Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.533
Filter
1.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727271

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.


Subject(s)
Angiotensin II , Aortic Aneurysm, Thoracic , Bone Morphogenetic Protein 2 , Bone Morphogenetic Protein 4 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , Bone Morphogenetic Protein 4/metabolism , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/genetics , Mice , Bone Morphogenetic Protein 2/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Angiotensin II/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Mice, Inbred C57BL , Male , Apoptosis/drug effects , Disease Models, Animal
2.
Anat Histol Embryol ; 53(3): e13044, 2024 May.
Article in English | MEDLINE | ID: mdl-38695121

ABSTRACT

The vitamin D receptor (VDR) signalling has been implicated in vertebrate limb or fin formation. However, the involvement of VDR signalling in the early stages of limb/fin development remains to be elucidated. In this study, the role of VDR signalling in pectoral fin development was investigated in zebrafish embryos. Knockdown of vdr induced the severe impairment of pectoral fin development. The zebrafish larvae lacking vdr exhibited reduced pectoral fins with no skeletal elements. In situ hybridization revealed depletion of vdr downregulated fibroblast growth factor 24 (fgf24), a marker of early pectoral fin bud mesenchyme, in the presumptive fin field even before fin buds were visible. Moreover, a perturbed expression pattern of bone morphogenetic protein 4 (bmp4), a marker of the pectoral fin fold, was observed in the developing fin buds of zebrafish embryos that lost the vdr function. These findings suggest that VDR signalling is crucial in the early stages of fin development, potentially influencing the process by regulating other signalling molecules such as Fgf24 and Bmp4.


Subject(s)
Animal Fins , Bone Morphogenetic Protein 4 , Fibroblast Growth Factors , Receptors, Calcitriol , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Animal Fins/embryology , Animal Fins/metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gene Knockdown Techniques , Signal Transduction , Gene Expression Regulation, Developmental , In Situ Hybridization
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 279-285, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755724

ABSTRACT

OBJECTIVES: Bone morphogenetic protein-4 (BMP4) has been proved to be an important regulatory factor for the pathological process of atherosclerosis (AS). However, there are few related clinical studies. This study aims to investigate the levels of plasma BMP4 in patients suffering from the arterial occlusive diseases (ACD) characterized by AS, and further to test the relationship between BMP4 and inflammation and vascular injury. METHODS: A total of 38 ACD patients (the ACD group) and 38 healthy people for the physical examination (the control group) were enrolled. The plasma in each subject from both groups was obtained to test the levels of BMP4, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-10, and vascular endothelial cadherin (VE-cadherin), and the relationship between BMP4 and the detected indicators above were further analyzed. RESULTS: Compared with the control group, the patients in the ACD group displayed significant elevations in the neutrophil to lymphocyte ratio [NLR, 1.63 (1.26, 1.91) vs 3.43 (2.16, 6.61)] and platelet to lymphocyte ratio [PLR, 6.37 (5.26, 7.74) vs 15.79 (7.97, 20.53)], while decrease in the lymphocyte to monocyte ratio [LMR, 5.67 (4.41, 7.14) vs 3.43 (2.07, 3.74)] (all P<0.05). Besides, the ACD patients displayed significant elevations in plasma BMP4 [581.26 (389.85, 735.64) pg/mL vs 653.97(510.95, 890.43) pg/mL], TNF-α [254.16 (182.96, 340.70) pg/mL vs 293.29(238.90, 383.44) pg/mL], and VE-cadherin [1.54 (1.08, 2.13) ng/mL vs 1.85 (1.30, 2.54) ng/mL], and decrease in IL-10 [175.89 (118.39, 219.25) pg/mL vs 135.92 (95.80, 178.04) pg/mL] (all P<0.05). While the levels of IL-1ß remained statistically comparable between the 2 groups (P=0.09). Furthermore, the plasma BMP4 levels were further revealed to be positively correlated with the levels of IL-1ß (r=0.35), TNF-α (r=0.31) and VE-cadherin (r=0.47), while they were negatively correlated with the levels of IL-10 (r=-0.37; all P<0.01). CONCLUSIONS: After ACD occurrence, the patients' plasma concentrations of BMP4 would be upregulated, which may serve as a candidate to indicate the levels of inflammation and vascular injury.


