Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Med ; 5(5): 380-382, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733970

ABSTRACT

Wagenlehner and colleagues1 demonstrated non-inferiority and superiority with respect to a primary endpoint of composite success (microbiological plus clinical) of cefepime/taniborbactam vs. meropenem in treating complicated urinary tract infections and acute pyelonephritis caused by carbapenem-susceptible gram-negative bacteria in adults. A major area of interest in real-world application of cefepime/taniborbactam is its potential role in treating carbapenem-resistant infections, which deserves further investigation.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Cefepime , Urinary Tract Infections , Cefepime/therapeutic use , Cefepime/pharmacology , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Cephalosporins/therapeutic use , Cephalosporins/pharmacology , Pyelonephritis/drug therapy , Pyelonephritis/microbiology , Drug Combinations , Gram-Negative Bacterial Infections/drug therapy , Meropenem/therapeutic use , Meropenem/pharmacology , Borinic Acids , Carboxylic Acids
2.
Int J Antimicrob Agents ; 63(5): 107150, 2024 May.
Article in English | MEDLINE | ID: mdl-38513748

ABSTRACT

OBJECTIVES: To analyse the impact of the most clinically relevant ß-lactamases and their interplay with low outer membrane permeability on the activity of cefiderocol, ceftazidime/avibactam, aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/xeruborbactam and meropenem/nacubactam against recombinant Escherichia coli strains. METHODS: We constructed 82 E. coli laboratory transformants expressing the main ß-lactamases circulating in Enterobacterales (70 expressing single ß-lactamase and 12 producing double carbapenemase) under high (E. coli TG1) and low (E. coli HB4) permeability conditions. Antimicrobial susceptibility testing was determined by reference broth microdilution. RESULTS: Aztreonam/avibactam, cefepime/zidebactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam were active against all E. coli TG1 transformants. Imipenem/relebactam, meropenem/vaborbactam, cefepime/taniborbactam and cefepime/enmetazobactam were also highly active, but unstable against most of MBL-producing transformants. Combination of ß-lactamases with porin deficiency (E. coli HB4) did not significantly affect the activity of aztreonam/avibactam, cefepime/zidebactam, cefiderocol or meropenem/nacubactam, but limited the effectiveness of the rest of carbapenem- and cefepime-based combinations. Double-carbapenemase production resulted in the loss of activity of most of the compounds tested, an effect particularly evident for those E. coli HB4 transformants in which MBLs were present. CONCLUSIONS: Our findings highlight the promising activity that cefiderocol and new ß-lactam/ß-lactamase inhibitors have against recombinant E. coli strains expressing widespread ß-lactamases, including when these are combined with low permeability or other enzymes. Aztreonam/avibactam, cefiderocol, cefepime/zidebactam and meropenem/nacubactam will help to mitigate to some extent the urgency of new compounds able to resist MBL action, although NDM enzymes represent a growing challenge against which drug development efforts are still needed.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Borinic Acids , Carboxylic Acids , Cefepime , Cefiderocol , Ceftazidime , Cephalosporins , Cyclooctanes , Drug Combinations , Escherichia coli , Lactams , Microbial Sensitivity Tests , Triazoles , beta-Lactamase Inhibitors , beta-Lactamases , Escherichia coli/drug effects , Escherichia coli/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Cephalosporins/pharmacology , beta-Lactamase Inhibitors/pharmacology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Cyclooctanes/pharmacology , Ceftazidime/pharmacology , Cefepime/pharmacology , Boronic Acids/pharmacology , Meropenem/pharmacology , Aztreonam/pharmacology , Imipenem/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heterocyclic Compounds, 1-Ring/pharmacology , Cell Membrane Permeability/drug effects
3.
Antimicrob Agents Chemother ; 68(4): e0154823, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38415988

ABSTRACT

The impact of penicillin-binding protein 3 (PBP3) modifications that may be identified in Escherichia coli was evaluated with respect to susceptibility to ß-lactam/ß-lactamase inhibitor combinations including ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and to cefiderocol. A large series of E. coli recombinant strains producing broad-spectrum ß-lactamases was evaluated. While imipenem-relebactam showed a similar activity regardless of the PBP3 background, susceptibility to other molecules tested was affected at various levels. This was particularly the case for ceftazidime-avibactam, aztreonam-avibactam, and cefepime-taniborbactam.


