 14(1): 10449, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714775

ABSTRACT

The body temperature of infants at equilibrium with their surroundings is balanced between heat production from metabolism and the transfer of heat to the environment. Total heat production is related to body size, which is closely related to metabolic rate and oxygen consumption. Body temperature control is a crucial aspect of neonatal medicine but we have often struggled with temperature measures. Contactless infrared thermography (IRT) is useful for vulnerable neonates and may be able to assess their spontaneous thermal metabolism. The present study focused on heat oscillations and their cause. IRT was used to measure the skin temperature every 15 s of neonates in an incubator. We analyzed the thermal data of 27 neonates (32 measurements), calculated the average temperature within specified regions, and extracted two frequency components-Components A and B-using the Savitzky-Golay method. Furthermore, we derived an equation describing the cycle-named cycle T-for maintaining body temperature according to body weight. A positive correlation was observed between cycle T and Component B (median [IQR]: 368 [300-506] s). This study sheds light on the physiological thermoregulatory function of newborns and will lead to improved temperature management methods for newborns, particularly premature, low-birth-weight infants.


Subject(s)
Body Temperature Regulation , Thermography , Humans , Infant, Newborn , Thermography/methods , Body Temperature Regulation/physiology , Female , Male , Monitoring, Physiologic/methods , Body Temperature/physiology , Skin Temperature/physiology
15.
J Strength Cond Res ; 38(6): 1019-1024, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38781465

ABSTRACT

ABSTRACT: Sweet, DK, Qiao, J, Rosbrook, P, and Pryor, JL. Load-velocity profiles before and after heated resistance exercise. J Strength Cond Res 38(6): 1019-1024, 2024-This study examined neuromuscular performance using load-velocity (L-V) profiles in men and women before and after resistance exercise (RE) in hot (HOT; 40° C) and temperate (TEMP; 21° C) environments. Sixteen (f = 8, m = 8) resistance-trained individuals completed a single 70-minute whole-body high-volume load (6 exercises, 4 sets of 10 repetitions) RE bout in HOT and TEMP. Before and after RE, rectal temperature (TRE), muscle temperature of the vastus lateralis (TVL) and triceps brachii (TTB), and an L-V profile for the deadlift and bench press were recorded. Thermoregulatory and L-V data were analyzed using separate 2-way repeated measures analysis of variances (ANOVAs; condition [hot, temperate] and time [pre, post]) with significance level set at p ≤ 0.05. Deadlift peak velocity was reduced at 60% 1 repetition maximum (1RM) after RE in HOT but not TEMP. Peak velocity of 40% 1RM bench press was lower in TEMP vs. HOT pre-RE (p < 0.01). Peak velocity was decreased at all loads in the deadlift L-V profile after RE, regardless of condition. Despite elevated TRE (TEMP; 37.58 ± 0.35, HOT; 38.20 ± 0.39° C), TVL (TEMP; 35.24 ± 0.62, HOT; 37.92 ± 0.55° C), and TTB (TEMP; 35.05 ± 0.78, HOT; 38.00 ± 0.16° C) after RE in HOT vs. TEMP (p < 0.01), RE in HOT did not broadly affect L-V profiles. This indicates heated resistance exercise can be performed with high-volume load and high ambient temperature with minimal performance impairment.


Subject(s)
Hot Temperature , Muscle, Skeletal , Resistance Training , Humans , Resistance Training/methods , Male , Female , Young Adult , Muscle, Skeletal/physiology , Adult , Body Temperature/physiology , Weight Lifting/physiology , Body Temperature Regulation/physiology , Muscle Strength/physiology
16.
Physiol Rep ; 12(10): e16083, 2024 May.
Article in English | MEDLINE | ID: mdl-38789393

ABSTRACT

This study aimed to determine whether heat acclimation could induce adaptations in exercise performance, thermoregulation, and the expression of proteins associated with heat stress in the skeletal muscles of Thoroughbreds. Thirteen trained Thoroughbreds performed 3 weeks of training protocols, consisting of cantering at 90% maximal oxygen consumption (VO2max) for 2 min 2 days/week and cantering at 7 m/s for 3 min 1 day/week, followed by a 20-min walk in either a control group (CON; Wet Bulb Globe Temperature [WBGT] 12-13°C; n = 6) or a heat acclimation group (HA; WBGT 29-30°C; n = 7). Before and after heat acclimation, standardized exercise tests (SET) were conducted, cantering at 7 m/s for 90 s and at 115% VO2max until fatigue in hot conditions. Increases in run time (p = 0.0301), peak cardiac output (p = 0.0248), and peak stroke volume (p = 0.0113) were greater in HA than in CON. Pulmonary artery temperature at 7 m/s was lower in HA than in CON (p = 0.0332). The expression of heat shock protein 70 (p = 0.0201) and 90 (p = 0.0167) increased in HA, but not in CON. These results suggest that heat acclimation elicits improvements in exercise performance and thermoregulation under hot conditions, with a protective adaptation to heat stress in equine skeletal muscles.


Subject(s)
Acclimatization , HSP70 Heat-Shock Proteins , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Horses/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , HSP70 Heat-Shock Proteins/metabolism , Acclimatization/physiology , Male , Hot Temperature , Body Temperature Regulation/physiology , Oxygen Consumption/physiology , Heat-Shock Response/physiology
17.
Neurosci Biobehav Rev ; 161: 105667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599356

ABSTRACT

Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.


