Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.484
Filter
1.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786031

ABSTRACT

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Subject(s)
Bone Morphogenetic Protein 2 , Mouth Mucosa , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Mouth Mucosa/metabolism , Animals , Mice , Keratins/metabolism , Keratins/genetics , Cell Proliferation , Gene Expression Regulation , Humans , Gene Ontology
2.
Stem Cell Res Ther ; 15(1): 144, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764077

ABSTRACT

BACKGROUND: The aim of this study was to evaluate potential synergistic effects of a single, local application of human umbilical cord MSC-derived sEVs in combination with a low dose of recombinant human rhBMP-2 to promote the regeneration of a metaphyseal femoral defect in an osteoporotic rat model. METHODS: 6 weeks after induction of osteoporosis by bilateral ventral ovariectomy and administration of a special diet, a total of 64 rats underwent a distal femoral metaphyseal osteotomy using a manual Gigli wire saw. Defects were stabilized with an adapted Y-shaped mini-locking plate and were subsequently treated with alginate only, or alginate loaded with hUC-MSC-sEVs (2 × 109), rhBMP-2 (1.5 µg), or a combination of sEVs and rhBMP-2 (n = 16 for each group). 6 weeks post-surgery, femora were evaluated by µCT, descriptive histology, and biomechanical testing. RESULTS: Native radiographs and µCT analysis confirmed superior bony union with callus formation after treatment with hUC-MSC-sEVs in combination with a low dose of rhBMP-2. This finding was further substantiated by histology, showing robust defect consolidation 6 weeks after treatment. Torsion testing of the explanted femora revealed increased stiffness after application of both, rhBMP-2 alone, or in combination with sEVs, whereas torque was only significantly increased after treatment with rhBMP-2 together with sEVs. CONCLUSION: The present study demonstrates that the co-application of hUC-MSC-sEVs can improve the efficacy of rhBMP-2 to promote the regeneration of osteoporotic bone defects.


Subject(s)
Bone Morphogenetic Protein 2 , Extracellular Vesicles , Femur , Osteoporosis , Recombinant Proteins , Umbilical Cord , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/genetics , Recombinant Proteins/pharmacology , Recombinant Proteins/genetics , Osteoporosis/pathology , Rats , Female , Humans , Femur/pathology , Femur/drug effects , Femur/diagnostic imaging , Umbilical Cord/cytology , Extracellular Vesicles/metabolism , Bone Regeneration/drug effects , Rats, Sprague-Dawley , Transforming Growth Factor beta/pharmacology , Disease Models, Animal , X-Ray Microtomography , Mesenchymal Stem Cells/metabolism
3.
Arch Dermatol Res ; 316(6): 225, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787453

ABSTRACT

Myosin Va (Myo Va) is one of three protein complexes involved in melanosome transport. In this study, we identified BMP-2 as an up-regulator of Myo Va expression using 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO). Our results showed that MNQO reduced the mRNA and protein expression of Myo Va and BMP-2 in melanocytes. Knockdown of BMP-2 by siRNA also affected Myo Va mRNA and protein expression, confirming that MNQO regulates Myo Va through BMP-2. Furthermore, phosphorylation of Smad1/5/8 by BMP2 treatment confirmed that the BMP-2/Smad signaling pathway regulates Myo Va expression in Melan-a melanocytes. Smad-binding elements were found in the Myo Va promoter and phosphorylated Smad1/5/8 bind directly to the Myo Va promoter to activate Myo Va transcription and BMP-2 enhances this binding. These findings provide insight into a new role for BMP-2 in Melan-a melanocytes and a mechanism of regulation of Myo Va expression that may be beneficial in the treatment of albinism or hyperpigmentation disorders.