Subject(s)
Aztreonam , Borinic Acids , Boronic Acids , Carboxylic Acids , Cefiderocol , Ceftazidime , Aztreonam/pharmacology , Meropenem/pharmacology , Cefepime/pharmacology , Penicillin-Binding Proteins , Escherichia coli , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/chemistry , Drug Combinations , Imipenem/pharmacology , Imipenem/chemistry , Microbial Sensitivity Tests
4.
N Engl J Med ; 390(7): 611-622, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38354140

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales species and multidrug-resistant Pseudomonas aeruginosa are global health threats. Cefepime-taniborbactam is an investigational ß-lactam and ß-lactamase inhibitor combination with activity against Enterobacterales species and P. aeruginosa expressing serine and metallo-ß-lactamases. METHODS: In this phase 3, double-blind, randomized trial, we assigned hospitalized adults with complicated urinary tract infection (UTI), including acute pyelonephritis, in a 2:1 ratio to receive intravenous cefepime-taniborbactam (2.5 g) or meropenem (1 g) every 8 hours for 7 days; this duration could be extended up to 14 days in case of bacteremia. The primary outcome was both microbiologic and clinical success (composite success) on trial days 19 to 23 in the microbiologic intention-to-treat (microITT) population (patients who had a qualifying gram-negative pathogen against which both study drugs were active). A prespecified superiority analysis of the primary outcome was performed after confirmation of noninferiority. RESULTS: Of the 661 patients who underwent randomization, 436 (66.0%) were included in the microITT population. The mean age of the patients was 56.2 years, and 38.1% were 65 years of age or older. In the microITT population, 57.8% of the patients had complicated UTI, 42.2% had acute pyelonephritis, and 13.1% had bacteremia. Composite success occurred in 207 of 293 patients (70.6%) in the cefepime-taniborbactam group and in 83 of 143 patients (58.0%) in the meropenem group. Cefepime-taniborbactam was superior to meropenem regarding the primary outcome (treatment difference, 12.6 percentage points; 95% confidence interval, 3.1 to 22.2; P = 0.009). Differences in treatment response were sustained at late follow-up (trial days 28 to 35), when cefepime-taniborbactam had higher composite success and clinical success. Adverse events occurred in 35.5% and 29.0% of patients in the cefepime-taniborbactam group and the meropenem group, respectively, with headache, diarrhea, constipation, hypertension, and nausea the most frequently reported; the frequency of serious adverse events was similar in the two groups. CONCLUSIONS: Cefepime-taniborbactam was superior to meropenem for the treatment of complicated UTI that included acute pyelonephritis, with a safety profile similar to that of meropenem. (Funded by Venatorx Pharmaceuticals and others; CERTAIN-1 ClinicalTrials.gov number, NCT03840148.).


Subject(s)
Anti-Bacterial Agents , Borinic Acids , Carboxylic Acids , Cefepime , Meropenem , Urinary Tract Infections , Adult , Aged , Humans , Middle Aged , Administration, Intravenous , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , beta-Lactamases/administration & dosage , beta-Lactamases/adverse effects , beta-Lactamases/therapeutic use , Borinic Acids/administration & dosage , Borinic Acids/adverse effects , Borinic Acids/therapeutic use , Carboxylic Acids/administration & dosage , Carboxylic Acids/adverse effects , Carboxylic Acids/therapeutic use , Cefepime/administration & dosage , Cefepime/adverse effects , Cefepime/therapeutic use , Drug Therapy, Combination , Hospitalization , Meropenem/administration & dosage , Meropenem/adverse effects , Meropenem/therapeutic use , Microbial Sensitivity Tests , Pyelonephritis/drug therapy , Pyelonephritis/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Drug Resistance, Bacterial
5.
Antimicrob Agents Chemother ; 68(2): e0151023, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38174925

