Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.008
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732046

ABSTRACT

Obesity, type 2 diabetes mellitus (T2DM) and osteoporosis are serious diseases with an ever-increasing incidence that quite often coexist, especially in the elderly. Individuals with obesity and T2DM have impaired bone quality and an elevated risk of fragility fractures, despite higher and/or unchanged bone mineral density (BMD). The effect of obesity on fracture risk is site-specific, with reduced risk for several fractures (e.g., hip, pelvis, and wrist) and increased risk for others (e.g., humerus, ankle, upper leg, elbow, vertebrae, and rib). Patients with T2DM have a greater risk of hip, upper leg, foot, humerus, and total fractures. A chronic pro-inflammatory state, increased risk of falls, secondary complications, and pharmacotherapy can contribute to the pathophysiology of aforementioned fractures. Bisphosphonates and denosumab significantly reduced the risk of vertebral fractures in patients with both obesity and T2DM. Teriparatide significantly lowered non-vertebral fracture risk in T2DM subjects. It is important to recognize elevated fracture risk and osteoporosis in obese and T2DM patients, as they are currently considered low risk and tend to be underdiagnosed and undertreated. The implementation of better diagnostic tools, including trabecular bone score, lumbar spine BMD/body mass index (BMI) ratio, and microRNAs to predict bone fragility, could improve fracture prevention in this patient group.


Subject(s)
Bone Density , Diabetes Mellitus, Type 2 , Obesity , Osteoporosis , Humans , Diabetes Mellitus, Type 2/complications , Osteoporosis/etiology , Osteoporosis/drug therapy , Obesity/complications , Fractures, Bone/etiology , Bone and Bones/metabolism , Bone and Bones/pathology
2.
Cell Rep Med ; 5(5): 101574, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776873

ABSTRACT

The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.


Subject(s)
Bone Resorption , Osteoblasts , Osteogenesis , Animals , Humans , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Mice , Bone Resorption/pathology , Bone Resorption/metabolism , Anabolic Agents/pharmacology , Anabolic Agents/therapeutic use , Bone Remodeling/drug effects , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/drug therapy , RANK Ligand/metabolism , Osteoclasts/metabolism , Osteoclasts/drug effects , Bone Development/drug effects , Osteoprotegerin/metabolism , Female , Signal Transduction/drug effects , Peptides/pharmacology , Male , Mice, Inbred C57BL , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology
3.
Sci Transl Med ; 16(745): eadi8214, 2024 May.
Article in English | MEDLINE | ID: mdl-38691622

ABSTRACT

Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidosis I , Humans , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/genetics , Male , Female , Child, Preschool , Infant , Treatment Outcome , Hematopoietic Stem Cells/metabolism , Child , Bone and Bones/pathology , Magnetic Resonance Imaging
5.
J Neuroinflammation ; 21(1): 111, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685040

ABSTRACT

BACKGROUND: It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY: Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1ß (IL-1ß) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION: Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.


Subject(s)
Becaplermin , Diet, High-Fat , Endothelial Cells , Hippocampus , Metabolic Syndrome , Microglia , Transcytosis , Animals , Mice , Becaplermin/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Transcytosis/physiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Microglia/metabolism , Microglia/pathology , Diet, High-Fat/adverse effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice, Transgenic , Mice, Inbred C57BL , Mice, Knockout , Male , Bone and Bones/metabolism , Bone and Bones/pathology
7.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602357

ABSTRACT

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Subject(s)
Berberine , Chlorogenic Acid , Osteoporosis , Osteoporosis/drug therapy , Animals , Mice , Berberine/pharmacology , Berberine/therapeutic use , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacokinetics , Chlorogenic Acid/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chlorogenic Acid/administration & dosage , Female , Humans , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/pathology , Nanostructures/chemistry , Nanostructures/therapeutic use
8.
BMJ Case Rep ; 17(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604742

ABSTRACT

This is a case of primary hyperparathyroidism in a female teenager with multiple fractures and severe bone manifestations. The histopathology revealed atypical parathyroid adenoma, an exceedingly rare form of hyperparathyroidism; its main differential diagnosis is parathyroid carcinoma, as it shares both clinical and histological characteristics with it, in addition to its still uncertain malignant potential.


Subject(s)
Hyperparathyroidism , Parathyroid Neoplasms , Humans , Adolescent , Female , Parathyroid Neoplasms/diagnosis , Parathyroid Neoplasms/diagnostic imaging , Parathyroid Glands/diagnostic imaging , Parathyroid Glands/pathology , Bone and Bones/pathology
9.
Front Med ; 18(2): 237-257, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619691

ABSTRACT

Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.