Subject(s)
Bone Morphogenetic Protein 2 , Melanocytes , Myosin Heavy Chains , Myosin Type V , Signal Transduction , Myosin Type V/metabolism , Myosin Type V/genetics , Melanocytes/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Humans , Smad Proteins/metabolism , Promoter Regions, Genetic/genetics , Phosphorylation , Mice , Animals , Gene Expression Regulation
4.
PLoS One ; 19(5): e0303551, 2024.
Article in English | MEDLINE | ID: mdl-38771832

ABSTRACT

The vertical facial profile is a crucial factor for facial harmony with significant implications for both aesthetic satisfaction and orthodontic treatment planning. However, the role of single nucleotide polymorphisms (SNPs) in the development of vertical facial proportions is still poorly understood. This study aimed to investigate the potential impact of some SNPs in genes associated with craniofacial bone development on the establishment of different vertical facial profiles. Vertical facial profiles were assessed by two senior orthodontists through pre-treatment digital lateral cephalograms. The vertical facial profile type was determined by recommended measurement according to the American Board of Orthodontics. Healthy orthodontic patients were divided into the following groups: "Normodivergent" (control group), "Hyperdivergent" and "Hypodivergent". Patients with a history of orthodontic or facial surgical intervention were excluded. Genomic DNA extracted from saliva samples was used for the genotyping of 7 SNPs in RUNX2, BMP2, BMP4 and SMAD6 genes using real-time polymerase chain reactions (PCR). The genotype distribution between groups was evaluated by uni- and multivariate analysis adjusted by age (alpha = 5%). A total of 272 patients were included, 158 (58.1%) were "Normodivergent", 68 (25.0%) were "Hyperdivergent", and 46 (16.9%) were "Hypodivergent". The SNPs rs1200425 (RUNX2) and rs1005464 (BMP2) were associated with a hyperdivergent vertical profile in uni- and multivariate analysis (p-value < 0.05). Synergistic effect was observed when evaluating both SNPs rs1200425- rs1005464 simultaneously (Prevalence Ratio = 4.0; 95% Confidence Interval = 1.2-13.4; p-value = 0.022). In conclusion, this study supports a link between genetic factors and the establishment of vertical facial profiles. SNPs in RUNX2 and BMP2 genes were identified as potential contributors to hyperdivergent facial profiles.


Subject(s)
Bone Morphogenetic Protein 2 , Core Binding Factor Alpha 1 Subunit , Face , Polymorphism, Single Nucleotide , Humans , Core Binding Factor Alpha 1 Subunit/genetics , Female , Male , Bone Morphogenetic Protein 2/genetics , Adolescent , Adult , Young Adult , Genotype , Cephalometry
5.
BMC Biotechnol ; 24(1): 34, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783306

ABSTRACT

BACKGROUND: Signal peptide (SP) engineering has proven able to improve production of many proteins yet is a laborious process that still relies on trial and error. mRNA structure around the translational start site is important in translation initiation and has rarely been considered in this context, with recent improvements in in silico mRNA structure potentially rendering it a useful predictive tool for SP selection. Here we attempt to create a method to systematically screen candidate signal peptide sequences in silico based on both their nucleotide and amino acid sequences. Several recently released computational tools were used to predict signal peptide activity (SignalP), localization target (DeepLoc) and predicted mRNA structure (MXFold2). The method was tested with Bone Morphogenetic Protein 2 (BMP2), an osteogenic growth factor used clinically for bone regeneration. It was hoped more effective BMP2 SPs could improve BMP2-based gene therapies and reduce the cost of recombinant BMP2 production. RESULTS: Amino acid sequence analysis indicated 2,611 SPs from the TGF-ß superfamily were predicted to function when attached to BMP2. mRNA structure prediction indicated structures at the translational start site were likely highly variable. The five sequences with the most accessible translational start sites, a codon optimized BMP2 SP variant and the well-established hIL2 SP sequence were taken forward to in vitro testing. The top five candidates showed non-significant improvements in BMP2 secretion in HEK293T cells. All showed reductions in secretion versus the native sequence in C2C12 cells, with several showing large and significant decreases. None of the tested sequences were able to increase alkaline phosphatase activity above background in C2C12s. The codon optimized control sequence and hIL2 SP showed reasonable activity in HEK293T but very poor activity in C2C12. CONCLUSIONS: These results support the use of peptide sequence based in silico tools for basic predictions around signal peptide activity in a synthetic biology context. However, mRNA structure prediction requires improvement before it can produce reliable predictions for this application. The poor activity of the codon optimized BMP2 SP variant in C2C12 emphasizes the importance of codon choice, mRNA structure, and cellular context for SP activity.


Subject(s)
Bone Morphogenetic Protein 2 , Protein Sorting Signals , RNA, Messenger , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/chemistry , Protein Sorting Signals/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/chemistry , Amino Acid Sequence , Nucleic Acid Conformation , Computational Biology/methods , Protein Engineering/methods , HEK293 Cells
6.
Sci Rep ; 14(1): 8533, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609424

ABSTRACT

Craniosynostosis (CS) is a major birth defect resulting from premature fusion of cranial sutures. Nonsyndromic CS occurs more frequently than syndromic CS, with sagittal nonsyndromic craniosynostosis (sNCS) presenting as the most common CS phenotype. Previous genome-wide association and targeted sequencing analyses of sNCS have identified multiple associated loci, with the strongest association on chromosome 20. Herein, we report the first whole-genome sequencing study of sNCS using 63 proband-parent trios. Sequencing data for these trios were analyzed using the transmission disequilibrium test (TDT) and rare variant TDT (rvTDT) to identify high-risk rare gene variants. Sequencing data were also examined for copy number variants (CNVs) and de novo variants. TDT analysis identified a highly significant locus at 20p12.3, localized to the intergenic region between BMP2 and the noncoding RNA gene LINC01428. Three variants (rs6054763, rs6054764, rs932517) were identified as potential causal variants due to their probability of being transcription factor binding sites, deleterious combined annotation dependent depletion scores, and high minor allele enrichment in probands. Morphometric analysis of cranial vault shape in an unaffected cohort validated the effect of these three single nucleotide variants (SNVs) on dolichocephaly. No genome-wide significant rare variants, de novo loci, or CNVs were identified. Future efforts to identify risk variants for sNCS should include sequencing of larger and more diverse population samples and increased omics analyses, such as RNA-seq and ATAC-seq.


Subject(s)
Craniosynostoses , Genome-Wide Association Study , Humans , Alleles , Bone Morphogenetic Protein 2/genetics , Craniosynostoses/genetics , DNA, Intergenic/genetics , Whole Genome Sequencing , RNA, Long Noncoding
7.
Biol Direct ; 19(1): 30, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654256

ABSTRACT

BACKGROUND: Large bone defects pose a clinical treatment challenge; inhibiting transferrin receptor 2 (TfR2), which is involved in iron metabolism, can promote osteogenesis. Iron-based metal-organic frameworks (MOF-Fe) particles not only inhibit TfR2 but also serve as biomimetic catalysts to remove hydrogen peroxide in reactive oxygen species (ROS); excess ROS can disrupt the normal functions of osteoblasts, thereby hindering bone regeneration. This study explored the potential effects of MOF-Fe in increasing osteogenic activity and clearing ROS. METHODS: In vitro experiments were performed to investigate the osteogenic effects of MOF-Fe particles and assess their impact on cellular ROS levels. To further validate the role of MOF-Fe in promoting bone defect repair, we injected MOF-Fe suspensions into the femoral defects of SD rats and implanted MOF-Fe-containing hydrogel scaffolds in rabbit cranial defect models and observed their effects on bone healing. RESULTS: In vitro, the presence of MOF-Fe significantly increased the expression levels of osteogenesis-related genes and proteins compared to those in the control group. Additionally, compared to those in the untreated control group, the cells treated with MOF-Fe exhibited a significantly increased ability to remove hydrogen peroxide from ROS and generate oxygen and water within the physiological pH range. In vivo experiments further confirmed the positive effect of MOF-Fe in promoting bone defect repair. CONCLUSION: This study supports the application of MOF-Fe as an agent for bone regeneration, particularly for mitigating ROS and activating the bone morphogenetic protein (BMP) pathway, demonstrating its potential value.


Subject(s)
Bone Morphogenetic Protein 2 , Bone Regeneration , Osteogenesis , Rats, Sprague-Dawley , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Rats , Bone Regeneration/drug effects , Osteogenesis/drug effects , Rabbits , Metal-Organic Frameworks/chemistry , Receptors, Transferrin/metabolism , Reactive Oxygen Species/metabolism , Peroxidase/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Signal Transduction/drug effects , Hydrogen Peroxide , Male
8.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612723

ABSTRACT

Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.


Subject(s)
Adipogenesis , Proto-Oncogene Proteins c-akt , Swine , Animals , Adipogenesis/genetics , Bone Morphogenetic Protein 2/genetics , PPAR gamma , Signal Transduction , TOR Serine-Threonine Kinases/genetics
9.
Cancer Cell ; 42(5): 744-746, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38670089

ABSTRACT

Cancer-associated fibroblasts (CAFs) exhibit spatial and functional diversity. Here, Niu et al. unveil SETD2's function in lipid metabolism and CAF heterogeneity in pancreatic ductal adenocarcinoma. SETD2 deficiency boosts oxidative phosphorylation activity, prompting lipid-laden CAF formation through BMP2 signaling, offering promising therapeutic avenues in personalized cancer treatment.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Lipid Metabolism/genetics , Signal Transduction , Animals , Oxidative Phosphorylation , Gene Expression Regulation, Neoplastic
10.
Mutagenesis ; 39(3): 181-195, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38468450

ABSTRACT

Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely distributed in maize and maized-based products, often occurring together. The implications of co-exposure to aflatoxin and fumonsin for human health are numerous, but a particular concern is the potential of FB1 to modulate AFB1 hepatotoxicity. This study evaluated the toxicity of these mycotoxins, alone or combined, in a human non-tumorigenic liver cell line, HHL-16 cells, and assessed the effects of AFB1 and FB1 on expression of genes involved in immune and growth factor pathways. The results demonstrated that in HHL-16 cells, both AFB1 and FB1 had dose-dependent and time-dependent toxicity, and the combination of them showed a synergistic toxicity in the cells. Moreover, AFB1 caused upregulation of IL6, CCL20, and BMP2, and downregulation of NDP. In combination of AFB1 with FB1, gene expression levels of IL6 and BMP2 were significantly higher compared to individual FB1 treatment, and had a tendency to be higher than individual AFB1 treatment. This study shows that FB1 may increase the hepatoxicity of AFB1 through increasing the inflammatory response and disrupting cell growth pathways.


Subject(s)
Aflatoxin B1 , Fumonisins , Hepatocytes , Fumonisins/toxicity , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Aflatoxin B1/toxicity , Cell Line , Inflammation/genetics , Inflammation/chemically induced , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism
11.
J Clin Invest ; 134(10)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512413

ABSTRACT

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Subject(s)
Bone Remodeling , Glucocorticoids , Osteogenesis , Animals , Mice , Glucocorticoids/pharmacology , Osteogenesis/drug effects , Bone Remodeling/drug effects , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Fatty Acids/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/immunology , Cellular Microenvironment/drug effects
12.
Exp Biol Med (Maywood) ; 249: 10111, 2024.
Article in English | MEDLINE | ID: mdl-38510491

ABSTRACT

MicroRNAs (mRNAs) were believed to play an important role in cancers, and this study aimed to explore the mechanism of miRNA regulating Treg in B-cell acute lymphoblastic leukemia (B-ALL). Firstly, the differentially expressed miRNAs and target genes significantly associated with Tregs were screened out by high-throughput sequencing, and their enrichment pathways were analyzed. The binding relationship between miRNA and target genes was further verified, and the effects of miRNA on the proliferation and apoptosis of B-ALL Nalm-6 cells and Treg activation were analyzed. Results showed that differentially expressed miR-539-5p was significantly under-expressed, and its target gene BMP2 was significantly over-expressed in B-ALL, and significantly enriched in the TGF-ß1 pathway. In addition, both miR-539-5p and BMP2 were significantly correlated with Treg activity in B-ALL. In vitro experiments further confirmed that miR-539-5p could directly target BMP2. The low expression of miR-539-5p in B-ALL significantly promoted BMP2 expression to promote the proliferation and inhibit apoptosis of Nalm-6 cells. Furthermore, the high expression of BMP2 in B-ALL could cooperate with TGF-ß1 to promote the activation of human CD4+CD25-T cells to Treg, and significantly activate the TGF-ß/Smads/MAPK pathway. In vivo experiments also confirmed that overexpression of miR-539-5p significantly inhibited BMP2 to suppress Treg activation and Smad1 and Smad2 phosphorylation, and finally inhibit the B-ALL process. In conclusion, miR-539-5p was significantly under-expressed in B-ALL and could target BMP2 to promote its expression, and the overexpressed BMP2 further promoted Treg activation in B-ALL by regulating TGF-ß/Smads/MAPK pathway.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , T-Lymphocytes, Regulatory , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Proliferation/genetics , Bone Morphogenetic Protein 2/genetics
13.
Appl Microbiol Biotechnol ; 108(1): 206, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353738

ABSTRACT

Plant cells serve as versatile platforms for the production of high-value recombinant proteins. This study explored the efficacy of utilizing an endogenous αAmy3 promoter for the expression of a bioactive pharmaceutical protein, specifically the mature region of human bone morphogenetic protein 2 (hBMP2m). Utilizing a refined CRISPR/Cas9-mediated intron-targeting insertion technique, which incorporates an artificial 3' splicing site upstream of the target gene, we achieved a transformation efficiency of 13.5% in rice calli that carried the rice-codon optimized mature region of hBMP2 cDNA (rhBMP2m) in the αAmy3 intron 1. Both homozygous and heterozygous rhBMP2m knock-in rice suspension cell lines were generated. These lines demonstrated the endogenous αAmy3 promoter regulated rhBMP2m mRNA and rhBMP2m recombinant protein expression, with strongly upregulation in respond to sugar depletion. The homozygous rhBMP2m knock-in cell line yielded an impressive 21.5 µg/mL of rhBMP2m recombinant protein, accounting for 1.03% of the total soluble protein. The high-yield expression was stably maintained across two generations, indicating the genetic stability of rhBMP2m gene knock-in at the αAmy3 intron 1 locus. Additionally, the rice cell-derived rhBMP2m proteins were found to be glycosylated, capable of dimer formation, and bioactive. Our results indicate that the endogenous rice αAmy3 promoter-signal peptide-based expression system is an effective strategy for producing bioactive pharmaceutical proteins. KEY POINTS: • The endogenous αAmy3 promoter-based expression system enhanced the yield of BMP2 • The increased yield of BMP2 accounted for 1.03% of the total rice-soluble proteins • The rice-produced BMP2 showed glycosylation modifications, dimer formation, and bioactivity.


Subject(s)
Oryza , Humans , Oryza/genetics , Bone Morphogenetic Protein 2/genetics , Introns , Recombinant Proteins/genetics , Pharmaceutical Preparations
14.
Kidney Int ; 105(6): 1221-1238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38417578

ABSTRACT

Vascular calcification is a pathological process commonly associated with atherosclerosis, chronic kidney disease, and diabetes. Paraspeckle protein NONO is a multifunctional RNA/DNA binding protein involved in many nuclear biological processes but its role in vascular calcification remains unclear. Here, we observed that NONO expression was decreased in calcified arteries of mice and patients with CKD. We generated smooth muscle-specific NONO-knockout mice and established three different mouse models of vascular calcification by means of 5/6 nephrectomy, adenine diet to induce chronic kidney failure, or vitamin D injection. The knockout mice were more susceptible to the development of vascular calcification relative to control mice, as verified by an increased calcification severity and calcium deposition. Likewise, aortic rings from knockout mice showed more significant vascular calcification than those from control mice ex vivo. In vitro, NONO deficiency aggravated high phosphate-induced vascular smooth muscle cell osteogenic differentiation and apoptosis, whereas NONO overexpression had a protective effect. Mechanistically, we demonstrated that the regulation of vascular calcification by NONO was mediated by bone morphogenetic protein 2 (BMP2). NONO directly bound to the BMP2 promoter using its C-terminal region, exerting an inhibitory effect on the transcription of BMP2. Thus, our study reveals that NONO is a novel negative regulator of vascular calcification, which inhibits osteogenic differentiation of vascular smooth muscle cell and vascular calcification via negatively regulating BMP2 transcription. Hence, NONO may provide a promising target for the prevention and treatment of vascular calcification.


Subject(s)
Bone Morphogenetic Protein 2 , Disease Models, Animal , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Osteogenesis , Renal Insufficiency, Chronic , Transcription, Genetic , Vascular Calcification , Animals , Humans , Male , Mice , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Aortic Diseases/pathology , Aortic Diseases/metabolism , Apoptosis/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Cell Differentiation/drug effects , Cells, Cultured , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Osteogenesis/drug effects , Promoter Regions, Genetic , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/prevention & control , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Vascular Calcification/pathology , Vascular Calcification/prevention & control , Vascular Calcification/metabolism , Vascular Calcification/genetics , Vascular Calcification/etiology
15.
Mol Biol Rep ; 51(1): 267, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302768

ABSTRACT

BACKGROUND: Prolificacy-associated genetic markers can be utilized to enhance litter size in the sheep breeding industry. Sheep reproduction is influenced by a multitude of genes, including bone morphogenetic protein 2 (BMP2). This study aimed to explore the potential relationship between variability in the BMP2 gene and reproductive performance in Awassi and Hamdani ewes. METHODS AND RESULTS: The genomic DNA was extracted from 99 single-progeny ewes and 101 twin ewes. Polymerase chain reaction (PCR) was employed to produce an amplicon consisting of four sequence fragments: 277 bp, 251 bp, 331 bp, and 340 bp, from exons 1, 2, 3, and 4 of the BMP2 gene, respectively. Three genotypes were identified for amplicons in exon 4 with 340-bp lengths: CC, CA, and AA. Upon analyzing the sequence of the CA genotype 382 C > A, a novel mutation was discovered in this genotype. A robust association was identified between the single nucleotide polymorphisms (SNP) 382 C > A and reproductive performance through statistical analysis. An important distinction was discovered between ewes carrying SNP 382 C > A and those carrying CC in terms of litter sizes, twinning rates, lambing rates, and days to lambing. An analysis of logistic regression revealed a significant association between litter size and the 382 C > A SNP. There was a decrease in lamb production among ewes with the CC genotype compared to those with the CA and AA genotypes. CONCLUSIONS: These results indicate that the SNP variant 382 C > A has a positive influence on the reproductive performance of Awassi and Hamdani sheep. Sheep carrying the 382 C > A SNP exhibit increased litter size and overall productivity compared to those without the SNP.


Subject(s)
Bone Morphogenetic Protein 2 , Reproduction , Pregnancy , Sheep/genetics , Animals , Female , Bone Morphogenetic Protein 2/genetics , Mutation , Reproduction/genetics , Litter Size/genetics , Genotype
16.
Sci Rep ; 14(1): 2602, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297106

ABSTRACT

Based on anti-inflammatory and osteogenic properties of hesperidin (HE), we hypothesized its systemic administration could be a cost-effective method of improving BMP-induced bone regeneration. Sprague-Dawley rats were allocated into 4 groups (n = 10/group): a 5-mm critical-sized mandible defect + collagen scaffold or, scaffold + 1 µg of BMP2 with and without dietary HE at 100 mg/kg. HE was administered by oral gavage 4 weeks prior to surgeries until euthanasia at day 7 or 14 post-surgery. The healing tissue within the defect collected at day 7 was subjected to gene expression analysis. Mandibles harvested at day 14 were subjected to microcomputed tomography and histology. HE + BMP2-treated rats had a statistically significant decrease in expression of inflammatory genes compared to BMP2 alone. The high-dose BMP2 alone caused cystic-like regeneration with incomplete defect closure. HE + BMP2 showed virtually complete bone fusion. Collagen fibril birefringence pattern (red color) under polarized light indicated high organization in BMP2-induced newly formed bone (NFB) in HE-supplemented group (p < 0.05). Clear changes in osteocyte lacunae as well as a statistically significant increase in osteoclasts were found around NFB in HE-treated rats. A significant increase in trabecular volume and thickness, and trabecular and cortical density was found in femurs of HE-supplemented rats (p < 0.05). Our findings show, for the first time, that dietary HE has a remarkable modulatory role in the function of locally delivered high-dose BMP2 in bone regeneration possibly via control of inflammation, osteogenesis, changes in osteocyte and osteoclast function and collagen maturation in regenerated and native bone. In conclusion, HE had a significant skeletal bone sparing effect and the ability to provide a more effective BMP-induced craniofacial regeneration.


Subject(s)
Hesperidin , Rats , Animals , Rats, Sprague-Dawley , Hesperidin/pharmacology , X-Ray Microtomography , Bone Regeneration , Osteogenesis , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/genetics , Collagen/pharmacology , Inflammation
17.
Tohoku J Exp Med ; 263(1): 17-25, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38267060

ABSTRACT

MicroRNAs (miRNAs) are related to the regulation of bone metabolism. Delayed fracture healing (DFH) is a common complication after fracture surgery. The study attempted to examine the role of miR-98-5p and bone morphogenetic protein (BMP)-2 with the onset of DFH. A total of 140 patients with femoral neck fracture were recruited, including 80 cases with normal fracture healing (NFH) and 60 cases with DFH. MC3T3-E1 cells were induced cell differentiation for cell function experiments. Real-time quantitative polymerase chain reaction (RT-qPCR) was carried out to test mRNA levels. Cell proliferation and apoptosis were determined via CCK-8 and flow cytometry assay. Luciferase reporter assay was done to verify the targeted regulatory relationship of miR-98-5p with BMP-2. In comparison with NFH cases, DFH patients owned high levels of serum miR-98-5p and low concentration of BMP-2, and the levels of the two indexes are significantly negatively correlated. Both miR-98-5p and BMP-2 had the ability to predict DFH, while their combined diagnostic value is the highest. BMP-2 was demonstrated to be the target gene of miR-98-5p. Overexpression of BMP-2 reversed the role of miR-98-5p in MC3T3-E1 cell proliferation, apoptosis and differentiation. Increased miR-98-5p and decreased BMP-2 serve as potential biomarkers for the diagnosis of DFH. MiR-98-5p overexpression inhibits osteoblast proliferation and differentiation via targeting BMP-2.


Subject(s)
Apoptosis , Bone Morphogenetic Protein 2 , Cell Proliferation , Fracture Healing , MicroRNAs , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Fracture Healing/genetics , Animals , Mice , Female , Male , Apoptosis/genetics , Middle Aged , Cell Differentiation/genetics , Base Sequence , Aged , Femoral Neck Fractures/metabolism , Femoral Neck Fractures/genetics , Cell Line
18.
J Oral Sci ; 66(1): 15-19, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38008425

ABSTRACT

PURPOSE: After tooth extraction, preservation of the alveolar ridge by socket grafting attenuates bone resorption. Runt-related transcription factor 2 (RUNX2) and SP7/Osterix (OSX) are transcription factors playing an important role in osteoblast differentiation. The purpose of this study was to evaluate the effects of carbonate apatite (CO3Ap) on osteoblast-related gene and protein expression after socket grafting. METHODS: Alveolar bone and new bone after CO3Ap grafting were collected at the time of implant placement. Levels of mRNA for RUNX2, SP7/OSX, bone morphogenetic protein 2 (BMP2), BMP7 and platelet derived growth factor B were determined by real-time PCR. Immunostaining was performed using antibodies against RUNX2, SP7/OSX, vimentin and cytokeratin. To evaluate bone resorption rates, cone-beam CT (CBCT) imaging was performed after socket grafting and before implant placement. RESULTS: CBCT imaging showed that the average degree of bone resorption at the CO3Ap graft site was 7.15 ± 3.79%. At the graft sites, levels of SP7/OSX and BMP2 mRNA were significantly increased. Replacement of CO3Ap with osteoid was evident histologically, and in the osteoid osteoblast-like cells were stained for SP7/OSX and vimentin. CONCLUSION: These results show that gene expression of both SP7/OSX and BMP2 can be induced by CO3Ap, suggesting that increased expression of SP7/OSX and vimentin may be involved in the BMP pathway.


Subject(s)
Apatites , Bone Morphogenetic Protein 2 , Bone Resorption , Humans , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Vimentin/genetics , Vimentin/metabolism , Vimentin/pharmacology , Cell Differentiation , Osteoblasts/metabolism , Alveolar Process/surgery , RNA, Messenger/metabolism , Bone Resorption/metabolism , Gene Expression , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/pharmacology
19.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 256-261, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063098

ABSTRACT

To explore the effect of micro ribonucleic acid (miR)-20b on knee osteoarthritis rats by regulating the bone morphogenetic protein 2 (BMP2)/Smad1 pathway, a total of 36 SD rats were randomly divided into normal group (n=12), model group (n=12) and miR-20b mimics group (n=12). The rats in normal group were fed normally, while those in model group and miR-20b mimics group were used to establish knee osteoarthritis models. After modeling, model group was not given any intervention, but miR-20b mimics group received intra-articular injection of miR-20b mimics once a day for 2 weeks. Basso, Beattie and Bresnahan (BBB) limb motor function scoring was performed at 1, 5, 7 and 14 days after the modeling, and samples were obtained after 2 weeks of intervention. Next, hematoxylin and eosin (H&E) staining was applied to observe tissue morphology, Markin's scoring was utilized to evaluate articular cartilage degeneration, and immunohistochemistry was employed to detect the expressions of BMP2 and Smad1. Thereafter, the expression of miR-20b was detected via qPCR, the content of cartilage oligomeric matrix protein (COMP) and C-telopeptide of type II collagen (CTX-II) was measured via enzyme-linked immunosorbent assay (ELISA), and the expressions of BMP2 and Smad1 proteins were examined via Western blotting (WB). BBB limb motor function scoring showed that compared with that in normal group, the BBB limb motor function score of rats in the other two groups was reduced (P<0.05). In comparison with that in model group, the BBB limb motor function score in miR-20b mimics group was increased from the 7th day after intervention (P<0.05). In addition, H&E staining results manifested that the articular surface in normal group was smooth and flat, with normal morphology, clear structure and no obvious damage. In model group, the articular surface was not smooth and uneven, and more articular cartilage fractures, morphological disorders and structural damages could be observed. Moreover, the articular surface in miR-20b mimics group was slightly damaged and smoother, and its morphology and structure were markedly improved in contrast to that in model group. The Markin's score in normal group was lower than that in model group and miR-20b mimics group (P<0.05), and it was overtly decreased in miR-20b mimics group in comparison with that in model group (P<0.05). Next, immunohistochemistry demonstrated that compared with normal group, the other two groups had lowered positive expressions of BMP2 and Smad1 (P<0.05). In comparison with model group, miR-20b mimics group exhibited notably raised positive expressions of BMP2 and Smad1 (P<0.05). Then it was found from qPCR results that the expression level of miR-20b in the other two groups was overtly reduced compared with that in normal group (P<0.05), and it was prominently elevated in miR-20b mimics group in contrast to that in model group (P<0.05). Besides, ELISA illustrated that the content of COMP and CTX-II in the cartilage tissues in the other two groups was evidently reduced compared with that in normal group (P<0.05), and it was increased prominently in miR-20b mimics group compared with that in model group (P<0.05). Finally, it was revealed by WB examination that the relative expression levels of BMP2 and Smad1 proteins in the other two groups markedly declined in comparison with those in normal group (P<0.05), and they were elevated in contrast to those in model group (P<0.05). MiR-20b can promote cartilage repair and improve articular function in knee osteoarthritis rats by up-regulating the BMP2/Smad1 signaling pathway.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis, Knee , Rats , Animals , Osteoarthritis, Knee/genetics , Rats, Sprague-Dawley , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Cartilage, Articular/metabolism , Smad1 Protein/genetics , Smad1 Protein/metabolism
20.
Aging (Albany NY) ; 15(23): 14411-14421, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38059889

ABSTRACT

MicroRNAs (miRNAs) are essential to the tumour growth and metastasis of several cancers. However, the implied functions of miR-211-5p in pancreatic cancer (PC) remains poorly known. In the present study, we discovered that miR-211-5p was a significantly downregulated miRNA in PC tissues compared to adjacent non-tumour tissues. Moreover, we revealed that miR-211-5p overexpression suppressed the proliferation and metastasis of PC cells. Mechanistically, miR-211-5p directly bond to 3'UTR of bone morphogenetic protein-2 (BMP2) and negatively regulated its expression. Rescue experiments showed that the biological function of miR-211-5p was reversed by BMP-2 overexpression in PC cells. Clinical data indicated that BMP2 expression was negatively correlated with miR-211-5p levels in PC patients. Our study provided evidence that miR-211-5p served as a significant suppressor in PC, provided potential targets for prognosis and treatment of patients with PC.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Neoplasm Invasiveness/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...