Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 523
Filter
1.
Commun Biol ; 7(1): 548, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719881

ABSTRACT

Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Bone Resorption , Hyperthyroidism , Mice, Knockout , Osteoblasts , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Osteoblasts/metabolism , Hyperthyroidism/metabolism , Hyperthyroidism/genetics , Hyperthyroidism/complications , Mice , Bone Resorption/metabolism , Bone Resorption/genetics , Osteoporosis/metabolism , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/pathology , Osteoclasts/metabolism , Male , Cell Differentiation
2.
FASEB J ; 38(9): e23622, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703029

ABSTRACT

Endometriosis (EMs)-related infertility commonly has decreased endometrial receptivity and normal decidualization is the basis for establishing and maintaining endometrial receptivity. However, the potential molecular regulatory mechanisms of impaired endometrial decidualization in patients with EMs have not been fully clarified. We confirmed the existence of reduced endometrial receptivity in patients with EMs by scanning electron microscopy and quantitative real-time PCR. Here we identified an lncRNA, named BMPR1B-AS1, which is significantly downregulated in eutopic endometrium in EMs patients and plays an essential role in decidual formation. Furthermore, RNA pull-down, mass spectrometry, RNA immunoprecipitation, and rescue analyses revealed that BMPR1B-AS1 positively regulates decidual formation through interaction with the RNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Downregulation of IGF2BP2 led to a decreased stability of BMPR1B-AS1 and inhibition of activation of the SMAD1/5/9 pathway, an inhibitory effect which diminished decidualization in human endometrial stromal cells (hESCs) decidualization. In conclusion, our identified a novel regulatory mechanism in which the IGF2BP2-BMPR1B-AS1-SMAD1/5/9 axis plays a key role in the regulation of decidualization, providing insights into the potential link between abnormal decidualization and infertility in patients with EMs, which will be of clinical significance for the management and treatment of infertility in patients with EMs.


Subject(s)
Endometriosis , RNA, Long Noncoding , RNA-Binding Proteins , Adult , Female , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Decidua/metabolism , Decidua/pathology , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Infertility, Female/metabolism , Infertility, Female/genetics , Infertility, Female/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Stromal Cells/metabolism , Smad Proteins , Young Adult
3.
Elife ; 122024 May 01.
Article in English | MEDLINE | ID: mdl-38690987

ABSTRACT

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Subject(s)
Chondrocytes , Congenital Microtia , Cyclic AMP-Dependent Protein Kinases , Signal Transduction , Animals , Chondrocytes/metabolism , Congenital Microtia/genetics , Congenital Microtia/metabolism , Mice , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Humans , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Chondrogenesis/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics
4.
Neural Dev ; 19(1): 4, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698415

ABSTRACT

BACKGROUND: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS: Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS: Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS: Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.


Subject(s)
Biological Evolution , Bone Morphogenetic Protein Receptors, Type I , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Body Patterning/genetics , Body Patterning/physiology , Signal Transduction/physiology
5.
Trop Anim Health Prod ; 56(4): 137, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649642

ABSTRACT

This study aimed to explore polymorphisms in the promoter region of the caprine BMPR1B (Bone morphogenetic protein receptor 1 beta) gene and its association with body measurement and litter size traits in Damani does. A total of 53 blood samples were collected to analyze the association between the BMPR1B gene polymorphism and 11 phenotypic traits in Damani female goats. The results revealed that three novel SNPs were identified in the promoter region of the caprine BMPR1B gene, including g.67 A > C (SNP1), g.170 G > A(SNP2), and g.501A > T (SNP3), among which the SNP1 and SNP2 were significantly (p < 0.05) associated with litter size and body measurement traits in Damani goats. In SNP1 the AC genotype could be used as a marker for litter size, and the CC genotype for body weight in Damani goats. In SNP2, the genotype GG was significantly (p < 0.05) associated with ear and head length. Therefore, we can conclude from the present study, that genetic variants AC and CC of the caprine BMPR1B gene could be used as genetic markers for economic traits through marker-assisted selection for the breed improvement program of the Damani goat.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Goats , Litter Size , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Animals , Goats/genetics , Goats/physiology , Litter Size/genetics , Female , Bone Morphogenetic Protein Receptors, Type I/genetics , Genotype , Iran
6.
Phytomedicine ; 128: 155493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484626