ABSTRACT

Metallo-ß-lactamases (MBLs) have evolved relatively rapidly to become an international public health threat. There are no clinically available ß-lactamase inhibitors with activity against MBLs. This may change with the introduction of cefepime-taniborbactam. Herein, we review three manuscripts (S. I. Drusin, C. Le Terrier, L. Poirel, R. A. Bonomo, et al., Antimicrob Agents Chemother 68:e01168-23, 2024, https://doi.org/10.1128/aac.01168-23; C. Le Terrier, C. Viguier, P. Nordmann, A. J. Vila, and L. Poirel, Antimicrob Agents Chemother 68:e00991-23, 2024, https://doi.org/10.1128/aac.00991-23; D. Ono, M. F. Mojica, C. R. Bethel, Y. Ishii, et al., Antimicrob Agents Chemother 68:e01332-23, 2024, https://doi.org/10.1128/aac.01332-23) in which investigators describe elegant experiments to explore MBL/taniborbactam interactions and modifications to MBLs, in response, to reduce the affinity of taniborbactam. Challenges with MBL inhibition will not disappear; rather, they will evolve commensurate with advancements in medicinal chemistry.


Subject(s)
Borinic Acids , Carboxylic Acids , beta-Lactamases , Animals , Dogs , beta-Lactamase Inhibitors/pharmacology , Cefepime , Borinic Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
6.
Antimicrob Agents Chemother ; 68(2): e0133223, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38174924

ABSTRACT

Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid ß-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-ß-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.


Subject(s)
Anti-Bacterial Agents , Borinic Acids , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Carboxylic Acids/pharmacology , Borinic Acids/pharmacology , Ceftazidime , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Microbial Sensitivity Tests
7.
Antimicrob Agents Chemother ; 68(2): e0099123, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38047644

ABSTRACT

Taniborbactam (TAN) is a novel broad-spectrum ß-lactamase inhibitor with significant activity against subclass B1 metallo-ß-lactamases (MBLs). Here, we showed that TAN exhibited an overall excellent activity against B1 MBLs including most NDM- and VIM-like as well as SPM-1, GIM-1, and DIM-1 enzymes, but not against SIM-1. Noteworthy, VIM-1-like enzymes (particularly VIM-83) were less inhibited by TAN than VIM-2-like. Like NDM-9, NDM-30 (also differing from NDM-1 by a single amino acid substitution) was resistant to TAN.


Subject(s)
Borinic Acids , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamase Inhibitors/pharmacology , Borinic Acids/pharmacology , Carboxylic Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
8.
Antimicrob Agents Chemother ; 68(2): e0116823, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38063400

ABSTRACT

The design of inhibitors against metallo-ß-lactamases (MBLs), the largest family of carbapenemases, has been a strategic goal in designing novel antimicrobial therapies. In this regard, the development of bicyclic boronates, such as taniborbactam (TAN) and xeruborbactam, is a major achievement that may help in overcoming the threat of MBL-producing and carbapenem-resistant Gram-negative pathogens. Of concern, a recent report has shown that New Delhi MBL-9 (NDM-9) escapes the inhibitory action of TAN by a single amino acid substitution with respect to New Delhi MBL-1 (NDM-1), the most widely disseminated MBL. Here, we report a docking and computational analysis that identifies that "escape variants" against TAN can arise by disruption of the electrostatic interaction of negative charges in the active site loops of MBLs with the N-(2-aminoethyl)cyclohexylamine side chain of TAN. These changes result in non-productive binding modes of TAN that preclude reaction with the MBLs, a phenomenon that is not restricted to NDM-9. This analysis demonstrates that single amino acid substitutions in non-essential residues in MBL loops can unexpectedly elicit resistance to TAN.


