Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Genes (Basel) ; 15(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38790188

ABSTRACT

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


Subject(s)
In Situ Hybridization, Fluorescence , Humans , Male , Female , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Adolescent , Cytogenetic Analysis/methods , Bone Marrow Diseases/genetics , Karyotyping/methods , Young Adult
2.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740980

ABSTRACT

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Subject(s)
Bone Marrow Diseases , Bone Marrow Failure Disorders , Proteogenomics , Humans , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Proteogenomics/methods , Male , Female , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology , Child , Adult , Adolescent , Child, Preschool , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/diagnosis , Young Adult , Fanconi Anemia/genetics , Fanconi Anemia/diagnosis , Proteomics/methods , Infant , Shwachman-Diamond Syndrome/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/pathology
3.
Br J Haematol ; 200(2): 222-228, 2023 01.
Article in English | MEDLINE | ID: mdl-36207145

ABSTRACT

Germline mutations in tubulin beta class I (TUBB), which encodes one of the ß-tubulin isoforms, were previously associated with neurological and cutaneous abnormalities. Here, we describe the first case of inherited bone marrow (BM) failure, including marked thrombocytopenia, morphological abnormalities, and cortical dysplasia, associated with a de novo p.D249V variant in TUBB. Mutant TUBB had abnormal cellular localisation in transfected cells. Following interferon/ribavirin therapy administered for transfusion-acquired hepatitis C, severe pancytopenia and BM aplasia ensued, which was unresponsive to immunosuppression. Acquired chromosome arm 6p loss of heterozygosity was identified, leading to somatic loss of the mutant TUBB allele.


Subject(s)
Pancytopenia , Thrombocytopenia , Humans , Tubulin/genetics , Pancytopenia/genetics , Chromosome Deletion , Thrombocytopenia/genetics , Bone Marrow Failure Disorders/genetics , Germ Cells
4.
Anal Cell Pathol (Amst) ; 2022: 3528598, 2022.
Article in English | MEDLINE | ID: mdl-35265454

ABSTRACT

Introduction: Lymphocyte activation gene 3 (LAG3) is an inhibitory checkpoint protein expressed on activated T effector, T regulatory, and natural killer cells. The main function of LAG3 is the regulation of immune homeostasis. Several studies have suggested its role in malignant and autoimmune diseases. The objective of this study was to explore the association between LAG3 single-nucleotide polymorphisms (SNPs) and bone marrow failure diseases. Methods: Sixty-two patients newly diagnosed with bone marrow failure diseases in the Hematology Department of Tianjin Medical University General Hospital between January 2019 and December 2020 and 16 healthy controls were enrolled in this study. SNPs in LAG3 were investigated by performing Sanger sequencing, and the association of the detected SNPs with bone marrow failure diseases was analyzed. Results: Eleven SNPs were identified. Among them, the frequency of LAG3 rs1941928301 (C>T) was statistically different among the groups (P = 0.013). It was higher in the myelodysplastic syndrome (MDS) group than that in the severe aplastic anemia (SAA) group (P = 0.004) and that in the healthy control group (P = 0.009). Conclusions: LAG3 rs1941928301 (C>T) might be associated with a higher risk of MDS. The detected LAG3 SNPs have no apparent effect on susceptibility to SAA and immune-related pancytopenia (IRP).


Subject(s)
Antigens, CD , Bone Marrow Failure Disorders , Pancytopenia , Antigens, CD/genetics , Bone Marrow Failure Disorders/genetics , Humans , Pancytopenia/genetics , Polymorphism, Single Nucleotide/genetics , Lymphocyte Activation Gene 3 Protein
5.
Genet Med ; 24(4): 931-954, 2022 04.
Article in English | MEDLINE | ID: mdl-35063349

ABSTRACT

PURPOSE: The American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines for germline variant interpretation are implemented as a broad framework by standardizing variant interpretation. These rules were designed to be specified, but this process has not been performed for most of the 200 genes associated with inherited hematopoietic malignancies, bone marrow failure, and cytopenias. Because guidelines on how to perform these gene specifications are lacking, variant interpretation is less reliable and reproducible. METHODS: We have used a variety of methods such as calculations of minor allele frequencies, quasi-case-control studies to establish thresholds, proband counting, and plotting of receiver operating characteristic curves to compare different in silico prediction tools to design recommendations for variant interpretation. RESULTS: We herein provide practical recommendations for the creation of thresholds for minor allele frequencies, in silico predictions, counting of probands, identification of functional domains with minimal benign variation, use of constraint Z-scores and functional evidence, prediction of nonsense-mediated decay, and assessment of phenotype specificity. CONCLUSION: These guidelines can be used by anyone interpreting variants associated with inherited hematopoietic malignancies, bone marrow failure, and cytopenias to develop criteria for reliable, accurate, and reproducible germline variant interpretation.