Subject(s)
Disease Progression , Osteoarthritis , Osteoprotegerin , Humans , Osteoarthritis/pathology , Osteoarthritis/physiopathology , Osteoarthritis/etiology , Osteoarthritis/metabolism , Osteoprotegerin/metabolism , Bone and Bones/pathology , Bone and Bones/metabolism , RANK Ligand/metabolism , Signal Transduction , Cartilage, Articular/pathology , Chemokine CXCL12/metabolism , Receptors, CXCR4/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism
10.
Bone ; 184: 117106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641232

ABSTRACT

Osteogenesis imperfecta (OI) increases fracture risk due to changes in bone quantity and quality caused by mutations in collagen and its processing proteins. Current therapeutics improve bone quantity, but do not treat the underlying quality deficiencies. Male and female G610C+/- mice, a murine model of OI, were treated with a combination of raloxifene and in vivo axial tibial compressive loading starting at 10 weeks of age and continuing for 6 weeks to improve bone quantity and quality. Bone geometry and mechanical properties were measured to determine whole bone and tissue-level material properties. A colocalized Raman/nanoindentation system was used to measure chemical composition and nanomechanical properties in newly formed bone compared to old bone to determine if bone formed during the treatment regimen differed in quality compared to bone formed prior to treatment. Lastly, lacunar geometry and osteocyte apoptosis were assessed. OI mice were able to build bone in response to the loading, but this response was less robust than in control mice. Raloxifene improved some bone material properties in female but not male OI mice. Raloxifene did not alter nanomechanical properties, but loading did. Lacunar geometry was largely unchanged with raloxifene and loading. However, osteocyte apoptosis was increased with loading in raloxifene treated female mice. Overall, combination treatment with raloxifene and loading resulted in positive but subtle changes to bone quality.


Subject(s)
Disease Models, Animal , Osteogenesis Imperfecta , Raloxifene Hydrochloride , Animals , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/pathology , Female , Male , Mice , Bone and Bones/drug effects , Bone and Bones/pathology , Biomechanical Phenomena/drug effects , Apoptosis/drug effects , Anabolic Agents/pharmacology , Anabolic Agents/therapeutic use , Weight-Bearing , Osteocytes/drug effects , Osteocytes/metabolism , Osteocytes/pathology
11.
Calcif Tissue Int ; 114(6): 638-649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642089

ABSTRACT

Type 2 diabetes (T2D) increases fracture incidence and fracture-related mortality rates (KK.Cg-Ay/J. The Jackson Laboratory; Available from: https://www.jax.org/strain/002468 ). While numerous mouse models for T2D exist, few effectively stimulate persistent hyperglycemia in both sexes, and even fewer are suitable for bone studies. Commonly used models like db/db and ob/ob have altered leptin pathways, confounding bone-related findings since leptin regulates bone properties (Fajardo et al. in Journal of Bone and Mineral Research 29(5): 1025-1040, 2014). The Yellow Kuo Kondo (KK/Ay) mouse, a polygenic mutation model of T2D, is able to produce a consistent diabetic state in both sexes and addresses the lack of a suitable model of T2D for bone studies. The diabetic state of KK/Ay stems from a mutation in the agouti gene, responsible for coat color in mice. This mutation induces ectopic gene expression across various tissue types, resulting in diabetic mice with yellow fur coats (Moussa and Claycombe in Obesity Research 7(5): 506-514, 1999). Male and female KK/Ay mice exhibited persistent hyperglycemia, defining them as diabetic with blood glucose (BG) levels consistently exceeding 300 mg/dL. Notably, male control mice in this study were also diabetic, presenting a significant limitation. Nevertheless, male and female KK/Ay mice showed significantly elevated BG levels, HbA1c, and serum insulin concentration when compared to the non-diabetic female control mice. Early stages of T2D are characterized by hyperglycemia and hyperinsulinemia resulting from cellular insulin resistance, whereas later stages may feature hypoinsulinemia due to ß-cell apoptosis (Banday et al. Avicenna Journal of Medicine 10(04): 174-188, 2020 and Klein et al. Cell Metabolism 34(1): 11-20, 2022). The observed hyperglycemia, hyperinsulinemia, and the absence of differences in ß-cell mass suggest that KK/Ay mice in this study are modeling the earlier stages of T2D. While compromised bone microarchitecture was observed in this study, older KK/Ay mice, representing more advanced stages of T2D, might exhibit more pronounced skeletal manifestations. Compared to the control group, the femora of KK/Ay mice had higher cortical area and cortical thickness, and improved trabecular properties which would typically be indicative of greater bone strength. However, KK/Ay mice displayed lower cortical tissue mineral density in both sexes and increased cortical porosity in females. Fracture instability toughness of the femora was lower in KK/Ay mice overall compared to controls. These findings indicate that decreased mechanical integrity noted in the femora of KK/Ay mice was likely due to overall bone quality being compromised.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Models, Animal , Mutation , Obesity , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Mice , Female , Male , Mutation/genetics , Obesity/genetics , Obesity/metabolism , Obesity/complications , Bone and Bones/metabolism , Bone and Bones/pathology , Mice, Obese , Bone Density/genetics
12.
Sci Rep ; 14(1): 8030, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580668