Subject(s)
Arterial Occlusive Diseases , Bone Morphogenetic Protein 4 , Inflammation , Interleukin-10 , Tumor Necrosis Factor-alpha , Humans , Bone Morphogenetic Protein 4/blood , Inflammation/blood , Male , Female , Tumor Necrosis Factor-alpha/blood , Arterial Occlusive Diseases/blood , Interleukin-10/blood , Interleukin-1beta/blood , Cadherins/blood , Case-Control Studies , Middle Aged , Antigens, CD/blood , Vascular System Injuries/blood , Neutrophils/metabolism , Atherosclerosis/blood , Aged , Adult , Lymphocytes/metabolism
4.
Environ Pollut ; 351: 124101, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710361

ABSTRACT

Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-ß and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-ß/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.


Subject(s)
Mice, Inbred ICR , Ovary , Polystyrenes , Uterus , Animals , Female , Mice , Uterus/drug effects , Uterus/metabolism , Ovary/drug effects , Ovary/metabolism , Polystyrenes/toxicity , Reproduction/drug effects , Microplastics/toxicity , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Environmental Pollutants/toxicity , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics
5.
Cell Biochem Funct ; 42(4): e4068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817105

ABSTRACT

Evidence is accumulating that osteal macrophages, in addition to bone-resorbing osteoclasts and bone-forming osteoblasts, participate vitally in bone remodeling process. Oncostatin M (OSM), an inflammatory cytokine belonging to interleukin-6 superfamily, is recognized as an essential factor secreted by osteal macrophages to orchestrate bone remodeling. Osteoprotegerin (OPG) produced by osteoblasts regulates osteoclastogenesis. We have reported that bone morphogenetic protein-4 (BMP-4) stimulates OPG synthesis in MC3T3-E1 osteoblast-like cells, and that SMAD1/5/8(9), p38 mitogen-activated protein kinase (MAPK), and p70 S6 kinase are involved in the OPG synthesis. The present study aims to investigate the effect of OSM on the synthesis of OPG stimulated by BMP-4 in osteoblasts. OSM suppressed the release and the mRNA expression of OPG upregulated by BMP-4 in MC3T3-E1 cells. Neither the BMP-4-induced phosphorylation of SMAD1/5/9 nor that of p38 MAPK was affected by OSM. On the other hand, the phosphorylation of p70 S6 kinase stimulated by BMP-4 was considerably suppressed by OSM. These results strongly suggest that OSM suppresses the BMP-4-stimulated OPG synthesis via inhibition of the p70 S6 kinase-mediated pathway in osteoblast-like cells.


Subject(s)
Bone Morphogenetic Protein 4 , Oncostatin M , Osteoblasts , Osteoprotegerin , Ribosomal Protein S6 Kinases, 70-kDa , Animals , Mice , Oncostatin M/pharmacology , Oncostatin M/metabolism , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoprotegerin/metabolism , Osteoprotegerin/biosynthesis , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Cell Line
6.
PLoS One ; 19(4): e0302932, 2024.
Article in English | MEDLINE | ID: mdl-38669265

