Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 623
Filter
1.
Int J Mol Sci ; 25(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39337641

ABSTRACT

Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.


Subject(s)
Bombyx , Insect Proteins , Receptors, Cell Surface , Animals , Bombyx/genetics , Bombyx/metabolism , Bombyx/physiology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Signal Transduction , Phylogeny
2.
Sci Rep ; 14(1): 17879, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095549

ABSTRACT

Odours used by insects for foraging and mating are carried by the air. Insects induce airflows around them by flapping their wings, and the distribution of these airflows may strongly influence odour source localisation. The flightless silkworm moth, Bombyx mori, has been a prominent insect model for olfactory research. However, although there have been numerous studies on antenna morphology and its fluid dynamics, neurophysiology, and localisation algorithms, the airflow manipulation of the B. mori by fanning has not been thoroughly investigated. In this study, we performed computational fluid dynamics (CFD) analyses of flapping B. mori to analyse this mechanism in depth. A three-dimensional simulation using reconstructed wing kinematics was used to investigate the effects of B. mori fanning on locomotion and pheromone capture. The fanning of the B. mori was found to generate an aerodynamic force on the scale of its weight through an aerodynamic mechanism similar to that of flying insects. Our simulations further indicate that the B. mori guides particles from its anterior direction within the ~ 60° horizontally by wing fanning. Hence, if it detects pheromones during fanning, the pheromone can be concluded to originate from the direction the head is pointing. The anisotropy in the sampling volume enables the B. mori to orient to the pheromone plume direction. These results provide new insights into insect behaviour and offer design guidelines for robots for odour source localisation.


Subject(s)
Bombyx , Flight, Animal , Pheromones , Wings, Animal , Animals , Wings, Animal/physiology , Bombyx/physiology , Bombyx/chemistry , Pheromones/metabolism , Flight, Animal/physiology , Computer Simulation , Smell/physiology , Biomechanical Phenomena , Odorants/analysis , Hydrodynamics
3.
Arch Insect Biochem Physiol ; 116(4): e22128, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166358

ABSTRACT

High temperature stress has long-term negative effects on the growth and development of silkworm (Bombyx mori). Different silkworm varieties show the different tolerance to high temperature. The induction of autophagy is linked to increased thermotolerance in diverse ectothermic organisms. However, the function of autophagy in the thermotolerant and thermosensitive silkworm strains under high-temperature conditions remains unclear. The thermotolerant Liangguang NO.2 and thermosensitive Jingsong × Haoyue strains were used to explore the role of autophagy in thermotolerance. Here, we first found that the larval body weight gain was increased in the thermosensitive Jingsong × Haoyue strain, but there was no difference in the thermotolerant Liangguang NO.2 strain under high temperature conditions. High temperature stress had a negative influence on the cocoon performance in both the Liangguang NO.2 and Jingsong × Haoyue strains. Additionally, the autophagy-related gene Atg5 mRNA expression in the Liangguang NO.2 strain was upregulated by high temperature, while the expression of Atg12 mRNA was reduced in the Jingsong × Haoyue strain. Titers of 20-Hydroxyecdysone and the ultraspiracle 1 mRNA expression in the Liangguang NO.2 strain were upregulated by high temperature, which might be associated with the induction of autophagy. These results demonstrate the potentially regulatory mechanism of autophagy in silkworms' tolerance to high temperature, providing a theoretical basis for exploring the physiological mechanism of thermotolerance in insects.


Subject(s)
Autophagy , Bombyx , Hot Temperature , Larva , Thermotolerance , Animals , Bombyx/growth & development , Bombyx/physiology , Bombyx/genetics , Larva/growth & development , Gastrointestinal Tract/growth & development , Ecdysterone , Insect Proteins/metabolism , Insect Proteins/genetics
4.
Sci Rep ; 14(1): 19600, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179694