Subject(s)
Anti-Bacterial Agents , Borinic Acids , Carboxylic Acids , Anti-Bacterial Agents/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Borinic Acids/pharmacology , beta-Lactam Resistance , Microbial Sensitivity Tests
9.
Eur J Clin Microbiol Infect Dis ; 43(2): 339-354, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38095831

ABSTRACT

PURPOSE: To evaluate the different present and future therapeutic ß-lactam/ß-lactamase inhibitor (BL/BLI) alternatives, namely aztreonam-avibactam, imipenem-relebactam, meropenem-vaborbactam, cefepime-zidebactam, cefepime-taniborbactam, meropenem-nacubactam, and sulbactam-durlobactam against clinical isolates showing reduced susceptibility or resistance to cefiderocol in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa. METHODS: MIC values of aztreonam, aztreonam-avibactam, cefepime, cefepime-taniborbactam, cefepime-zidebactam, imipenem, imipenem-relebactam, meropenem, meropenem-vaborbactam, meropenem-nacubactam, sulbactam-durlobactam, and cefiderocol combined with a BLI were determined for 67, 9, and 11 clinical Enterobacterales, P. aeruginosa or A. baumannii isolates, respectively, showing MIC values of cefiderocol being ≥1 mg/L. If unavailable, the respective ß-lactam breakpoints according to EUCAST were used for BL/BLI combinations. RESULTS: For Enterobacterales, the susceptibility rates for aztreonam, cefepime, imipenem, and meropenem were 7.5%, 0%, 10.4%, and 10.4%, respectively, while they were much higher for cefepime-zidebactam (91%), cefiderocol-zidebactam (91%), meropenem-nacubactam (71.6%), cefiderocol-nacubactam (74.6%), and cefiderocol-taniborbactam (76.1%), as expected. For P. aeruginosa isolates, the higher susceptibility rates were observed for imipenem-relebactam, cefiderocol-zidebactam, and meropenem-vaborbactam (56% for all combinations). For A. baumannii isolates, lower susceptibility rates were observed with commercially or under development BL/BLI combos; however, a high susceptibility rate (70%) was found for sulbactam-durlobactam and when cefiderocol was associated to some BLIs. CONCLUSIONS: Zidebactam- and nacubactam-containing combinations showed a significant in vitro activity against multidrug-resistant Enterobacterales clinical isolates with reduced susceptibility to cefiderocol. On the other hand, imipenem-relebactam and meropenem-vaborbactam showed the highest susceptibility rates against P. aeruginosa isolates. Finally, sulbactam-durlobactam and cefiderocol combined with a BLI were the only effective options against A. baumannii tested isolates.


Subject(s)
Azabicyclo Compounds , Aztreonam , Borinic Acids , Boronic Acids , Carboxylic Acids , Cefiderocol , Cyclooctanes , Lactams , Piperidines , Humans , Meropenem/pharmacology , Cefepime , Aztreonam/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Imipenem/pharmacology , beta-Lactamase Inhibitors/pharmacology , Microbial Sensitivity Tests , beta-Lactamases
10.
Eur J Clin Microbiol Infect Dis ; 43(2): 279-296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041722