ABSTRACT

INTRODUCTION: Recent studies have shown that epithelial-stromal interactions could play a role in the development of colorectal cancer. Here, we investigated the role of fibroblasts in the transformation of normal colonocytes induced by 4-HNE. METHODS: Normal Co colonocytes and nF fibroblasts from the same mouse colon were exposed, in monoculture (m) or coculture (c), to 4-HNE (5 µM) twice weekly for 3 weeks. Gene expression was then analysed and the ability of Co colonocytes to grow in anchorage-independent conditions was tested in soft agar. Fibroblasts previously treated or not with 4-HNE were also seeded in culture inserts positioned above the agar layers to allow paracrine exchanges with colonocytes. RESULTS: First, 60% of the genes studied were modulated by coculture in Co colonocytes, with notably increased expression of BMP receptors. Furthermore, while 4-HNE increased the ability of monoculture-treated Co colonocytes to form colonies, this effect was not observed in coculture-treated Co colonocytes. Adding a selective BMPR1 inhibitor during the treatment phase abolished the protective effect of coculture. Conversely, addition of a BMP4 agonist to the medium of monoculture-treated Co colonocytes prevented phenotypic transformation by 4-HNE. Second, the presence of nF(m)-HNE fibroblasts during the soft agar assay increased the number and size of Co(m) colonocyte colonies, regardless of whether these cells had been previously treated with 4-HNE in monoculture. For soft agar assays performed with nF(c) and Co(c) cells initially treated in coculture, only the reassociation between Co(c)-HNE and nF(c)-HNE resulted in a small increase in the number of colonies. CONCLUSIONS: During the exposure phase, the epithelial-mesenchymal interaction protected colonocytes from 4-HNE-induced phenotypic transformation via activation of the BMP pathway. This intercellular dialogue also limited the ability of fibroblasts to subsequently promote colonocyte-anchorage-independent growth. In contrast, fibroblasts pre-exposed to 4-HNE in monoculture strongly increased the ability of Co(m) colonocytes to form colonies.


Subject(s)
Aldehydes , Bone Morphogenetic Protein 4 , Coculture Techniques , Colon , Epithelial-Mesenchymal Transition , Fibroblasts , Animals , Colon/cytology , Colon/drug effects , Colon/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/drug effects , Bone Morphogenetic Protein 4/metabolism , Aldehydes/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Phenotype , Cell Transformation, Neoplastic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/cytology
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673725

ABSTRACT

Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.


Subject(s)
Cell Differentiation , Epithelial Cells , Induced Pluripotent Stem Cells , Morpholines , Purines , Pyrimidines , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Cell Differentiation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Tooth/cytology , Ectoderm/cytology , Ectoderm/metabolism , Cells, Cultured , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology
8.
Endocrinology ; 165(6)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679470

ABSTRACT

CONTEXT: Recurrent spontaneous abortion (RSA) is defined as the loss of 2 or more consecutive intrauterine pregnancies with the same sexual partner in the first trimester. Despite its significance, the etiology and underlying mechanisms of RSA remain elusive. Defective decidualization is proposed as one of the potential causes of RSA, with abnormal decidualization leading to disturbances in trophoblast invasion function. OBJECTIVE: To assess the role of bone morphogenetic protein 4 (BMP4) in decidualization and RSA. METHODS: Decidual samples were collected from both RSA patients and healthy controls to assess BMP4 expression. In vitro cell experiments utilized the hESC cell line to investigate the impact of BMP4 on decidualization and associated aging, as well as its role in the maternal-fetal interface communication. Subsequently, a spontaneous abortion mouse model was established to evaluate embryo resorption rates and BMP4 expression levels. RESULTS: Our study identified a significant downregulation of BMP4 expression in the decidua of RSA patients compared to the normal control group. In vitro, BMP4 knockdown resulted in inadequate decidualization and inhibited associated aging processes. Mechanistically, BMP4 was implicated in the regulation of FOXO1 expression, thereby influencing decidualization and aging. Furthermore, loss of BMP4 hindered trophoblast migration and invasion via FOXO1 modulation. Additionally, BMP4 downregulation was observed in RSA mice. CONCLUSION: Our findings highlighted the downregulation of BMP4 in both RSA patients and mice. BMP4 in human endometrial stromal cells was shown to modulate decidualization by regulating FOXO1 expression. Loss of BMP4 may contribute to the pathogenesis of RSA, suggesting potential avenues for abortion prevention strategies.


Subject(s)
Abortion, Habitual , Bone Morphogenetic Protein 4 , Decidua , Endometrium , Forkhead Box Protein O1 , Stromal Cells , Female , Humans , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Stromal Cells/metabolism , Animals , Mice , Decidua/metabolism , Pregnancy , Endometrium/metabolism , Endometrium/cytology , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Adult , Trophoblasts/metabolism , Case-Control Studies
9.
Cell Death Dis ; 15(4): 301, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684650

ABSTRACT

Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.