ABSTRACT

Apical periodontitis (AP) is a condition characterized by inflammatory and infectious components in the tooth canal. AP affects periradicular tissues and has systemic repercussions. Physical exercise is a structured activity that requires cardiorespiratory function, and can modulate the inflammatory profile in pathological conditions. As a result, this study aimed to determine the effects of aerobic physical training (PT) on the alveolar bone with and without AP, and its systemic inflammatory repercussions. AP was induced in the mandibular first molars, and PT was performed on a treadmill for five consecutive days over four weeks, with progressive increases in speed and activity time. Blood samples were collected to determine serum cytokine levels using immunoassays, and alveolar bone samples were collected for histopathological evaluation, lesion volume and microarchitecture assessment using computed microtomography. Animals with AP had increased pro-inflammatory cytokines levels compared to those without AP; however, these levels were attenuated or restored by PT. Compared to the AP group, the AP + PT group had a smaller lesion volume and greater preservation of the bone trabeculae in the remaining alveolar bone surrounding the lesion. In overall, PT minimized the severity of AP proving to be a valid strategy for individuals undergoing endodontic treatment.


Subject(s)
Cytokines , Periapical Periodontitis , Humans , Animals , Periapical Periodontitis/therapy , Periapical Periodontitis/pathology , Exercise , Bone and Bones/pathology
13.
J Nanobiotechnology ; 22(1): 153, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580995

ABSTRACT

BACKGROUND: Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS: Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION: The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Mice , Animals , Osteoclasts , Nanomedicine , Osteoporosis/drug therapy , Bone Resorption/drug therapy , Bone and Bones/pathology , Cell Differentiation
16.
Int J Mol Sci ; 25(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542380

ABSTRACT

Despite treatment advances, breast cancer remains a leading cause of death of women in the United States, mostly due to metastatic disease. Bone is a preferential site for breast cancer metastasis, and most metastatic breast cancer patients experience bone involvement at the time of death. The majority of patients with bone metastatic breast cancer are first diagnosed with and treated for early-stage disease, and from development of early-stage breast cancer to the recurrence of cancer in the bones, up to 30 years may elapse. Throughout this timeframe, a typical patient undergoes many treatments that have effects on the bone microenvironment. Therefore, this review explores the clinical course of a representative patient with hormone receptor-positive bone metastatic breast cancer, examining key treatment options at each stage and their effects on preventing and treating bone metastases.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Female , Humans , United States , Breast Neoplasms/pathology , Bone and Bones/pathology , Bone Neoplasms/drug therapy , Breast/pathology , Disease Progression , Receptor, ErbB-2/genetics , Tumor Microenvironment
17.
BMC Ophthalmol ; 24(1): 140, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549111

ABSTRACT

BACKGROUND: An ocular osseous choristoma is a growth of mature, compact bone in the ocular or periocular soft tissue, and it is the rarest form of ocular choristoma, accounting for only 1.7% of all epibulbar choristomas. CASE PRESENTATION: Herein we present the case of a 20-month-old girl who was referred to the oculoplasty clinic with a progressively growing mass in the left lateral canthus. It had been present since birth without ocular involvement. Upon examination the mass was firm with a smooth surface, measured 9 × 6 × 3 mm, and exhibited no episcleral attachment or ocular involvement. An excisional biopsy was performed, and the histopathological findings were consistent with osseous choristoma of the left lateral canthus. CONCLUSIONS: This report highlights the importance of considering osseous choristoma in the differential diagnosis of eyelid lesions, particularly those that have been present since birth. It also emphasizes the need for further studies investigating associations between osseous choristomas and ocular canthi.