ABSTRACT

PURPOSE: To characterize the resistance mechanisms affecting the cefepime-taniborbactam combination in a collection of carbapenemase-producing Enterobacterales (CPE) and carbapenem-resistant Pseudomonas spp. (predominantly P. aeruginosa; CRPA) clinical isolates. METHODS: CPE (n = 247) and CRPA (n = 170) isolates were prospectively collected from patients admitted to 8 Spanish hospitals. Susceptibility to cefepime-taniborbactam and comparators was determined by broth microdilution. Cefepime-taniborbactam was the most active agent, inhibiting 97.6% of CPE and 67.1% of CRPA (MICs ≤ 8/4 mg/L). All isolates with cefepime-taniborbactam MIC > 8/4 mg/L (5 CPE and 52 CRPA) and a subset with MIC ≤ 8/4 mg/L (23 CPE and 24 CRPA) were characterized by whole genome sequencing. RESULTS: A reduced cefepime-taniborbactam activity was found in two KPC-ST307-Klebsiella pneumoniae isolates with altered porins [KPC-62-K. pneumoniae (OmpA, OmpR/EnvZ), KPC-150-K. pneumoniae (OmpK35, OmpK36)] and one each ST133-VIM-1-Enterobacter hormaechei with altered OmpD, OmpR, and OmpC; IMP-8-ST24-Enterobacter asburiae; and NDM-5-Escherichia coli with an YRIN-inserted PBP3 and a mutated PBP2. Among the P. aeruginosa (68/76), elevated cefepime-taniborbactam MICs were mostly associated with GES-5-ST235, OXA-2+VIM-2-ST235, and OXA-2+VIM-20-ST175 isolates also carrying mutations in PBP3, efflux pump (mexR, mexZ) and AmpC (mpl) regulators, and non-carbapenemase-ST175 isolates with AmpD-T139M and PBP3-R504C mutations. Overall, accumulation of these mutations was frequently detected among non-carbapenemase producers. CONCLUSIONS: The reduced cefepime-taniborbactam activity among the minority of isolates with elevated cefepime-taniborbactam MICs is not only due to IMP carbapenemases but also to the accumulation of multiple resistance mechanisms, including PBP and porin mutations in CPE and chromosomal mutations leading to efflux pumps up-regulation, AmpC overexpression, and PBP modifications in P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Borinic Acids , Carbapenems , Carboxylic Acids , Humans , Cefepime/pharmacology , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas/genetics , Spain/epidemiology , beta-Lactamases/genetics , Pseudomonas aeruginosa/genetics , Microbial Sensitivity Tests
11.
Antimicrob Agents Chemother ; 67(9): e0057923, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37650617

ABSTRACT

Taniborbactam and xeruborbactam are dual serine-/metallo-beta-lactamase inhibitors (BLIs) based on a cyclic boronic acid pharmacophore that undergo clinical development. Recent report demonstrated that New Delhi metallo-beta-lactamase (NDM)-9 (differs from NDM-1 by a single amino acid substitution, E152K, evolved to overcome Zn (II) deprivation) is resistant to inhibition by taniborbactam constituting pre-existing taniborbactam resistance mechanism. Using microbiological and biochemical experiments, we show that xeruborbactam is capable of inhibiting NDM-9 and propose the structural basis for differences between two BLIs.


Subject(s)
Borinic Acids , Amino Acid Substitution , Boronic Acids/pharmacology , beta-Lactam Resistance/genetics , beta-Lactamase Inhibitors/pharmacology
14.
Antimicrob Agents Chemother ; 66(9): e0025322, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35920662

ABSTRACT

Taniborbactam, an investigational ß-lactamase inhibitor that is active against both serine- and metallo-ß-lactamases, is being developed in combination with cefepime to treat serious infections caused by multidrug-resistant Gram-negative bacteria. Anticipating the use of cefepime-taniborbactam in patients with impaired renal function, an open-label, single-dose clinical study was performed to examine the pharmacokinetics of both drugs in subjects with various degrees of renal function. Hemodialysis-dependent subjects were also studied to examine the amounts of cefepime and taniborbactam dialyzed. Single intravenous infusions of 2 g cefepime and 0.5 g taniborbactam coadministered over 2 h were examined, with hemodialysis-dependent subjects receiving doses both on- and off-dialysis. No subjects experienced serious adverse events or discontinued treatment due to adverse events. The majority of adverse events observed were mild in severity, and there were no trends in the safety of cefepime-taniborbactam related to declining renal function or the timing of hemodialysis. Clinically significant and similar decreases in drug clearance with declining renal function were observed for both cefepime and taniborbactam. The respective decreases in geometric mean clearance for subjects with mild, moderate, and severe renal impairment compared to subjects with normal renal function were 18%, 63%, and 78% for cefepime and 15%, 63%, and 81% for taniborbactam, respectively. Decreases in clearance were similar for both drugs and were shown to be proportional to decreases in renal function. Both cefepime and taniborbactam were dialyzable, with similar amounts removed during 4 h of hemodialysis. This study is registered at ClinicalTrials.gov as NCT03690362.