Subject(s)
Bone Morphogenetic Protein 4 , Calcitriol , Carrier Proteins , Cell Differentiation , Colon , Dibenzazepines , Goblet Cells , Kruppel-Like Factor 4 , Organoids , Receptors, Notch , Signal Transduction , Humans , Organoids/drug effects , Organoids/metabolism , Cell Differentiation/drug effects , Bone Morphogenetic Protein 4/metabolism , Colon/drug effects , Colon/metabolism , Colon/cytology , Colon/pathology , Receptors, Notch/metabolism , Signal Transduction/drug effects , Calcitriol/pharmacology , Goblet Cells/drug effects , Goblet Cells/metabolism , Dibenzazepines/pharmacology , Cell Lineage/drug effects , Enterocytes/metabolism , Enterocytes/drug effects , Enterocytes/cytology , Vitamin D/pharmacology
10.
Cell Commun Signal ; 22(1): 248, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689334

ABSTRACT

BACKGROUND: Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS: To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS: In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS: BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.


Subject(s)
Bone Morphogenetic Protein 4 , Breast Neoplasms , Neoplasm Metastasis , Signal Transduction , Smad4 Protein , Smad4 Protein/genetics , Smad4 Protein/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Humans , Animals , Female , Cell Line, Tumor , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Mice , Cell Proliferation/genetics
11.
Biomed Pharmacother ; 174: 116503, 2024 May.
Article in English | MEDLINE | ID: mdl-38565060

ABSTRACT

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Subject(s)
Alopecia , Antlers , Bone Morphogenetic Protein 4 , Hair Follicle , Hair , Animals , Antlers/chemistry , Alopecia/drug therapy , Alopecia/pathology , Hair Follicle/drug effects , Hair Follicle/metabolism , Mice , Male , Bone Morphogenetic Protein 4/metabolism , Hair/drug effects , Hair/growth & development , Hedgehog Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Tissue Extracts/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Regeneration/drug effects , Deer , Smad5 Protein/metabolism
12.
Nutrients ; 16(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674937

ABSTRACT

Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, these agents exert severe side effects, necessitating the development of novel therapeutic agents. Many studies are focusing on osteogenic agents as they increase the bone density, which is essential for osteoporosis treatment. Here, we aimed to investigate the effects of Diospyros lotus L. leaf extract (DLE) and its components on osteoporosis in MC3T3-E1 pre-osteoblasts and ovariectomized mice and to elucidate the underlying related pathways. DLE enhanced the differentiation of MC3T3-E1 pre-osteoblasts, with a 1.5-fold elevation in ALP activity, and increased the levels of osteogenic molecules, RUNX family transcription factor 2, and osterix. This alteration resulted from the activation of bone morphogenic protein 2/4 (BMP2/4) and transformation of growth factor ß (TGF ß) pathways. In ovariectomized mice, DLE suppressed the decrease in bone mineral density by 50% and improved the expression of other bone markers, which was confirmed by the 3~40-fold increase in osteogenic proteins and mRNA expression levels in bone marrow cells. The three major compounds identified in DLE exhibited osteogenic and estrogenic activities with their aglycones, as previously reported. Among the major compounds, myricitrin alone was not as strong as whole DLE with all its constituents. The osteogenic activity of DLE was partially suppressed by the inhibitor of estrogen signaling, indicating that the estrogenic activity of DLE participated in its osteogenic activity. Overall, DLE suppresses osteoporosis by inducing osteoblast differentiation.


Subject(s)
Bone Density , Diospyros , Osteoblasts , Osteogenesis , Plant Extracts , Animals , Female , Mice , Bone Density/drug effects , Bone Morphogenetic Protein 2/drug effects , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/drug effects , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation/drug effects , Diospyros/chemistry , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Ovariectomy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Signal Transduction/drug effects , Transforming Growth Factor beta/drug effects , Transforming Growth Factor beta/metabolism
13.
J Mol Med (Berl) ; 102(5): 693-707, 2024 05.
Article in English | MEDLINE | ID: mdl-38492027