ABSTRACT

The phytochemicals of high nutritional and functional properties in Lepidium sativum L. (garden cress) seeds have nominated their seed powder (regardless of the concentration used) for enrichment of mulberry leaves in order to enhance Bombyx mori L. larval feeding, and consequently to gain ground in sericulture industry. As expected, B. mori larval feeding on L. sativum-enriched mulberry leaves showed not only a remarkable increase in mean values of certain economic parameters of B. mori, such as cocoon weight, cocoon shell weight, pupal weight, and egg yield, compared with the control group, but also showed a phenomenal increase in egg counts (on average, ca. 958-1256 eggs laid per female moth) and a significant increase in egg size (measured as egg surface area and egg volume). Male or female moth larval diet has significantly influenced the reproductive performance or fitness of both sexes of B. mori in terms of large-sized moths (measured as forewing, hind femur, and hind tibia lengths) and highly fecund moths (i.e., increased fecundity and spermatophore counts per female moth, and large-sized eggs). On the basis of B. mori female moth reproductive index, the female moths from L. sativum-fed larvae proved to have a lower reproductive index compared to their corresponding value for females of the control group, indicating more efficient utilization of larval resources for B. mori reproduction. Quantification of the three main physiological resources viz., protein, lipid and carbohydrate in the internal reproductive tract of B. mori female moths at death has nominated the female moth abdomens, or simply their bodies, as being a reasonable natural source of protein, lipid, and carbohydrate, to be involved in certain manufactures (e.g., pet feed formulations) instead of discarding them as a source of environmental pollution. Evidently, the L. sativum seed powder is of considerable interest because it remarkably improves the performance of such an economically important insect, B. mori. This is the first study for evaluating the efficacy of L. sativum seed powder in sericulture field to enhance B. mori productivity parameters.


Subject(s)
Bombyx , Larva , Lepidium sativum , Morus , Plant Leaves , Seeds , Animals , Bombyx/physiology , Plant Leaves/chemistry , Larva/physiology , Female , Seeds/chemistry , Male , Powders , Reproduction
5.
Nat Commun ; 15(1): 7144, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164296

ABSTRACT

FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Drosophila Proteins , Forkhead Transcription Factors , Longevity , Oxidative Stress , Animals , Longevity/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bombyx/genetics , Bombyx/metabolism , Bombyx/physiology , Drosophila melanogaster/genetics , Mitochondria/metabolism , Mitochondria/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation
6.
Insect Biochem Mol Biol ; 172: 104153, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964485

ABSTRACT

Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.


Subject(s)
Bombyx , Circadian Rhythm , Cryptochromes , Diapause, Insect , Photoperiod , Animals , Cryptochromes/genetics , Cryptochromes/metabolism , Bombyx/genetics , Bombyx/physiology , Bombyx/metabolism , Bombyx/growth & development , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/growth & development , Larva/genetics , Larva/metabolism , Phylogeny , Diapause/genetics , Gene Knockout Techniques , Circadian Clocks/genetics
7.
PLoS Genet ; 20(6): e1011329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913752

ABSTRACT

Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.


Subject(s)
Bombyx , Chromosome Segregation , Meiosis , Moths , Spermatogenesis , Animals , Chromosome Segregation/genetics , Moths/genetics , Moths/physiology , Male , Spermatogenesis/genetics , Meiosis/genetics , Bombyx/genetics , Bombyx/physiology , Kinetochores/metabolism , Microtubules/metabolism , Microtubules/genetics , Chromosome Pairing/genetics , Chromosomes, Insect/genetics , In Situ Hybridization, Fluorescence , Metaphase , Telomere/genetics , Telomere/metabolism , Kinetics
8.
Sci Rep ; 14(1): 14191, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902334

ABSTRACT

Feeding behavior, the most fundamental physiological activity, is controlled by two opposing groups of factors, orexigenic and anorexigenic factors. The sulfakinin family, an insect analogue of the mammalian satiety factor cholecystokinin (CCK), has been shown to suppress food intake in various insects. Nevertheless, the mechanisms through which sulfakinin regulates feeding behavior remain a biological question. This study aimed to elucidate the signaling pathway mediated by the anorexigenic peptide sulfakinin in Bombyx mori. We identified the Bombyx mori neuropeptide G protein-coupled receptor A9 (BNGR-A9) as the receptor for sulfakinin through functional assays. Stimulation with sulfakinin triggered a swift increase in intracellular IP3, Ca2+, and a notable enhancement of ERK1/2 phosphorylation, in a manner sensitive to a Gαq-specific inhibitor. Treatment with synthetic sulfakinin resulted in decreased food consumption and average body weight. Additionally, administering synthetic sulfakinin to silkworms significantly elevated hemolymph trehalose levels, an effect markedly reduced by pre-treatment with BNGR-A9 dsRNA. Consequently, our findings establish the sulfakinin/BNGR-A9 signaling pathway as a critical regulator of feeding behavior and hemolymph trehalose homeostasis in Bombyx mori, highlighting its roles in the negative control of food intake and the positive regulation of energy balance.