Subject(s)
Renal Insufficiency , beta-Lactamase Inhibitors , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Borinic Acids , Carboxylic Acids , Cefepime/therapeutic use , Humans , Renal Insufficiency/drug therapy , Serine , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases
15.
Chemistry ; 28(59): e202201543, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35818782

ABSTRACT

Arylborinic acids represent new, efficient, and underexplored hydrogen peroxide-responsive triggers. In contrast to boronic acids, two concomitant oxidative rearrangements are involved in the complete oxidation of these species, which might represent a major limitation for an efficient effector (drug or fluorophore) release. Herein, a comprehensive study of H2 O2 -mediated unsymmetrical arylborinic acid oxidation to investigate the factors that could selectively guide their oxidative rearrangement is described. The o-CF3 substituent was found to be an excellent directing group allowing a complete regioselectivity on borinic acid models. This result was successfully applied to synthesizing new borinic acid-based fluorogenic probes, which exclusively release the fluorescent moiety upon H2 O2 treatment. These compounds maintained their superior kinetic properties compared to boronic acids, thus further enhancing the potential of arylborinic acids as valuable new H2 O2 -sensitive triggers.


Subject(s)
Borinic Acids , Hydrogen Peroxide , Oxidation-Reduction , Boronic Acids , Oxidative Stress
16.
J Antimicrob Chemother ; 77(10): 2809-2815, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35904000

ABSTRACT

OBJECTIVES: To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa ß-lactamase mutants. METHODS: The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins. To evaluate how the different ß-lactamases in the clinical isolates affected the resistance to these agents, a copy of each blaPDC, blaOXA-2 and blaOXA-10 ancestral and mutant allele from the clinical isolates was cloned in pUCp24 and expressed in dual blaPDC-oprD (for blaPDC-like genes) or single oprD (for blaOXA-2-like and blaOXA-10-like genes) PAO1 knockout mutants. MICs were determined using reference methodologies. RESULTS: For all isolates, MICs were higher than 4 and/or 8 mg/L for ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Cefiderocol was the most active agent, showing activity against all isolates, except one clinical isolate that carried an R504C substitution in PBP3 (MIC = 16 mg/L). Imipenem/relebactam was highly active against all isolates, except two clinical isolates that carried the VIM-20 carbapenemase. Cefepime/zidebactam and cefepime/taniborbactam displayed activity against most of the isolates, but resistance was observed in some strains with PBP3 amino acid substitutions or that overexpressed mexAB-oprM or mexXY efflux pumps. Evaluation of transformants revealed that OXA-2 and OXA-10 extended-spectrum variants cause a 2-fold increase in the MIC of cefiderocol relative to parental enzymes. CONCLUSIONS: Cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam show promising and complementary in vitro activity against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa. These agents may represent potential therapeutic options for ceftolozane/tazobactam- and ceftazidime/avibactam-resistant P. aeruginosa infections.


Subject(s)
Ceftazidime , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Borinic Acids , Carboxylic Acids , Cefepime/pharmacology , Cefepime/therapeutic use , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Cyclooctanes , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Piperidines , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Tazobactam/pharmacology , Tazobactam/therapeutic use , beta-Lactamases/genetics , Cefiderocol
17.
J Mol Model ; 28(4): 76, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35243556