ABSTRACT

BACKGROUND: ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE: We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS: Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS: Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS: ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Inhibitor of Differentiation Proteins , Lung Neoplasms , Neoplasm Proteins , Silybin , Silybin/pharmacology , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Humans , Animals , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mice , Mice, Nude , Activin Receptors, Type I/metabolism , Activin Receptors, Type I/genetics , Silymarin/pharmacology , Bone Morphogenetic Protein Receptors, Type II/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , Xenograft Model Antitumor Assays , Bone Morphogenetic Protein 6 , Silybum marianum/chemistry , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Female
7.
Int J Biol Sci ; 20(4): 1297-1313, 2024.
Article in English | MEDLINE | ID: mdl-38385080

ABSTRACT

Bone metastasis caused the majority death of prostate cancer (PCa) but the mechanism remains poorly understood. In this present study, we show that polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) suppresses bone-specific metastasis of PCa. GALNT12 suppresses proliferation, migration, invasion and cell division ability of PCa cells by activating the BMP pathway. Mechanistic investigations showed that GALNT12 augments the O-glycosylation of BMPR1A then actives the BMP pathway. Activated BMP signaling inhibits the expression of integrin αVß3 to reduce the bone-specific seeding of PCa cells. Furthermore, activated BMP signaling remolds the immune microenvironment by suppressing the STAT3 pathway. Our results of this study illustrate the role and mechanism of GALNT12 in the process of bone metastasis of PCa and identify GALNT12 as a potential therapeutic target for metastatic PCa.


Subject(s)
Bone Neoplasms , N-Acetylgalactosaminyltransferases , Prostatic Neoplasms , Male , Humans , Glycosylation , Cell Line, Tumor , Signal Transduction/genetics , Prostatic Neoplasms/metabolism , Bone Neoplasms/metabolism , Tumor Microenvironment , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism
8.
Theriogenology ; 219: 59-64, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401385

ABSTRACT

The BMPR1B gene is a major determinant of sheep reproductive capacity. Previous studies revealed that Q249R (FecB) is a profound variant of BMPR1B that influences the ovulation rate and litter size in sheep. However, unlike Q249R locus, the full spectrum of single nucleotide polymorphisms (SNPs) within BMPR1B has not been extensively studied. A systematic screen of SNPs in BMPR1B would facilitate the discovery of novel variants that are associated with litter size. This study aimed to investigate SNPs in the BMPR1B gene via whole genome sequence (WGS) data from 2409 individuals of 75 sheep breeds worldwide. Herein, a total of 9688 variants were screened, among which 15 were coding variants and 8 were novel changes. Specifically, we presented the most comprehensive frequency distribution map of the well-known FecB mutation to date. Besides, among the above-mentioned SNPs, one synonymous mutation (g.30050773C > T) was found to be likely under selection and is potentially associated with fecundity in Duolang sheep. Thus, our study greatly expands the variation repertoire of the ovine BMPR1B gene and provides a valuable resource for exploring causative mutations and genetic markers associated with litter size.


Subject(s)
Fertility , Polymorphism, Single Nucleotide , Humans , Pregnancy , Female , Animals , Sheep/genetics , Litter Size/genetics , Mutation , Genetic Markers , Fertility/genetics , Genotype , Bone Morphogenetic Protein Receptors, Type I/genetics
9.
Bone ; 175: 116860, 2023 10.
Article in English | MEDLINE | ID: mdl-37524292

ABSTRACT

Acromesomelic dysplasia Grebe type (AMD Grebe type) is an autosomal recessive trait characterized by short stature, shortened limbs and malformations of the hands and feet. It is caused by variants in the growth differentiation factor 5 (GDF5) or, in rare cases, its receptor, the bone morphogenetic protein receptor-1B (BMPR1B). Here, we report a novel homozygous BMPR1B variant causing AMD Grebe type in a consanguineous Moroccan family with two affected sibs from BRO Biobank. Remarkably, the affected individuals showed additional features including bilateral simian creases, lumbar hyperlordosis, as well as lower limb length inequality and dislocated hips in one of them, which were never reported previously for AMD Grebe type patients. The identified novel BMPR1B variant (c.1201C>T, p.R401*) is predicted to result in loss of function of the BMPR1B protein either by nonsense-mediated mRNA decay or production of a truncated BMPR1B protein. Thus, these findings expand the phenotypic and mutational spectrum of AMD, and may improve the diagnosis of AMD and enable appropriate genetic counselling to be offered to patients.