Subject(s)
Bombyx , Feeding Behavior , Hemolymph , Homeostasis , Insect Proteins , Trehalose , Animals , Bombyx/metabolism , Bombyx/physiology , Trehalose/metabolism , Trehalose/analogs & derivatives , Trehalose/pharmacology , Hemolymph/metabolism , Feeding Behavior/physiology , Insect Proteins/metabolism , Insect Proteins/genetics , Receptors, G-Protein-Coupled/metabolism , Neuropeptides/metabolism , Signal Transduction
9.
BMC Biol ; 22(1): 118, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769528

ABSTRACT

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Subject(s)
Bombyx , Mechanoreceptors , Spermatogenesis , Animals , Spermatogenesis/physiology , Bombyx/physiology , Bombyx/genetics , Male , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Spermatozoa/physiology , Spermatozoa/metabolism
10.
Pestic Biochem Physiol ; 200: 105812, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582584

ABSTRACT

Indoxacarb has been widely utilized in agricultural pest management, posing a significant ecological threat to Bombyx mori, a non-target economic insect. In the present study, short-term exposure to low concentration of indoxacarb significantly suppressed the oxidative phosphorylation pathway, and resulted in an accumulation of reactive oxygen species (ROS) in the midgut of B. mori. While, the ATP content exhibited a declining trend but there was no significant change. Moreover, indoxacarb also significantly altered the transcription levels of six autophagy-related genes, and the transcription levels of ATG2, ATG8 and ATG9 were significantly up-regulated by 2.56-, 1.90-, and 3.36-fold, respectively. The protein levels of ATG8-I and ATG8-II and MDC-stained frozen sections further suggested an increase in autophagy. Furthermore, the protein level and enzyme activity of CASP4 showed a significant increase in accordance with the transcription levels of apoptosis-related genes, indicating the activation of the apoptotic signaling pathway. Meanwhile, the induction of apoptosis signals in the midgut cells triggered by indoxacarb was confirmed through TUNEL staining. These findings suggest that indoxacarb can promote the accumulation of ROS by inhibiting the oxidative phosphorylation pathway, thereby inducing autophagy and apoptosis in the midgut cells of B. mori.


Subject(s)
Bombyx , Oxazines , Animals , Reactive Oxygen Species/metabolism , Bombyx/physiology , Oxidative Phosphorylation , Apoptosis , Autophagy , Insect Proteins/genetics , Insect Proteins/metabolism
11.
Pestic Biochem Physiol ; 196: 105586, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945223

ABSTRACT

Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.


Subject(s)
Bombyx , Animals , Bombyx/physiology , Silk/genetics , Silk/metabolism , Silk/pharmacology , Apoptosis , Larva/metabolism , Autophagy , Juvenile Hormones/pharmacology , Juvenile Hormones/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
12.
Integr Comp Biol ; 63(2): 343-355, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37280186

ABSTRACT

Animals can adaptively behave in different environmental conditions by converting environmental information obtained from their sensory organs into actions. This sensory-motor integration enables the accomplishment of various tasks and is essential for animal survival. This sensory-motor integration also plays an important role in localization to females, relying on sex pheromones floating in space. In this study, we focused on the localization behavior of the adult male silk moth, Bombyx mori. We investigated sensory-motor integration against time delay using odor plume tracking performance as an index when we set a certain time delay for the sensory and motor responses. Given that it is difficult to directly intervene in the sensory and motor functions of the silk moth, we constructed an intervention system based on a mobile behavior measurement system controlled by them. Using this intervention system, not only can timing the detection of the odor in the environment and timing the presentation of the odor to the silk moth be manipulated, but timing the reflection of the movement of the silk moth can also be manipulated. We analyzed the extent to which the localization strategy of the silk moth could tolerate sensory delays by setting a delay to the odor presentation. We also evaluated behavioral compensation by odor sensory feedback by setting a delay to the motor. The results of the localization experiment have shown that the localization success rate did not decrease when there was a motor delay. However, when there was a sensory delay, the success rate decreased depending on the time delay. Analysis of the change in behavior after detection of the odor stimulus has shown that the movement was more linear when we set a motor delay. However, the movement was accompanied by a large rotational movement when there was a delay in the sensory input. This result has suggested that behavior is compensated for the delay in motor function by feedback control of odor sensation, but not when accompanied by sensory delay. To compensate for this, the silk moth may acquire appropriate information from the environment by making large body movements.