ABSTRACT

Antibiotic-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, and Enterobacterales infections are serious global health problems, and class A ß-lactamases are one mechanism that leads to antibiotic resistance. QPX7728, relebactam, and enmetazobactam are new ß-lactamase inhibitors to combat ß-lactam resistance. in silico approach was used in the current study to find which of the three inhibitors would be more effective for all class A ß-lactamases and to reveal molecular insights into the differences between their binding energies. The mutations in conserved residues of the active sites of ß-lactamases were defined using BLDB and Clustal Omega. FastME and MMseq2 were used for cluster and phylogeny analysis. 3D protein structure models for ß-lactamases were built using SWISS-MODEL. ERRAT and Galaxy Web Server were used to verify 42 ß-lactamase protein structures. QPX7728, relebactam, and enmetazobactam were docked to ß-lactamases by using AutoDock 4.2. The TEM76-relebactam, CTX-M-81-relebactam, TEM-76-enmetazobactam, and CTX-M-200-enmetazobactam complexes were simulated by molecular dynamics method for 500 ns. Based on molecular docking results, relebactam and QPX7728 were more favorable inhibitors for serine A ß-lactamases. A 2D representation of the interactions between ligands and ß-lactamases showed that S235, hydrogen bonded with TEM-76, might play a role in inhibitor design. A 500-ns MD analysis of complexes indicated that distance from S70, stability in the enzyme active cavity, and high atomic displacement would account for a significant difference in inhibitor binding affinity.


Subject(s)
Azabicyclo Compounds , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/chemistry , Azabicyclo Compounds/pharmacology , Borinic Acids , Carboxylic Acids , Microbial Sensitivity Tests , Molecular Docking Simulation , Triazoles , beta-Lactamases/genetics
18.
Antimicrob Agents Chemother ; 66(4): e0217921, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35293781

ABSTRACT

We show that a previously described Klebsiella pneumoniae variant that is resistant to ceftazidime-avibactam plus meropenem-vaborbactam, has a ramR plus ompK36 mutation, and produces the V239G variant KPC-3 (V240G per the standard numbering system) exhibits resistance to ceftazidime-avibactam plus aztreonam and imipenem-relebactam but not cefepime-taniborbactam. The V239G variant does not generate collateral ß-lactam susceptibility like many KPC-3 variants associated with ceftazidime-avibactam resistance. Additional mutation of ompK35 and production of the OXA-48-like carbapenemase OXA-232 were required to confer cefepime-taniborbactam resistance.


Subject(s)
Aztreonam , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , Bacterial Proteins/genetics , Borinic Acids , Boronic Acids , Carboxylic Acids , Cefepime/pharmacology , Ceftazidime/pharmacology , Drug Combinations , Imipenem/pharmacology , Klebsiella pneumoniae/genetics , Meropenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics
19.
Antimicrob Agents Chemother ; 66(3): e0216121, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35007130

ABSTRACT

Novel ß-lactam-ß-lactamase inhibitor combinations currently approved for clinical use are poorly active against metallo-ß-lactamase (MBL)-producing strains. We evaluated the in vitro activity of cefepime-taniborbactam (FTB [formerly cefepime-VNRX-5133]) and comparator agents against carbapenemase-producing Enterobacterales (n = 247) and carbapenem-resistant Pseudomonas species (n = 170) clinical isolates prospectively collected from different clinical origins in patients admitted to 8 Spanish hospitals. FTB was the most active agent in both Enterobacterales (97.6% MICFTB, ≤8/4 mg/L) and Pseudomonas (67.1% MICFTB, ≤8/4 mg/L) populations. The MICFTB was >8 mg/L in 6/247 (2.4%) Enterobacterales isolates (3 KPC-producing Klebsiella pneumoniae isolates, 1 VIM-producing Enterobacter cloacae isolate, 1 IMP-producing E. cloacae isolate, and 1 NDM-producing Escherichia coli isolate) and in 56/170 (32.9%) Pseudomonas isolates, 19 of them carbapenemase producers (15 producers of VIM, 2 of GES, 1 of GES+VIM, and 1 of GES+KPC). Against the Enterobacterales isolates with meropenem MICs of >2 mg/L (138/247), FTB was the most active agent against both serine-ß-lactamases (107/138) and MBL producers (31/138) (97.2 and 93.5% MICFTB, ≤8/4 mg/L, respectively), whereas the activity of comparators was reduced, particularly against the MBL producers (ceftazidime-avibactam, 94.4 and 12.9%, meropenem-vaborbactam, 85.0 and 64.5%, imipenem-relebactam, 76.6 and 9.7%, ceftolozane-tazobactam, 1.9 and 0%, and piperacillin-tazobactam, 0 and 0%, respectively). Among the meropenem-resistant Pseudomonas isolates (163/170; MIC, >2 mg/L), the activities of FTB against serine-ß-lactamase (35/163) and MBL (43/163) producers were 88.6 and 65.1%, respectively, whereas the susceptibilities of comparators were as follows: ceftazidime-avibactam, 88.5 and 16.0%, meropenem-vaborbactam, 8.5 and 7.0%, imipenem-relebactam, 2.9 and 2.3%, ceftolozane-tazobactam, 0 and 2.3%, and piperacillin-tazobactam, 0 and 0%, respectively. Microbiological results suggest FTB as a potential therapeutic option in patients infected with carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas isolates, including MBL producers.