Subject(s)
Choristoma , Eye Diseases , Lacrimal Apparatus , Female , Humans , Infant , Choristoma/diagnosis , Choristoma/surgery , Choristoma/pathology , Lacrimal Apparatus/pathology , Eye Diseases/surgery , Eyelids/pathology , Bone and Bones/pathology
18.
Bone ; 184: 117086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552893

ABSTRACT

PURPOSE: Mitofusin 2 (Mfn2) is one of two mitofusins involved in regulating mitochondrial size, shape and function, including mitophagy, an important cellular mechanism to limit oxidative stress. Reduced expression of Mfn2 has been associated with impaired osteoblast differentiation and function and a reduction in the number of viable osteocytes in bone. We hypothesized that the genetic absence of Mfn2 in these cells would increase their susceptibility to aging-associated metabolic stress, leading to a progressive impairment in skeletal homeostasis over time. METHODS: Mfn2 was selectively deleted in vivo at three different stages of osteoblast lineage commitment by crossing mice in which the Mfn2 gene was floxed with transgenic mice expressing Cre under the control of the promoter for Osterix (OSX), collagen1a1, or DMP1 (Dentin Matrix Acidic Phosphoprotein 1). RESULTS: Mice in which Mfn2 was deleted using DMP1-cre demonstrated a progressive and dramatic decline in bone mineral density (BMD) beginning at 10 weeks of age (n = 5 for each sex and each genotype from age 10 to 20 weeks). By 15 weeks, there was evidence for a functional decline in muscle performance as assessed using a rotarod apparatus (n = 3; 2 males/ 1 female for each genotype), accompanied by a decline in lean body mass. A marked reduction in trabecular bone mass was evident on bone histomorphometry, and biomechanical testing at 25 weeks (k/o: 2 male/1 female, control 2 male/2 female) revealed severely impaired femur strength. Extensive regional myofiber atrophy and degeneration was observed on skeletal muscle histology. Electron microscopy showed progressive disruption of cellular architecture, with disorganized sarcomeres and a bloated mitochondrial reticulum. There was also evidence of neurodegeneration within the ventral horn and roots of the lumbar spinal cord, which was accompanied by myelin loss and myofiber atrophy. Deletion of Mfn2 using OSX-cre or Col1a1-cre did not result in a musculoskeletal phenotype. Where possible, male and female animals were analyzed separately, but small numbers of animals in each group limited statistical power. For other outcomes, where sex was not considered, small sample sizes might still limit the strength of the observation. CONCLUSION: Despite known functional overlap of Mfn1 and Mfn2 in some tissues, and their co-expression in bone, muscle and spinal cord, deletion of Mfn2 using the 8 kB DMP1 promoter uncovered an important non-redundant role for Mfn2 in maintaining the neuromuscular/bone axis.


Subject(s)
Bone Density , GTP Phosphohydrolases , Animals , Female , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Male , Mice , Bone Density/genetics , Bone Density/physiology , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Bone and Bones/pathology , Bone and Bones/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Osteoblasts/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
20.
Int J Biol Macromol ; 266(Pt 1): 130912, 2024 May.
Article in English | MEDLINE | ID: mdl-38513896

ABSTRACT

Patients with advanced prostate cancer (PCa) are more likely to develop bone metastases. Tumor cells thrive in the bone microenvironment, interacting with osteoblasts and osteoclasts. Given the PI3K/AKT pathway's metastatic potential and signal integration's ability to modulate cell fates in PCa development, drugs targeting this system have great therapeutic promise. Hydroxychloroquine (HCQ) is an anti-malarial medication commonly used to treat clinical conditions such as rheumatology and infectious disorders. We explored the anti-neoplastic effect of HCQ on PC3 and C4-2B cell lines in the bone microenvironment. Interestingly, HCQ treatment substantially decreases the viability, proliferation, and migration potential of PCa cells in the bone microenvironment. HCQ induces apoptosis and cell cycle arrest, even in the presence of osteoblast-secreted factors. Mechanistically, HCQ inhibited the activity of the PI3K/AKT signaling pathway, which ultimately regulates the proliferation and migration of PCa cells in the bone. The binding energy for docking HCQ with PI3K was -6.7 kcal/mol, and the complex was stabilized by hydrogen bonds, hydrophobic forces, and van der Waals forces. Molecular simulations further validated the structural integrity of the HCQ-PI3K complex without altering PI3K's secondary structure. Our findings underscore the efficacy of HCQ as a potential therapeutic agent in treating PCa.


Subject(s)
Cell Proliferation , Hydroxychloroquine , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Tumor Microenvironment , Humans , Male , Hydroxychloroquine/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Tumor Microenvironment/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Cell Movement/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis/drug effects , Signal Transduction/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...