Subject(s)
Osteochondrodysplasias , Humans , Consanguinity , Pedigree , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Bone Morphogenetic Protein Receptors/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics
10.
Int Endod J ; 56(10): 1284-1300, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37485765

ABSTRACT

AIM: Recently, miR-27b-5p was shown to be abundantly expressed in extracellular vehicles (EVs) from the inflammatory microenvironment. This study determined the role of miR-27b-5p in regulating osteogenic and odontogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) and further examined the regulatory mechanism of bone morphogenetic protein receptor type-1A (BMPR1A). METHODOLOGY: Characteristics of SHEDs and SHEDs-EVs derived from SHEDs were evaluated respectively. The expression of miR-27b-5p in SHEDs and EVs was detected during osteo-induction. Mechanically, SHEDs were treated with miR-27b-5p mimics or an inhibitor, and the osteogenic/odontogenic differentiation and proliferation were assessed. Bioinformatic analysis and luciferase reporter were utilized for target gene prediction and verification. Finally, BMPR1A-overexpressed plasmids were transfected into SHEDs to investigate the participation of the BMPR1A/SMAD4 pathway. Data were analysed using Student's t-test, one-way analysis of variance and Chi-square test. RESULTS: MiR-27b-5p was expressed in both SHEDs and EVs and was significantly increased at the initial stage of differentiation and then decreased in a time-dependent manner (p < .01). Upregulation of miR-27b-5p significantly suppressed osteogenic/odontogenic differentiation of SHEDs and inhibited proliferation (p < .05), whereas inhibition of miR-27b-5p enhanced the differentiation (p < .05). Dual-luciferase reporter assay and pull-down assay confirmed the binding site between miR-27b-5p and BMPR1A (p < .05). The overexpression of BMPR1A rescued the effect of miR-27b-5p, while contributed to the decrease of pluripotency (p < .05). Additionally, miR-27b-5p maintained pluripotency in BMPR1A-overexpressed SHEDs (p < .05). CONCLUSIONS: MiR-27b-5p in SHEDs/EVs was inversely associated with differentiation and suppressed the osteogenic and odontogenic differentiation of SHEDs and maintained the pluripotency of SHEDs partly by shuttering BMPR1A-targeting BMP signalling. Theoretically, inhibition of miR-27b-5p represents a potential strategy to promote osteanagenesis and dentinogenesis. However, miR-27b-5p capsuled EVs might maintain cell pluripotency and self-renewal for non-cell-targeted therapy.


Subject(s)
MicroRNAs , Humans , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cell Differentiation/physiology , Cells, Cultured , MicroRNAs/metabolism , Osteogenesis/genetics , Stem Cells , Tooth, Deciduous
11.
J Assist Reprod Genet ; 40(8): 1973-1982, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455267