Subject(s)
Pseudomonas aeruginosa , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Bacterial Proteins , Borinic Acids , Carboxylic Acids , Cefepime/pharmacology , Humans , Microbial Sensitivity Tests , Spain
20.
J Antimicrob Chemother ; 77(2): 443-447, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34747449

ABSTRACT

OBJECTIVES: Complicated urinary tract infections (cUTIs) are frequently encountered in hospitals and ICUs. Increasingly, the causative pathogens harbour enzymatic resistance mechanisms. Taniborbactam is a novel ß-lactamase inhibitor with activity against Ambler class A, B, C and D ß-lactamases. Herein, we assessed the efficacy of cefepime alone and the combination cefepime/taniborbactam in a neutropenic murine cUTI model. METHODS: Eighteen cefepime-resistant clinical isolates (9 Enterobacterales, 3 Pseudomonas aeruginosa and 6 Stenotrophomonas maltophilia; cefepime MIC = 32 to >512 mg/L) were assessed. Cefepime/taniborbactam MICs ranged from 0.06 to 128 mg/L. Human-simulated plasma regimens (HSRs) of cefepime alone and in combination with taniborbactam were developed in the murine cUTI model. The efficacy of cefepime HSR and cefepime/taniborbactam HSR was determined as the change in log10 cfu/kidney at 48 h compared with 48 h controls. RESULTS: Mean ± SD initial bacterial burden was 5.66 ± 0.56 log10 cfu/kidney, which increased to 9.05 ± 0.39 log10 cfu/kidney at 48 h. The cefepime HSR was ineffective, as bacterial burden was similar to untreated controls (-0.14 ± 0.40 change in log10 cfu/kidney). In contrast, cefepime/taniborbactam exhibited substantial killing, with log10 cfu/kidney changes of -5.48 ± 1.3, -4.79 ± 0.3 and -5.04 ± 0.7 for ESBL/AmpC-, KPC- and OXA-48-harbouring Enterobacterales, respectively. Cefepime/taniborbactam also exhibited robust killing of P. aeruginosa (-6.5 ± 0.26) and S. maltophilia (-5.66 ± 0.71). CONCLUSIONS: Humanized exposures of cefepime/taniborbactam achieved robust killing of Enterobacterales, P. aeruginosa and S. maltophilia harbouring ESBL, AmpC, KPC and/or OXA-48. These data support the role of cefepime/taniborbactam for cUTI treatment for cefepime/taniborbactam MICs up to 32 mg/L.


Subject(s)
Borinic Acids , Urinary Tract Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Borinic Acids/pharmacology , Carboxylic Acids , Cefepime/pharmacology , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Humans , Mice , Microbial Sensitivity Tests , Urinary Tract Infections/drug therapy , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL
...