ABSTRACT

Physical therapy is extensively employed in clinical settings. Nevertheless, the absence of suitable animal models has resulted in an incomplete understanding of the in vivo mechanisms and cellular distribution that respond to physical stimuli. The objective of this research was to create a mouse model capable of indicating the cells affected by physical stimuli. In this study, we successfully established a mouse line based on the heat shock protein 70 (Hsp70) promoter, wherein the expression of CreERT2 can be induced by physical stimuli. Following stimulation of the mouse tail, ear, or cultured calvarias with heat shock (generated by heating, ultrasound, or laser), a distinct Cre-mediated excision was observed in cells stimulated by these physical factors with minimal occurrence of leaky reporter expression. The application of heat shock to Hsp70-CreERT2; FGFR2-P253R double transgenic mice or Hsp70-CreERT2 mice infected with AAV-BMP4 at calvarias induced the activation of Cre-dependent mutant FGFR2-P253R or BMP4 respectively, thereby facilitating the premature closure of cranial sutures or the repair of calvarial defects. This novel mouse line holds significant potential for investigating the underlying mechanisms of physical therapy, tissue repair and regeneration, lineage tracing, and targeted modulation of gene expression of cells in local tissue stimulated by physical factor at the interested time points. KEY MESSAGES: In the study, an Hsp70-CreERT2 transgenic mouse was generated for heat shock-induced gene modulation. Heat shock, ultrasound, and laser stimulation effectively activated Cre expression in Hsp70-CreERT2; reporter mice, which leads to deletion of floxed DNA sequence in the tail, ear, and cultured calvaria tissues of mice. Local laser stimuli on cultured calvarias effectively induce Fgfr2-P253R expression in Hsp70-mTmG-Fgfr2-P253R mice and result in accelerated premature closure of cranial suture. Heat shock activated AAV9-FLEX-BMP4 expression and subsequently promoted the repair of calvarial defect of Hsp70-CreERT2; Rosa26-mTmG mice.


Subject(s)
Bone Morphogenetic Protein 4 , HSP70 Heat-Shock Proteins , Mice, Transgenic , Promoter Regions, Genetic , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Mice , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Heat-Shock Response/genetics , Skull/metabolism , Gene Expression Regulation , Integrases/metabolism , Integrases/genetics
14.
Int J Biol Macromol ; 265(Pt 1): 130649, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453121

ABSTRACT

Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Humans , Osteogenesis/genetics , Bone Morphogenetic Protein 4/genetics , Delayed-Action Preparations/pharmacology , Cell Differentiation , Bone Marrow Cells/metabolism , Cells, Cultured
15.
J Sex Med ; 21(5): 379-390, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451321

ABSTRACT

BACKGROUND: The cavernous nerve (CN) is frequently damaged in prostatectomy and diabetic patients with erectile dysfunction (ED), initiating changes in penile morphology including an acute and intense phase of apoptosis in penile smooth muscle and increased collagen, which alter penile architecture and make corpora cavernosa smooth muscle less able to relax in response to neurotransmitters, resulting in ED. AIM: Sonic hedgehog (SHH) is a critical regulator of penile smooth muscle, and SHH treatment suppresses penile remodeling after CN injury through an unknown mechanism; we examine if part of the mechanism of how SHH preserves smooth muscle after CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1). METHODS: Primary cultures of smooth muscle cells were established from prostatectomy, diabetic, hypertension and Peyronie's (control) (N = 18) patients. Cultures were characterized by ACTA2, CD31, P4HB, and nNOS immunohistochemical analysis. Patient smooth muscle cell growth was quantified in response to BMP4 and GREM1 treatment. Adult Sprague Dawley rats underwent 1 of 3 surgeries: (1) uninjured or CN-injured rats were treated with BMP4, GREM1, or mouse serum albumin (control) proteins via Affi-Gel beads (N = 16) or peptide amphiphile (PA) (N = 26) for 3 and 14 days, and trichrome stain was performed; (2) rats underwent sham (N = 3), CN injury (N = 9), or CN injury and SHH PA treatment for 1, 2, and 4 days (N = 9). OUTCOMES: Western analysis for BMP4 and GREM1 was performed; (3) rats were treated with 5E1 SHH inhibitor (N = 6) or IgG (control; N = 6) for 2 and 4 days, and BMP4 and GREM1 localization was examined. Statistics were performed by analysis of variance with Scheffé's post hoc test. RESULTS: BMP4 increased patient smooth muscle cell growth, and GREM1 decreased growth. In rats, BMP4 treatment via Affi-Gel beads and PA increased smooth muscle at 3 and 14 days of treatment. GREM1 treatment caused increased collagen and smooth muscle at 3 days, which switched to primarily collagen at 14 days. CN injury increased BMP4 and GREM1, while SHH PA altered Western band size, suggesting alternative cleavage and range of BMP4 and GREM1 signaling. SHH inhibition in rats increased BMP4 and GREM1 in fibroblasts. CLINICAL IMPLICATIONS: Understanding how SHH PA preserves and regenerates penile morphology after CN injury will aid development of ED therapies. STRENGTHS AND LIMITATIONS: SHH treatment alters BMP4 and GREM1 localization and range of signaling, which can affect penile morphology. CONCLUSION: Part of the mechanism of how SHH regulates corpora cavernosa smooth muscle involves BMP4 and GREM1.