Subject(s)
Body Temperature Regulation , Social Behavior , Body Temperature Regulation/physiology , Humans , Animals , Brain/physiology , Neurons/physiology , Neural Pathways/physiology
18.
J Appl Physiol (1985) ; 136(6): 1440-1449, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38660730

ABSTRACT

The purpose of this study was to investigate the influence of biological sex, independent of differences in aerobic fitness and body fatness, on the change in gastrointestinal temperature (ΔTgi) and whole body sweat rate (WBSR) of children exercising under uncompensable heat stress. Seventeen boys (means ± SD; 13.7 ± 1.3 yr) and 18 girls (13.7 ± 1.4 yr) walked for 45 min at a fixed rate of metabolic heat production per kg body mass (8 W·kg-1) in 40°C and 30% relative humidity. Sex and peak oxygen consumption (V̇o2peak) were entered into a Bayesian hierarchical general additive model (HGAM) for Tgi. Sex, V̇o2peak, and the evaporative requirement for heat balance (Ereq) were entered into a Bayesian hierarchical linear regression for WBSR. For 26 (12 M and 14 F) of the 35 children with measured body composition, body fat percentage was entered in a separate HGAM and hierarchical linear regression for Tgi and WBSR, respectively. Conditional on sex-specific mean V̇o2peak, ΔTgi was 1.00°C [90% credible intervals (Crl): 0.84, 1.16] for boys and 1.17°C [1.01, 1.33] for girls, with a difference of 0.17°C [-0.39, 0.06]. When sex differences in V̇o2peak were accounted for, the difference in ΔTgi between boys and girls was 0.01°C [-0.25, 0.22]. The difference in WBSR between boys and girls was 0.03 L·h-1 [-0.02, 0.07], when isolated from differences in Ereq. The difference in ΔTgi between boys and girls was -0.10°C [-0.38, 0.17] when sex differences in body fat (%) were accounted for. Biological sex did not independently influence the ΔTgi and WBSR of children exercising under uncompensable heat stress.NEW & NOTEWORTHY Limited studies have investigated the thermoregulatory responses of boys and girls exercising under uncompensable heat stress. Boys and girls often differ in physiological characteristics other than biological sex, such as aerobic fitness and body fat percentage, which may confound interpretations. We investigated the influence of biological sex on exercise thermoregulation in children, independent of differences in aerobic fitness and body fatness.


Subject(s)
Body Temperature Regulation , Exercise , Sweating , Humans , Female , Male , Sweating/physiology , Exercise/physiology , Adolescent , Child , Body Temperature Regulation/physiology , Body Temperature/physiology , Oxygen Consumption/physiology , Heat-Shock Response/physiology , Sex Characteristics , Bayes Theorem , Hot Temperature , Sex Factors , Heat Stress Disorders/physiopathology , Body Composition/physiology
19.
Proc Natl Acad Sci U S A ; 121(19): e2311116121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683977

ABSTRACT

Conventionally, women are perceived to feel colder than men, but controlled comparisons are sparse. We measured the response of healthy, lean, young women and men to a range of ambient temperatures typical of the daily environment (17 to 31 °C). The Scholander model of thermoregulation defines the lower critical temperature as threshold of the thermoneutral zone, below which additional heat production is required to defend core body temperature. This parameter can be used to characterize the thermoregulatory phenotypes of endotherms on a spectrum from "arctic" to "tropical." We found that women had a cooler lower critical temperature (mean ± SD: 21.9 ± 1.3 °C vs. 22.9 ± 1.2 °C, P = 0.047), resembling an "arctic" shift compared to men. The more arctic profile of women was predominantly driven by higher insulation associated with more body fat compared to men, countering the lower basal metabolic rate associated with their smaller body size, which typically favors a "tropical" shift. We did not detect sex-based differences in secondary measures of thermoregulation including brown adipose tissue glucose uptake, muscle electrical activity, skin temperatures, cold-induced thermogenesis, or self-reported thermal comfort. In conclusion, the principal contributors to individual differences in human thermoregulation are physical attributes, including body size and composition, which may be partly mediated by sex.


Subject(s)
Body Temperature Regulation , Humans , Female , Male , Body Temperature Regulation/physiology , Adult , Arctic Regions , Young Adult , Adipose Tissue, Brown/physiology , Adipose Tissue, Brown/metabolism , Sex Characteristics , Sex Factors , Body Temperature/physiology , Thermogenesis/physiology , Basal Metabolism/physiology
20.
Comput Biol Med ; 172: 108262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479196

ABSTRACT

Given the increasing aging population and rising living standards in China, developing an accurate and straightforward thermoregulation model for the elderly has become increasingly essential. To address this need, an existing one-segment four-node thermoregulation model for the young was selected as the base model. This study developed the base model considering age-related physical and physiological changes to predict mean skin temperatures of the elderly. Measured data for model optimization were collected from 24 representative healthy Chinese elderly individuals (average age: 67 years). The subjects underwent temperature step changes between neutral and warm conditions with a temperature range of 25-34 °C. The model's demographic representation was first validated by comparing the subjects' physical characteristics with Chinese census data. Secondly, sensitivity analysis was performed to investigate the influences of passive system parameters on skin and core temperatures, and adjustments were implemented using measurement or literature data specific to the Chinese elderly. Thirdly, the active system was modified by resetting the body temperature set points. The active parameters to control thermoregulation activities were further optimized using the TPE (Tree-structured Parzen Estimator) hyperparameter tuning method. The model's accuracy was further verified using independent experimental data for a temperature range of 18-34 °C for Chinese elderly. By comprehensively considering age-induced thermal response changes, the proposed model has potential applications in designing and optimizing thermal management systems in buildings, as well as informing energy-efficient strategies tailored to the specific needs of the Chinese elderly population.


Subject(s)
Hot Temperature , Models, Biological , Humans , Aged , Body Temperature Regulation/physiology , Body Temperature/physiology , Skin Temperature , China
SELECTION OF CITATIONS
SEARCH DETAIL
...