Subject(s)
Bombyx , Sex Attractants , Female , Male , Animals , Odorants , Bombyx/physiology , Smell/physiology , Behavior, Animal
13.
J Chem Ecol ; 49(7-8): 353-362, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37120695

ABSTRACT

Because of the complexity to study them, aerosols have been neglected in nearly all studies on olfaction, especially studies dealing with odor capture. However, aerosols are present in large quantities in the atmosphere and have the physico-chemical ability to interact with odor molecules, in particular the many pheromones with low volatility. We submitted male moths of Bombyx mori to bombykol puffs, the main fatty alcohol component of its sex pheromone, depending on whether the air is free of aerosols, charged with ambient concentration aerosols or supplemented with aqueous aerosols and recorded their arousal behavior. Aerosols and pheromone do interact consistently over all experiments and moths react better in low aerosol-concentration conditions. We propose four hypotheses for explaining this impediment, the two most likely resorting to competition between odor molecules and aerosols for the olfactory pores and postulate a reversal to a positive impact of aerosols on communication, depending on the particular physico-chemical properties of the multiphasic interaction. Studying the partitioning between gas and particulate phases in the transport and reception of odors is key for advancing the chemico-physical understanding of olfaction.


Subject(s)
Bombyx , Moths , Sex Attractants , Animals , Male , Pheromones/pharmacology , Bombyx/physiology , Sex Attractants/pharmacology , Moths/physiology , Sexual Behavior, Animal/physiology
14.
J Insect Physiol ; 145: 104476, 2023 03.
Article in English | MEDLINE | ID: mdl-36623750

ABSTRACT

Through investigating the two different enhanced cell division stages, we tried to clarify the switch from the growth to differentiation in the wing disc of the last larval instar of Bombyx mori. The response to insulin and 20E in vitro was stage specific. Bmmyc expression in V1 wing discs showed differences after being cultured with and without insulin. Bmmyc expression in V5 wing discs also showed differences after being cultured with and without 20E. Cell cycle-related genes, BmE2F1 and BmcycE, were upregulated with insulin or 20E in cultured wing discs of V1 or V5, respectively. Bmwnt1 and Bmras1 showed upregulation with 20E in cultured wing discs. Bmwnt1 showed upregulation with insulin in cultured wing discs, but Bmras1 did not show clear upregulation with insulin treatment. In contrast, Bmdpp showed upregulation with insulin, but did not show clear upregulation with 20E. The addition of PI3K or TOR inhibitors inhibited the upregulation of Bmmyc expression that was upregulated with insulin or 20E. The upregulation of Bmmyc and Bmwnt1 with insulin or 20E was inhibited with the addition of Myc or Wnt inhibitors, respectively. Genes related to matrix metalloprotease showed upregulation with 20E, and the upregulation was inhibited by the addition of Myc or Wnt inhibitors. From the present results, we concluded that cell division during the feeding stage occurred through PI3K/TOR cascade, and that at the wandering stage occurred through ecdysone and PI3K/TOR cascade; the former is for growth and the latter for differentiation.


Subject(s)
Bombyx , Insulins , Animals , Bombyx/physiology , Larva , Metamorphosis, Biological , Cell Differentiation , Ecdysone/metabolism , Cell Division , Insulins/genetics , Insulins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Wings, Animal/physiology , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Insect Proteins/metabolism , Ecdysterone/metabolism
15.
Proc Biol Sci ; 289(1985): 20221427, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36285499