ABSTRACT

PURPOSE: The BMPR1B and BMP15 genes are well known for their considerable associations with prolificacy in sheep. These genes may also affect fertility or prolificacy in other species, including human. This study was conducted to investigate possible causative mutations in BMPR1B and BMP15 genes in human and an indigenous breed of sheep. METHODS: Blood samples were collected from 83 singleton- and prolific Mehraban ewes and 81 infertile, singleton- and twin-bearing women. A 190-bp fragment, containing the FecB mutation in ovine BMPR1B, a 380-bp fragment in ovine BMP15 gene and their homologous fragments in human were amplified and then investigated by single-stranded conformation polymorphism and DNA sequencing methods. RESULTS: The FecB mutation of BMPR1B (g.159A>G) was detected in the sheep population, but no polymorphic loci were found in the homologous fragment in studied human samples. The studied fragments of BMP15 were monomorphic in both sheep and human samples. A total of nine and 69 point-differences in the studied fragments of BMPR1B and BMP15 genes were detected between the species, respectively. In sheep, the G allele of BMPR1B had a positive effect on litter size (p<0.05), whereby all AG or GG ewes were prolific. CONCLUSION: The FecB mutation for the first time was detected in Mehraban sheep and therefore could be considered for marker-assisted selection in this breed. The studied fragments of BMPR1B and BMP15 genes are not responsible for reproduction variation in human. More studies on other genes, associated with fertility in human, are necessary in the future.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Fertility , Pregnancy , Sheep/genetics , Humans , Animals , Female , Mutation/genetics , Fertility/genetics , Litter Size/genetics , Alleles , Base Sequence , Genotype , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein 15/genetics
12.
Fam Cancer ; 22(4): 429-436, 2023 10.
Article in English | MEDLINE | ID: mdl-37354305

ABSTRACT

Juvenile polyposis syndrome (JPS) is a hereditary hamartomatous polyposis syndrome characterized by gastrointestinal juvenile polyps and increased risk of gastrointestinal cancer. Germline pathogenic variants are detected in SMAD4 or BMPR1A, however in a significant number of patients with JPS, the etiology is unknown. From Danish registers, and genetic department and laboratories, we identified all patients in Denmark with a clinical diagnosis of JPS and/or a pathogenic variant in BMPR1A or SMAD4. In patients where no variant had been detected, we performed genetic analysis, including whole genome sequencing. We collected clinical information on all patients to investigate the phenotypic spectrum. Sixty-six patients (mean age 40 years) were included of whom the pathogenic variant was unknown in seven patients. We detected a pathogenic variant in SMAD4 or PTEN in additional three patients and thus ≈ 95% of patients had a pathogenic germline variant. Endoscopic information was available in fifty-two patients (79%) and of these 31 (60%) fulfilled the clinical criteria of JPS. In 41 patients (79%), other types of polyps than juvenile had been removed. Our results suggest that almost all patients with a clinical diagnosis of JPS has a pathogenic variant in mainly BMPR1A, SMAD4, and more rarely PTEN. However, not all patients with a pathogenic variant fulfil the clinical criteria of JPS. We also demonstrated a wide clinical spectrum, and that the histopathology of removed polyps varied.


Subject(s)
Gastrointestinal Neoplasms , Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Polyps , Humans , Adult , Intestinal Polyposis/genetics , Neoplastic Syndromes, Hereditary/genetics , Germ-Line Mutation , Bone Morphogenetic Protein Receptors, Type I/genetics , Smad4 Protein/genetics , Whole Genome Sequencing
14.
Yi Chuan ; 45(4): 295-305, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37077164

ABSTRACT

BMPR1B is the first major gene of litter size identified in sheep. However, the molecular mechanism of the FecB mutation that increases the ovulation rate in sheep is still unclear. In recent years, it has been demonstrated that BMPR1B activity is regulated by the small molecule repressor protein FKBP1A, which acts as a key activity switch of the BMPR1B in the BMP/SMAD pathway. The FecB mutation is located close to the binding site of FKBP1A and BMPR1B. In this review, we summarize the structure of BMPR1B and FKBP1A proteins, and clarify the spatial interactive domains of the two proteins with respect to the location of the FecB mutation. Then the relationship between the FecB mutation and the degree of affinity of the two proteins are predicted. Finally, the hypothesis that FecB mutation causes change of activity in BMP/SMAD pathway by affecting the intensity of the interactions between BMPR1B and FKBP1A is proposed. This hypothesis provides a new clue to investigate the molecular mechanism of FecB mutation affecting ovulation rate and litter size in sheep.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Ovulation , Animals , Female , Mutation , Ovulation/genetics , Sheep/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics
15.
J Mol Cell Biol ; 14(9)2023 02 07.
Article in English | MEDLINE | ID: mdl-36581316