Subject(s)
Genome, Human , Hematologic Neoplasms , Bone Marrow Failure Disorders/genetics , Genetic Testing/methods , Genetic Variation , Germ Cells , Hematologic Neoplasms/genetics , Humans
6.
Int J Oncol ; 60(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34958107

ABSTRACT

Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon­Î³ and tumor necrosis factor­α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next­generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.


Subject(s)
Anemia, Hemolytic, Autoimmune/etiology , Bone Marrow Failure Disorders/etiology , Myelodysplastic-Myeloproliferative Diseases/etiology , Anemia, Hemolytic, Autoimmune/genetics , Bone Marrow Failure Disorders/genetics , Humans , Immunity/genetics , Immunity/immunology , Myelodysplastic-Myeloproliferative Diseases/genetics , Prognosis
7.
Exp Hematol ; 105: 18-21, 2022 01.
Article in English | MEDLINE | ID: mdl-34801643

ABSTRACT

Bone marrow failure syndromes encompass a range of inherited and acquired hematological diseases that result in insufficient blood cell production, which leads to severe complications including anemia, weakening of the immune system, impaired coagulation, and increased risk of cancer. Within inherited bone marrow failure syndromes, a number of genetically distinct diseases have been described including Shwachman-Diamond syndrome and Fanconi anemia. Given the genetic complexity and poor prognosis of these inherited bone marrow failure syndromes, there is increasing interest in both characterizing the genetic landscapes of these diseases and developing novel gene therapies to effectively monitor and cure patients. These topics were the focus of the winter 2021 International Society for Experimental Hematology New Investigator Webinar, which featured presentations by Dr. Akiko Shimamura and Dr. Paula Río. Here, we review the topics covered within this webinar.


Subject(s)
Bone Marrow Failure Disorders/therapy , Animals , Bone Marrow Failure Disorders/genetics , Clonal Evolution , Fanconi Anemia/genetics , Fanconi Anemia/therapy , Genetic Therapy/methods , Humans , Shwachman-Diamond Syndrome/genetics , Shwachman-Diamond Syndrome/therapy , Translational Research, Biomedical
8.
Hematology Am Soc Hematol Educ Program ; 2021(1): 153-156, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34889379

ABSTRACT

With our increasing understanding of inherited marrow failure and myeloid malignancy predisposition syndromes, it has become clear that there is a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of both children and adults with unexplained defects in hematopoiesis. Moreover, these conditions are not as rare as previously believed and may present as aplastic anemia, myelodysplastic syndrome, or malignancy over a range of ages. Establishing the correct diagnosis is essential because it has implications for treatment, medical management, cancer screening, and family planning. Our goal is to highlight insights into the pathophysiology of these diseases, review cryptic presentations of these syndromes, and provide useful references for the practicing hematologist.


Subject(s)
Bone Marrow Failure Disorders/congenital , Bone Marrow Failure Disorders/diagnosis , Myeloproliferative Disorders/diagnosis , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Bone Marrow Failure Disorders/genetics , Genetic Predisposition to Disease , Genetic Testing , Humans , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics
9.
Hematology Am Soc Hematol Educ Program ; 2021(1): 143-152, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34889408

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired blood disease caused by somatic mutations in the phosphatidylinositol glycan class A (PIGA) gene required to produce glycophosphatidyl inositol (GPI) anchors. Although PNH cells are readily identified by flow cytometry due to their deficiency of GPI-anchored proteins, the assessment of the clinical significance of a PNH clone is more nuanced. The interpretation of results requires an understanding of PNH pathogenesis and its relationship to immune-mediated bone marrow failure. Only about one-third of patients with PNH clones have classical PNH disease with overt hemolysis, its associated symptoms, and the highly prothrombotic state characteristic of PNH. Patients with classical PNH benefit the most from complement inhibitors. In contrast, two-thirds of PNH clones occur in patients whose clinical presentation is that of bone marrow failure with few, if any, PNH-related symptoms. The clinical presentations are closely associated with PNH clone size. Although exceptions occur, bone marrow failure patients usually have smaller, subclinical PNH clones. This review addresses the common scenarios that arise in evaluating the clinical significance of PNH clones and provides practical guidelines for approaching a patient with a positive PNH result.


Subject(s)
Hemoglobinuria, Paroxysmal/diagnosis , Adult , Bone Marrow Failure Disorders/diagnosis , Bone Marrow Failure Disorders/drug therapy , Bone Marrow Failure Disorders/genetics , Complement Inactivating Agents/therapeutic use , Female , Flow Cytometry , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics , Humans , Male , Membrane Proteins/genetics , Middle Aged , Young Adult
10.
Hematology Am Soc Hematol Educ Program ; 2021(1): 134-142, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34889426

ABSTRACT

The overlap in clinical presentation and bone marrow features of acquired and inherited causes of hypocellular marrow failure poses a significant diagnostic challenge in real case scenarios, particularly in nonsevere disease. The distinction between acquired aplastic anemia (aAA), hypocellular myelodysplastic syndrome (MDS), and inherited bone marrow failure syndromes presenting with marrow hypocellularity is critical to inform appropriate care. Here, we review the workup of hypocellular marrow failure in adolescents through adults. Given the limitations of relying on clinical stigmata or family history to identify patients with inherited etiologies, we outline a diagnostic approach incorporating comprehensive genetic testing in patients with hypocellular marrow failure that does not require immediate therapy and thus allows time to complete the evaluation. We also review the clinical utility of marrow array to detect acquired 6p copy number-neutral loss of heterozygosity to support a diagnosis of aAA, the complexities of telomere length testing in patients with aAA, short telomere syndromes, and other inherited bone marrow failure syndromes, as well as the limitations of somatic mutation testing for mutations in myeloid malignancy genes for discriminating between the various diagnostic possibilities.


Subject(s)
Bone Marrow Failure Disorders/diagnosis , Adolescent , Adult , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Bone Marrow/pathology , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Diagnosis, Differential , Female , Genetic Testing , Germ-Line Mutation , Humans , Male , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Young Adult
11.
Front Immunol ; 12: 754029, 2021.
Article in English | MEDLINE | ID: mdl-34721429

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease associated with a highly variable clinical presentation, such as vasculitis, inflammation, and hematologic manifestations. Some associations of clinical features can mimic autoimmune lymphoproliferative syndrome (ALPS). We report a case of a female patient who fulfilled the 2009 National Institute of Health revised criteria for ALPS and received a delayed diagnosis of DADA2. During her childhood, she suffered from autoimmune hemolytic anemia, immune thrombocytopenia, and chronic lymphoproliferation, which partially responded to multiple lines of treatments and were followed, at 25 years of age, by pulmonary embolism, septic shock, and bone marrow failure with myelodysplastic evolution. The patient died from the progression of pulmonary disease and multiorgan failure. Two previously unreported variants of gene ADA2/CECR1 were found through next-generation sequencing analysis, and a pathogenic role was demonstrated through a functional study. A single somatic STAT3 mutation was also found. Clinical phenotypes encompassing immune dysregulation and marrow failure should be evaluated at the early stage of diagnostic work-up with an extended molecular evaluation. A correct genetic diagnosis may lead to a precision medicine approach consisting of the use of targeted treatments or early hematopoietic stem cell transplantation.


Subject(s)
Adenosine Deaminase/deficiency , Autoimmune Lymphoproliferative Syndrome/genetics , Bone Marrow Failure Disorders/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Adrenal Cortex Hormones/therapeutic use , Anemia, Hemolytic, Autoimmune/genetics , Blood Component Transfusion , Child, Preschool , Combined Modality Therapy , Delayed Diagnosis , Fatal Outcome , Genes, Recessive , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Immunosuppressive Agents/therapeutic use , Iron Chelating Agents/therapeutic use , Multiple Organ Failure/etiology , Mutation, Missense , Pedigree , Pulmonary Embolism/etiology , Purpura, Thrombocytopenic, Idiopathic/genetics , STAT3 Transcription Factor/genetics , Splenectomy , Symptom Assessment
12.
Nat Commun ; 12(1): 6850, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824242

ABSTRACT

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Subject(s)
Hematopoiesis/physiology , Telomere Shortening/physiology , Animals , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/metabolism , Bone Marrow Failure Disorders/pathology , Cell Self Renewal , Cellular Reprogramming , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Interferons/metabolism , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Nuclear Proteins/metabolism , Oligodeoxyribonucleotides/metabolism , Phosphoproteins/metabolism , Signal Transduction , Single-Cell Analysis , Telomere/chemistry , Telomere/physiology , Telomere Shortening/genetics
13.
J Clin Immunol ; 41(7): 1633-1647, 2021 10.
Article in English | MEDLINE | ID: mdl-34324127

ABSTRACT

PURPOSE: Deficiency of adenosine deaminase 2 (DADA2) is an inherited inborn error of immunity, characterized by autoinflammation (recurrent fever), vasculopathy (livedo racemosa, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency, lymphoproliferation, immune cytopenias, and bone marrow failure (BMF). Tumor necrosis factor (TNF-α) blockade is the treatment of choice for the vasculopathy, but often fails to reverse refractory cytopenia. We aimed to study the outcome of hematopoietic cell transplantation (HCT) in patients with DADA2. METHODS: We conducted a retrospective study on the outcome of HCT in patients with DADA2. The primary outcome was overall survival (OS). RESULTS: Thirty DADA2 patients from 12 countries received a total of 38 HCTs. The indications for HCT were BMF, immune cytopenia, malignancy, or immunodeficiency. Median age at HCT was 9 years (range: 2-28 years). The conditioning regimens for the final transplants were myeloablative (n = 20), reduced intensity (n = 8), or non-myeloablative (n = 2). Donors were HLA-matched related (n = 4), HLA-matched unrelated (n = 16), HLA-haploidentical (n = 2), or HLA-mismatched unrelated (n = 8). After a median follow-up of 2 years (range: 0.5-16 years), 2-year OS was 97%, and 2-year GvHD-free relapse-free survival was 73%. The hematological and immunological phenotypes resolved, and there were no new vascular events. Plasma ADA2 enzyme activity normalized in 16/17 patients tested. Six patients required more than one HCT. CONCLUSION: HCT was an effective treatment for DADA2, successfully reversing the refractory cytopenia, as well as the vasculopathy and immunodeficiency. CLINICAL IMPLICATIONS: HCT is a definitive cure for DADA2 with > 95% survival.


Subject(s)
Agammaglobulinemia/therapy , Bone Marrow Failure Disorders/therapy , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency/therapy , Adenosine Deaminase/deficiency , Adolescent , Adult , Agammaglobulinemia/enzymology , Agammaglobulinemia/genetics , Agammaglobulinemia/mortality , Bone Marrow Failure Disorders/enzymology , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/mortality , Child , Child, Preschool , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Kaplan-Meier Estimate , Male , Retrospective Studies , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/mortality , Treatment Outcome , Young Adult
15.
Am J Hematol ; 96(9): 1077-1086, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34000087

ABSTRACT

The differential diagnosis of marrow failure (MF) is crucial in the diagnostic work-up, since genetic forms require specific care. We retrospectively studied all patients with single/multi-lineage MF evaluated in a single-center to identify the type and incidence of underlying molecular defects. The diepoxybutane test was used to screen Fanconi Anemia. Other congenital MFs have been searched using Sanger and/or Next Generation Sequencing analysis, depending on the available tools over the years. Between 2009-2019, 97 patients (aged 0-32 years-median 5) with single-lineage (29%) or multilineage (68%) MF were evaluated. Fifty-three (54%) and 28 (29%) were diagnosed with acquired and congenital MF, respectively. The remaining 16 (17%), with trilinear (n=9) and monolinear (n=7) MF, were found to have an underlying primary immunodeficiency (PID) and showed clinical and biochemical signs of immune-dysregulation in 10/16 (62%) and in 14/16 (87%) of cases, respectively. Clinical signs were also found in 22/53 (41%) and 8/28 (28%) patients with idiopathic and classical cMF, respectively. Eight out of 16 PIDs patients were successfully transplanted, four received immunosuppression, two did not require treatment, and the remaining two died. We show that patients with single/multi-lineage MF may have underlying PIDs in a considerable number of cases and that MF may represent a relevant clinical sign in patients with PIDs, thus widening their clinical phenotype. An accurate immunological work-up should be performed in all patients with MF, and PID-related genes should be considered when screening MF in order to identify disorders that may receive targeted treatments and/or appropriate conditioning regimens before transplant.


Subject(s)
Bone Marrow Failure Disorders/genetics , Bone Marrow/pathology , Primary Immunodeficiency Diseases/genetics , Adolescent , Adult , Bone Marrow/metabolism , Bone Marrow Failure Disorders/pathology , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Primary Immunodeficiency Diseases/pathology , Retrospective Studies , Young Adult
16.
Hum Genet ; 140(6): 945-955, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33709208

ABSTRACT

Telomere biology disorders are complex clinical conditions that arise due to mutations in genes required for telomere maintenance. Telomere length has been utilised as part of the diagnostic work-up of patients with these diseases; here, we have tested the utility of high-throughput STELA (HT-STELA) for this purpose. HT-STELA was applied to a cohort of unaffected individuals (n = 171) and a retrospective cohort of mutation carriers (n = 172). HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. Whilst telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals (< 20 years of age). These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival (Hazard Ratio = 5.6 (1.5-20.5); p < 0.0001). Telomere lengths of asymptomatic mutation carriers were shorter than controls (p < 0.0001), but longer than symptomatic mutation carriers (p < 0.0001) and telomere length heterogeneity was dependent on the diagnosis and mutational status. Our data show that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, means it can provide powerful diagnostic discrimination and prognostic information. The rapid format, with a low measurement error, demonstrates that HT-STELA is a new high-quality laboratory test for the clinical diagnosis of an underlying telomeropathy.


Subject(s)
Bone Marrow Failure Disorders/diagnosis , Dyskeratosis Congenita/diagnosis , Fetal Growth Retardation/diagnosis , Genetic Carrier Screening/methods , Intellectual Disability/diagnosis , Microcephaly/diagnosis , Telomere/pathology , Adolescent , Adult , Age Factors , Aged , Asymptomatic Diseases , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Case-Control Studies , Child , Child, Preschool , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Microcephaly/genetics , Microcephaly/pathology , Middle Aged , Severity of Illness Index , Survival Analysis , Telomere/metabolism , Telomere Homeostasis
17.
PLoS One ; 16(3): e0248343, 2021.
Article in English | MEDLINE | ID: mdl-33711076

ABSTRACT

Immune aplastic anemia (AA) results from T cell attack on hematopoietic cells, resulting in bone marrow hypocellularity and pancytopenia. Animal models have been successfully developed to study pathophysiological mechanisms in AA. While we have systemically defined the critical components of the adaptive immune response in the pathogenesis of immune marrow failure using this model, the role of innate immunity has not been fully investigated. Here, we demonstrate that lymph node (LN) cells from B6-based donor mice carrying IL-6, TLR2, or TLR4 gene deletions were fully functional in inducing severe pancytopenia and bone marrow failure (BMF) when infused into MHC-mismatched CByB6F1 recipients. Conversely, B6-based recipient mice with IL-6, TLR2, and TLR4 deletion backgrounds were all susceptible to immune-mediated BMF relative to wild-type B6 recipients following infusion of MHC-mismatched LN cells from FVB donors, but the disease appeared more severe in IL-6 deficient mice. We conclude that IL-6, TLR2, and TLR4, molecular elements important in maintenance of normal innate immunity, have limited roles in a murine model of immune-mediated BMF. Rather, adaptive immunity appears to be the major contributor to the animal disease.


Subject(s)
Bone Marrow Failure Disorders/immunology , Immunity, Innate , Interleukin-6/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Animals , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Disease Models, Animal , Interleukin-6/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
18.
Leukemia ; 35(11): 3232-3244, 2021 11.
Article in English | MEDLINE | ID: mdl-33731850

ABSTRACT

Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations. Here, we used a lentiviral overexpression approach to assess the functional impact and underlying cellular processes of wild-type and mutant SAMD9 or SAMD9L in primary mouse or human hematopoietic stem and progenitor cells (HSPC). Using a combination of protein interactome analyses, transcriptional profiling, and functional validation, we show that SAMD9 and SAMD9L are multifunctional proteins that cause profound alterations in cell cycle, cell proliferation, and protein translation in HSPCs. Importantly, our molecular and functional studies also demonstrated that expression of these genes and their mutations leads to a cellular environment that promotes DNA damage repair defects and ultimately apoptosis in hematopoietic cells. This study provides novel functional insights into SAMD9 and SAMD9L and how their mutations can potentially alter hematopoietic function and lead to bone marrow hypocellularity, a hallmark of pediatric MDS.


Subject(s)
Bone Marrow Failure Disorders/pathology , Germ-Line Mutation , Hematopoietic Stem Cells/pathology , Intracellular Signaling Peptides and Proteins/genetics , Myelodysplastic Syndromes/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology , Animals , Apoptosis , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/metabolism , Child , DNA Damage , DNA Repair , Genetic Predisposition to Disease , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Knockout , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Protein Biosynthesis
19.
PLoS One ; 16(1): e0245888, 2021.
Article in English | MEDLINE | ID: mdl-33481921

ABSTRACT

OBJECTIVES: Inborn errors of immunity (IEI) are prevalent in tribal cultures due to frequent consanguineous marriages. Many of these disorders are autosomal recessive, resulting from founder mutations; hence they are amenable to prevention. The primary objective of this study was to evaluate the pathogenicity of novel variants of IEI found among Emiratis. METHODS: This retrospective data collection study reports novel variants of IEI detected by diagnostic exome sequencing. Pathogenicity prediction was based on scoring tools, amino acid alignment, and Jensen-Shannon divergence values. RESULTS: Twenty-one novel variants were identified; nine were frameshift, three nonsense, four intronic (one pathogenic), and five missense (two pathogenic). Fifteen variants were likely pathogenic, of which 13 were autosomal recessive and two uncertain inheritance. Their clinical spectra included combined immunodeficiency, antibody deficiency, immune dysregulation, defects in intrinsic/innate immunity, and bone marrow failure. CONCLUSION: The described novel pathogenic variants are core to a planned national screening program that aims toward IEI prevention. Future studies, however, are needed to confirm their natural history in individual patients and estimate their prevalence in the community.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Variation , Animals , Bone Marrow Failure Disorders/genetics , Computational Biology , Herpesvirus 4, Human/physiology , Humans , Immunity, Innate/genetics , Lymphohistiocytosis, Hemophagocytic/genetics , Retrospective Studies
20.
Haematologica ; 106(1): 64-73, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32054657

ABSTRACT

Bone marrow failure (BMF) related to hypoplasia of hematopoietic elements in the bone marrow is a heterogeneous clinical entity with a broad differential diagnosis including both inherited and acquired causes. Accurate diagnostic categorization is critical to optimal patient care and detection of genomic variants in these patients may provide this important diagnostic and prognostic information. We performed real-time, accredited (ISO15189) comprehensive genomic characterization including targeted sequencing and whole exome sequencing in 115 patients with BMF syndrome (median age 24 years, range 3 months - 81 years). In patients with clinical diagnoses of inherited BMF syndromes, acquired BMF syndromes or clinically unclassifiable BMF we detected variants in 52% (12/23), 53% (25/47) and 56% (25/45) respectively. Genomic characterization resulted in a change of diagnosis in 30/115 (26%) including the identification of germline causes for 3/47 and 16/45 cases with pre-test diagnoses of acquired and clinically unclassifiable BMF respectively. The observed clinical impact of accurate diagnostic categorization included choice to perform allogeneic stem cell transplantation, disease-specific targeted treatments, identification of at-risk family members and influence of sibling allogeneic stem cell donor choice. Multiple novel pathogenic variants and copy number changes were identified in our cohort including in TERT, FANCA, RPS7 and SAMD9. Whole exome sequence analysis facilitated the identification of variants in two genes not typically associated with a primary clinical manifestation of BMF but also demonstrated reduced sensitivity for detecting low level acquired variants. In conclusion, genomic characterization can improve diagnostic categorization of patients presenting with hypoplastic BMF syndromes and should be routinely performed in this group of patients.


Subject(s)
Bone Marrow Failure Disorders , Adolescent , Adult , Aged , Aged, 80 and over , Bone Marrow Failure Disorders/diagnosis , Bone Marrow Failure Disorders/genetics , Child , Child, Preschool , Genomics , Hematopoietic Stem Cell Transplantation , Humans , Infant , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...