ABSTRACT

Gustatory systems in phytophagous insects are used to perceive feeding stimulants and deterrents, and are involved in insect decisions to feed on particular plants. During the process, gustatory receptors (Grs) can recognize diverse phytochemicals and provide a molecular basis for taste perception. The silkworm, as a representative Lepidoptera species, has developed a strong feeding preference for mulberry leaves. The mulberry-derived flavonoid glycoside, isoquercetin, is required to induce feeding behaviours. However, the corresponding Grs for isoquercetin and underlying molecular mechanisms remain unclear. In this study, we used molecular methods, voltage clamp recordings and feeding assays to identify silkworm BmGr63, which was tuned to isoquercetin. The use of qRT-PCR confirmed that BmGr63 was highly expressed in the mouthpart of fourth and fifth instar larvae. Functional analysis showed that oocytes expressing BmGr63 from the 'bitter' clade responded to mulberry extracts. Among 20 test chemicals, BmGr63 specifically recognized isoquercetin. The preference for isoquercetin was not observed in BmGr63 knock-down groups. The tuning between BmGr63 and isoquercetin has been demonstrated, which is meaningful to explain the silkworm-mulberry feeding mechanism from molecular levels and thus provides evidence for further feeding relationship studies between phytophagous insects and host plants.


Subject(s)
Bombyx , Drosophila Proteins , Morus , Animals , Bombyx/physiology , Taste , Receptors, Cell Surface , Insecta , Plants , Flavonoids , Glycosides
16.
Int J Mol Sci ; 23(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163065

ABSTRACT

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, as unique plant transcription factors, play important roles in plant developmental regulation and stress response adaptation. Although mulberry is a commercially valuable tree species, there have been few systematic studies on SPL genes. In this work, we identified 15 full-length SPL genes in the mulberry genome, which were distributed on 4 Morus notabilis chromosomes. Phylogenetic analysis clustered the SPL genes from five plants (Malus × domestica Borkh, Populus trichocarpa, M. notabilis, Arabidopsis thaliana, and Oryza sativa) into five groups. Two zinc fingers (Zn1 and Zn2) were found in the conserved SBP domain in all of the MnSPLs. Comparative analyses of gene structures and conserved motifs revealed the conservation of MnSPLs within a group, whereas there were significant structure differences among groups. Gene quantitative analysis showed that the expression of MnSPLs had tissue specificity, and MnSPLs had much higher expression levels in older mulberry leaves. Furthermore, transcriptome data showed that the expression levels of MnSPL7 and MnSPL14 were significantly increased under silkworm herbivory. Molecular experiments revealed that MnSPL7 responded to herbivory treatment through promoting the transcription of MnTT2L2 and further upregulating the expression levels of catechin synthesis genes (F3'H, DFR, and LAR).


Subject(s)
Bombyx/physiology , Catechin/biosynthesis , Morus/parasitology , Transcription Factors/genetics , Up-Regulation , Animals , Chromosome Mapping , Evolution, Molecular , Gene Expression Regulation, Plant , Herbivory , Morus/genetics , Multigene Family , Organ Specificity , Phylogeny , Plant Proteins/genetics
17.
J Therm Biol ; 104: 103184, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35180963

ABSTRACT

Dietary supplementation of ascorbic acid was found to be effective in modifying the composition of essential biomolecules. A relative investigation on effects of exogenous dietary supplementation of 0.2% ascorbic acid on the fifth instar larvae of silkworm, Bombyx mori exposed to a high thermal stress of range 40 ± 2 °C was carried out in the lab-set conditions. The observed elevation in various biomolecules, viz., DNA, RNA, protein, lipids, and carbohydrates were quantified in both the thermal stress-induced test groups and in the control, set aside. The test results so obtained were proven to be statistically significant. The present study reveals that foliar supplementation of ascorbic acid has been effective in positively-modulating the biochemical performance in larvae exposed to thermal stress. Moreover, the study also uncovers the possibilities of ascorbic acid as a potential candidate, capable of facilitating the production of good quality cocoons, from larvae exposed to thermal stress.


Subject(s)
Ascorbic Acid/pharmacology , Bombyx/physiology , Larva/physiology , Animals , Biochemical Phenomena/drug effects , Bombyx/genetics , Bombyx/metabolism , Dietary Supplements , Stress, Physiological , Temperature
18.
FEBS J ; 289(10): 2828-2846, 2022 05.
Article in English | MEDLINE | ID: mdl-34862848