ABSTRACT

Thyroid hormone excess secondary to global type 3 deiodinase (DIO3) deficiency leads to increased locomotor activity and reduced adiposity, but also to concurrent alterations in parameters of the leptin-melanocortin system that would predict obesity. To distinguish the underlying contributions to the energy balance phenotype of DIO3 deficiency, we generated mice with thyroid hormone excess targeted to pro-opiomelanocortin (POMC)-expressing cells via cell-specific DIO3 inactivation. These mice exhibit a male-specific phenotype of reduced hypothalamic Pomc expression, hyperphagia, and increased activity in brown adipose tissue, with adiposity and serum levels of leptin and thyroid hormones remained normal. These male mice also manifest a marked and widespread hypothalamic reduction in the expression of bone morphogenetic receptor 1a (BMPR1A), which has been shown to cause similar phenotypes when inactivated in POMC-expressing cells. Our results indicate that developmental overexposure to thyroid hormone in POMC-expressing cells programs energy balance mechanisms in a sexually dimorphic manner by suppressing adult hypothalamic BMPR1A expression.


Subject(s)
Adipose Tissue, Brown , Pro-Opiomelanocortin , Thyroid Hormones , Animals , Male , Mice , Adipose Tissue, Brown/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Leptin/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Thyroid Hormones/metabolism
16.
Cardiovasc Res ; 119(3): 813-825, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36166408

ABSTRACT

AIMS: Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS: We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFß) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS: We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Hypertension, Pulmonary , Inhibitor of Differentiation Protein 2 , Pulmonary Arterial Hypertension , Zinc Finger E-box-Binding Homeobox 1 , Animals , Mice , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Epithelial-Mesenchymal Transition , Hypertension, Pulmonary/metabolism , Lung/metabolism , Pulmonary Arterial Hypertension/metabolism , Receptor, Transforming Growth Factor-beta Type II/metabolism , Inhibitor of Differentiation Protein 2/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism
17.
Clin Transl Gastroenterol ; 13(10): e00527, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36049049

ABSTRACT

INTRODUCTION: Variants in SMAD4 or BMPR1A cause juvenile polyposis syndrome, a rare autosomal dominant condition characterized by multiple gastrointestinal hamartomatous polyps. A phenotype of attenuated adenomatous polyposis without hamartomatous polyps is rare. METHODS: We describe a retrospective cohort of individuals with SMAD4 or BMPR1A heterozygous germline variants, having ≥10 cumulative colorectal adenomas and/or colorectal cancer without hamartomatous polyps. All individuals had multigene panel and duplication/deletion analysis to exclude other genetic syndromes. RESULTS: The study cohort included 8 individuals. The pathogenic potential of the variants was analyzed. Variants detected included 4 missense variants, 1 nonsense variant, 1 splice site variant, and 2 genomic deletions. Features of pathogenicity were present in most variants, and cosegregation of the variant with polyposis or colorectal cancer was obtained in 7 of the 8 families. Three of 8 individuals had colorectal cancer (age less than 50 years) in addition to the polyposis phenotype. Two individuals had extraintestinal neoplasms (pancreas and ampulla of Vater). DISCUSSION: The clinical phenotype of SMAD4 and BMPR1A variants may infrequently extend beyond the classical juvenile polyposis syndrome phenotype. Applying multigene panel analysis of hereditary cancer-related genes in individuals with unexplained polyposis can provide syndrome-based clinical surveillance for carriers and their family members.


Subject(s)
Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Retrospective Studies , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Phenotype , Colorectal Neoplasms/genetics , Smad4 Protein/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics
18.
Biochem Biophys Res Commun ; 629: 101-105, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36116371

ABSTRACT

Accumulated studies have suggested that bone morphogenetic proteins (BMPs) are critical for skin development. However, it remains elusive how BMP signaling via ALK2 (aka ACVR1), one of the important BMP type I receptors, regulates keratinocyte differentiation. To address this question, we utilized a genetic system that enhances BMP signaling via ALK2 in an epidermis-specific manner in mice (hereafter ca-Alk2:K14-Cre). Ca-Alk2:K14-Cre mice displayed a sticky and hairless skin phenotype with a thinner epidermis incapable of differentiating. Although cellular proliferation and survival were comparable between wild-type and ca-Alk2:K14-Cre mice, skin differentiation was severely hampered in ca-Alk2:K14-Cre mice. To uncover the mechanism of altered keratinocyte differentiation, we performed a transcriptome analysis. As a result, we found that the expression levels of cell cycle inhibitor p21 were increased in ca-Alk2:K14-Cre mice. Our findings suggest that aberrant BMP signaling via ALK2 positively regulates p21 expression that attenuates keratinocyte differentiation, and further highlights the critical role of BMP signaling in skin development.


Subject(s)
Activin Receptors, Type I , Bone Morphogenetic Proteins , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/genetics , Keratinocytes/metabolism , Mice , Signal Transduction/genetics
19.
Nat Commun ; 13(1): 4141, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842443

ABSTRACT

Organotropism during cancer metastasis occurs frequently but the underlying mechanism remains poorly understood. Here, we show that lysosomal protein transmembrane 5 (LAPTM5) promotes lung-specific metastasis in renal cancer. LAPTM5 sustains self-renewal and cancer stem cell-like traits of renal cancer cells by blocking the function of lung-derived bone morphogenetic proteins (BMPs). Mechanistic investigations showed that LAPTM5 recruits WWP2, which binds to the BMP receptor BMPR1A and mediates its lysosomal sorting, ubiquitination and ultimate degradation. BMPR1A expression was restored by the lysosomal inhibitor chloroquine. LAPTM5 expression could also serve as an independent predictor of lung metastasis in renal cancer. Lastly, elevation of LAPTM5 expression in lung metastases is a common phenomenon in multiple cancer types. Our results reveal a molecular mechanism underlying lung-specific metastasis and identify LAPTM5 as a potential therapeutic target for cancers with lung metastasis.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Kidney Neoplasms , Lung Neoplasms , Ubiquitin-Protein Ligases , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Humans , Kidney Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lysosomes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
20.
Comput Intell Neurosci ; 2022: 6390812, 2022.
Article in English | MEDLINE | ID: mdl-35720932

ABSTRACT

Iron overload is directly associated with diabetes mellitus, loss of islet beta cell, and insulin resistance. Likewise, long noncoding RNA (lncRNA) is associated with type 2 diabetes (T2D). Moreover, lncRNAs could be induced by iron overload. Therefore, we are going to explore the molecular mechanism of lncRNA XIST in iron overload-related T2D. Real-time quantitative PCR and Western blot were used to detect gene and protein levels, respectively. TUNEL and MTT assay were performed to examine cell survival. The glucose test strip, colorimetric analysis kit, ferritin ELISA kit, and insulin ELISA kit were performed to examine the levels of glycolic, iron, and total iron-binding capacity, ferritin, and insulin in serum. Fluorospectrophotometry assay was used to examine labile iron pool level. XIST was higher expressed in T2D and iron overload-related T2D rat tissues and cells, and iron overload-induced promoted XIST expression in T2D. Higher XIST expression was associated with iron overload in patients with T2D. Knockdown of XIST alleviated iron overload and iron overload-induced INS-1 cells injury. Further, we found that XIST can sponge miR-130a-3p to trigger receptor-like kinase 2 (ALK2) expression. Moreover, knockdown of ALK2 alleviated iron overload and iron overload-induced INS-1 cells injury by inhibiting bone morphogenetic protein 6 (BMP6)/ALK2/SMAD1/5/8 axis but reversed with XIST upregulation, which was terminally boosted by overexpression of miR-130a-3p. XIST has the capacity to promote iron overload and iron overload-related T2D initiation and development through inhibition of ALK2 expression by sponging miR-130a-3p, and that targeting this axis may be an effective strategy for treating patients with T2D.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Diabetes Mellitus, Type 2 , Iron Overload , Islets of Langerhans , MicroRNAs , RNA, Long Noncoding , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Ferritins , Insulins/metabolism , Iron/metabolism , Iron Overload/genetics , Iron Overload/metabolism , Iron Overload/pathology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...