Subject(s)
Bone Morphogenetic Protein 4 , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Cytokines , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle, Smooth/drug effects , Myocytes, Smooth Muscle/drug effects , Penile Induration/pathology , Prostatectomy , Rats, Sprague-Dawley
16.
J Sex Med ; 21(5): 367-378, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38451311

ABSTRACT

BACKGROUND: Cavernous nerve (CN) injury, caused by prostatectomy and diabetes, initiates a remodeling process (smooth muscle apoptosis and increased collagen) in the corpora cavernosa of the penis of patients and animal models that is an underlying cause of erectile dysfunction (ED), and the Sonic hedgehog (SHH) pathway plays an essential role in the response of the penis to denervation, as collagen increases with SHH inhibition and decreases with SHH treatment. AIM: We examined if part of the mechanism of how SHH prevents penile remodeling and increased collagen with CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1) and examined the relationship between SHH, BMP4, GREM1, and collagen in penis of ED patients and rat models of CN injury, SHH inhibition, and SHH, BMP4, and GREM1 treatment. METHODS: Corpora cavernosa of Peyronie's disease (control), prostatectomy, and diabetic ED patients were obtained (N = 30). Adult Sprague Dawley rats (n = 90) underwent (1) CN crush (1-7 days) or sham surgery; (2) CN injury and BMP4, GREM1, or mouse serum albumin (control) treatment via Affi-Gel beads or peptide amphiphile (PA) for 14 days; (3) 5E1 SHH inhibitor, IgG, or phosphate-buffered saline (control) treatment for 2 to 4 days; or (4) CN crush with mouse serum albumin or SHH for 9 days. OUTCOMES: Immunohistochemical and Western analysis for BMP4 and GREM1, and collagen analysis by hydroxyproline and trichrome stain were performed. RESULTS: BMP4 and GREM1 proteins were identified in corpora cavernosa smooth muscle of prostatectomy, diabetic, and Peyronie's patients, and in rat smooth muscle, sympathetic nerve fibers, perineurium, blood vessels, and urethra. Collagen decreased 25.4% in rats with CN injury and BMP4 treatment (P = .02) and increased 61.3% with CN injury and GREM1 treatment (P = .005). Trichrome stain showed increased collagen in rats treated with GREM1. Western analysis identified increased BMP4 and GREM1 in corpora cavernosa of prostatectomy and diabetic patients, and after CN injury (1-2 days) in our rat model. Localization of BMP4 and GREM1 changed with SHH inhibition. SHH treatment increased the monomer form of BMP4 and GREM1, altering their range of signaling. CLINICAL IMPLICATIONS: A better understanding of penile remodeling and how fibrosis occurs with loss of innervation is essential for development of novel ED therapies. STRENGTHS AND LIMITATIONS: The relationship between SHH, BMP4, GREM1, and collagen is complex in the penis. CONCLUSION: BMP4 and GREM1 are downstream targets of SHH that impact collagen and may be useful in collaboration with SHH to prevent penile remodeling and ED.


Subject(s)
Bone Morphogenetic Protein 4 , Collagen , Erectile Dysfunction , Hedgehog Proteins , Intercellular Signaling Peptides and Proteins , Penis , Signal Transduction , Animals , Humans , Male , Middle Aged , Rats , Bone Morphogenetic Protein 4/metabolism , Collagen/metabolism , Cytokines , Disease Models, Animal , Erectile Dysfunction/metabolism , Erectile Dysfunction/etiology , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Penile Induration/metabolism , Penis/innervation , Penis/metabolism , Prostatectomy , Rats, Sprague-Dawley , Signal Transduction/physiology
17.
Mol Cells ; 47(4): 100058, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522664

ABSTRACT

A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.


Subject(s)
Gastrula , Homeodomain Proteins , Promoter Regions, Genetic , Xenopus Proteins , Xenopus laevis , Animals , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gastrula/metabolism , Gene Expression Regulation, Developmental , Goosecoid Protein/genetics , Goosecoid Protein/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic , Xenopus laevis/genetics , Xenopus laevis/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
18.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38421638

ABSTRACT

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Subject(s)
Cell Differentiation , Histone Acetyltransferases , Mesoderm , Signal Transduction , Smad4 Protein , Humans , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Cell Line , Chromatin/metabolism , Endoderm/cytology , Endoderm/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Histones/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Mesoderm/metabolism , Mesoderm/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Smad4 Protein/metabolism , Smad4 Protein/genetics , Transforming Growth Factor beta/metabolism
19.
Biol Pharm Bull ; 47(1): 240-244, 2024.
Article in English | MEDLINE | ID: mdl-38246611

ABSTRACT

Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.


Subject(s)
Ginsenosides , Panax , Humans , Animals , Mice , Ginsenosides/pharmacology , Bone Morphogenetic Protein 4 , Cell Proliferation , Hair , Plant Extracts/pharmacology
20.
Pediatr Rheumatol Online J ; 22(1): 6, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166938

ABSTRACT

BACKGROUND: Juvenile Idiopathic Arthritis (JIA) induces growth disturbances in affected joints. Fibroblast-like synoviocytes (FLS) play a crucial role in JIA pathogenesis. FLS overexpress bone morphogenetic protein 4 (BMP4) and have a chondrocyte-like phenotype. FLS contribute directly to joint growth disturbances through endochondral bone formation. We investigated the ability of methotrexate to inhibit BMP4 expression and alter the hypertrophic chondrocyte-like phenotype of JIA FLS. METHODS: We selected primary cells from three subjects with persistent oligoarticular JIA, three subjects who eventually extended to a polyarticular disease course, which we termed extended-to-be (ETB), and three subjects who had polyarticular arthritis at time of diagnosis. We treated cells with methotrexate and two BMP4 inhibitors: noggin and chordin. We measured protein concentration from three chondrocyte cell markers: collagen II, aggrecan, and collagen X as well as BMP4. RESULTS: ColX, marker of chondrocyte hypertrophy, was significantly increased in polyarticular FLS when compared to both persistent FLS and ETB FLS, making polyarticular FLS the most like hypertrophic chondrocytes. Methotrexate caused significant decreases in BMP4 and ColX expression in persistent, ETB, and polyarticular FLS when compared to respective untreated cells. Ligand-binding BMP4 antagonists, noggin and chordin, caused significant decreases in ColX expression in FLS from all three disease courses and significant increases in collagen II protein, an early chondrocyte marker, when compared to respective untreated cells. CONCLUSIONS: Methotrexate, the first-line therapy in the treatment of JIA, mimics BMP4 antagonists by effectively lowering BMP4 and ColX expression in FLS. Inhibiting FLS from undergoing hypertrophy could prevent these cells from contributing to joint growth disturbances via endochondral bone formation.


Subject(s)
Arthritis, Juvenile , Bone Morphogenetic Protein 4 , Methotrexate , Humans , Arthritis, Juvenile/metabolism , Bone Morphogenetic Protein 4/antagonists & inhibitors , Bone Morphogenetic Protein 4/metabolism , Chondrocytes/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Hypertrophy/metabolism , Methotrexate/pharmacology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...