ABSTRACT

The matrix metalloproteinases (MMPs) and their endogenous inhibitory factors, tissue inhibitors of metalloproteinases (TIMPs), are implicated in many diseases. However, the mammalian MMPs (> 20) and TIMPs (> 3) are larger in number, and so little is known about their individual roles in organisms. Hence, we have systematically studied the roles of all three MMPs and one TIMP in silkworm innate immunity and metamorphosis. We observed that MMPs and TIMP are highly expressed during the pupation stage of the silkworms, and TIMP could interact with each MMPs. High-activity MMPs and low-activity TIMP may enhance the infection of B. mori nucleopolyhedrovirus in both in vitro and in vivo. MMPs' knockout and TIMP overexpression delayed silkworm development and even caused death. Interestingly, different MMPs' knockout led to different tubular tissue dysplasia. These findings provide insights into the conserved functions of MMPs and TIMP in human organogenesis and immunoregulation.


Subject(s)
Bombyx , Immunity, Innate , Matrix Metalloproteinases , Metamorphosis, Biological , Tissue Inhibitor of Metalloproteinases , Animals , Bombyx/immunology , Bombyx/physiology , Mammals , Matrix Metalloproteinases/physiology , Tissue Inhibitor of Metalloproteinases/physiology
19.
Gene ; 809: 146002, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34648919

ABSTRACT

We aimed to explain the reason and function of the successive expression of ecdysone-responsive transcription factors (ERTFs) and related cuticular protein (CP) genes during transformation from larva to pupa. The regulation of the expression of CP genes by ERTFs was examined by in vitro wing disc culture and reporter assay using a gene gun transduction system. Two CP genes that showed expression peaks at different stages-BmorCPG12 at W3L and BmorCPH2 at P0 stage-were selected and examined. Reporter constructs conveying putative BHR3, ßFTZ-F1, BHR39, and E74A binding sites of BmorCPG12 and BmorCPH2 showed promoter activity when introduced into wing discs. In the present study, we showed the functioning of the putative BHR3 and E74A binding sites, together with putative ßFTZ-F1 binding sites, on the activation of CP genes, and different ERTF binding sites functioned in one CP gene. From these, we conclude that BHR3, ßFTZ-F1, and E74A that are successively expressed bring about the successive expression of CP genes, resulting in insect metamorphosis. In addition to this, reporter constructs conveying putative BHR39 binding sites of BmorCPG12 and BmorCPH2 showed negative regulation.


Subject(s)
Bombyx/genetics , Ecdysone/metabolism , Insect Proteins/genetics , Metamorphosis, Biological/genetics , Transcription Factors/genetics , Animals , Binding Sites , Bombyx/physiology , Ecdysone/genetics , Gene Expression Regulation, Developmental , Genes, Reporter , Insect Proteins/metabolism , Larva/genetics , Mutagenesis, Site-Directed , Pupa/genetics , Transcription Factors/metabolism , Wings, Animal/growth & development
20.
PLoS One ; 16(12): e0261918, 2021.
Article in English | MEDLINE | ID: mdl-34968397

ABSTRACT

Yun7Ge is a giant egg mutant found in the silkworm variety Yun7. In comparison with the giant mutant Ge, the eggs of Yun7Ge are larger. The number of laid eggs and hatching rate of Yun7Ge are reduced, which is not conducive to reproduction. In this work, the target gene controlling giant egg trait is located on the Z chromosome and was determined through genetic analysis. Transcriptome results showed that phytanoyl-CoA dioxygenase domain-containing protein 1 (PHYHD1) on the Z chromosome was silenced, and the 25 chorion genes on chromosome 2 were remarkably downregulated. Sequence analysis showed that the 73.5 kb sequence including the PHYHD1 was replaced by a ~3.0 kb sequence. After knocking out the PHYHD1 by using CRISPR/Cas9, the chorion genes were significantly downregulated. Hence, the silencing of PHYHD1 leads to the downregulation of many chorion protein genes, thus directly causing giant eggs.


Subject(s)
Bombyx/physiology , Egg Shell/physiology , Oxygenases/chemistry , Animals , CRISPR-Cas Systems , Chorion/chemistry , Chromosomes , Coenzyme A/chemistry , Down-Regulation , Female , Gene Silencing , Insect Proteins/genetics , Larva/genetics , Male , Models, Genetic , Mutation , Phenotype , Phytanic Acid/analogs & derivatives , Phytanic Acid/chemistry , Polymerase Chain Reaction , Protein Domains , RNA-Seq , Reproduction , Sex Chromosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL