Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.745
Filter
1.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739859

ABSTRACT

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Subject(s)
Anti-Bacterial Agents , Photothermal Therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Water/chemistry , Mice , Free Radicals/chemistry , Boron/chemistry , Boron/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
2.
J Hazard Mater ; 472: 134458, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703679

ABSTRACT

Diclofenac (DCF) is an environmentally persistent, nonsteroidal anti-inflammatory drug (NSAID) with thyroid disrupting properties. Electrochemical advanced oxidation processes (eAOPs) can efficiently remove NSAIDs from wastewater. However, eAOPs can generate transformation products (TPs) with unknown chemical and biological characteristics. In this study, DCF was electrochemically degraded using a boron-doped diamond anode. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry was used to analyze the TPs of DCF and elucidate its potential degradation pathways. The biological impact of DCF and its TPs was evaluated using the Xenopus Eleutheroembryo Thyroid Assay, employing a transgenic amphibian model to assess thyroid axis activity. As DCF degradation progressed, in vivo thyroid activity transitioned from anti-thyroid in non-treated samples to pro-thyroid in intermediately treated samples, implying the emergence of thyroid-active TPs with distinct modes of action compared to DCF. Molecular docking analysis revealed that certain TPs bind to the thyroid receptor, potentially triggering thyroid hormone-like responses. Moreover, acute toxicity occurred in intermediately degraded samples, indicating the generation of TPs exhibiting higher toxicity than DCF. Both acute toxicity and thyroid effects were mitigated with a prolonged degradation time. This study highlights the importance of integrating in vivo bioassays in the environmental risk assessment of novel degradation processes.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Thyroid Gland , Water Pollutants, Chemical , Animals , Diclofenac/toxicity , Diclofenac/chemistry , Diclofenac/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Risk Assessment , Electrochemical Techniques , Molecular Docking Simulation , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Endocrine Disruptors/metabolism , Xenopus laevis , Diamond/chemistry , Oxidation-Reduction , Boron/toxicity , Boron/chemistry
3.
Biomaterials ; 309: 122605, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754291

ABSTRACT

Multidisciplinary therapy centered on radical surgery for resectable pancreatic cancer is expected to prolong prognosis, but relies on CA19-9 biomarker levels to determine treatment strategy. Boron neutron capture therapy (BNCT) is a chemoradiotherapy using tumor hyperaccumulator boron drugs and neutron irradiation. The purpose of this study is to investigate novel boron drug agents for BNCT for pancreatic cancer. Bioinformatics was used to evaluate the uptake of current boron amino acid (BPA) drugs for BNCT into pancreatic cancer. The expression of the amino acid transporter LAT1, a BPA uptake transporter, was low in pancreatic cancer and even lower in high CA19-9 pancreatic cancer. In contrast, the glucose transporter was high in high CA19-9 pancreatic cancers and inversely correlated with LAT1 expression. Considering the low EPR effect in pancreatic cancer, we synthesized a small molecule Glucose-BSH, which is boron BSH bound to glucose, and confirmed its specific uptake in pancreatic cancer. uptake of Glucose-BSH was confirmed in an environment compatible with the tumor microenvironment. The therapeutic efficacy and safety of Glucose-BSH by therapeutic neutron irradiation were confirmed with BNCT. We report Glucose-BSH boron drug discovery study of a Precision Medicine BNCT with application to high CA19-9 pancreatic cancer.


Subject(s)
Boron Neutron Capture Therapy , Glucose , Pancreatic Neoplasms , Boron Neutron Capture Therapy/methods , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Humans , Glucose/metabolism , Cell Line, Tumor , Animals , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Boron/chemistry , Female , Mice, Nude
4.
PLoS One ; 19(5): e0303570, 2024.
Article in English | MEDLINE | ID: mdl-38781202

ABSTRACT

Boron cluster sheets are two-dimensional boron atom-based formations called borophene. They are similar to the two-dimensional sheet known as graphene, which is composed of carbon atoms arranged in a hexagonal lattice. The unique electrical, mechanical, and thermal properties of borophene make it a sought-after substance for a variety of uses, such as catalysis, energy storage, and electronics. There are two ways to manufacture borophene: chemical vapor deposition and molecular beam epitaxy. Vertex-edge valency-based topological descriptors are a great example of a molecular descriptor that provides information on the connection of atoms in a molecule. These descriptions are based on the notion that a node's value in a molecular network is the sum of the valency of those atoms that are directly connected to that node. In this article, we discussed some novel vertex-edge (ve) and edge-vertex (ev) topological descriptors and found their formulations for the boron cluster or borophene sheets. Also, we show the numerical and graphical comparison of these descriptors in this article.


Subject(s)
Boron , Boron/chemistry , Boron Compounds/chemistry , Graphite/chemistry , Models, Molecular , Molecular Structure
5.
Anal Chim Acta ; 1311: 342715, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816154

ABSTRACT

BACKGROUND: Due to that the higher activity of nanozymes would bring outstanding performance for the nanozyme-based biosensing strategies, great efforts have been made by researchers to improve the catalytic activity of nanozymes, and novel nanozymes with high catalytic activity are desired. Considering the crucial role in controlling blood glucose level, strategies like colorimetric and chemiluminescence to monitor α-glucosidase are developed. However, multi-mode detection with higher sensitivity was insufficient. Therefore, developing triple-mode detection method for α-glucosidase based on great performance nanozyme is of great importance. RESULTS: In this work, a novel nanozyme Cu-BCN was synthesized by loading Cu on boron doped carbon substrate g-C3N4 and applied to the colorimetric-fluorescent-smartphone triple-mode detection of α-glucosidase. In the presence of H2O2, Cu-BCN catalyzed the generation of 1O2 from H2O2, 1O2 subsequently oxidized TMB to blue colored oxTMB. In the presence of hydroquinone (HQ), the ROS produced from H2O2 was consumed, inhibiting the oxidation of TMB, which endows the possibility of colorimetric and visual on-site detection of HQ. Further, due to that the fluorescence of Mg-CQDs at 444 nm could be quenched by oxTMB, HQ could also be quantified through fluorescent mode. Since α-glucosidase could efficiently hydrolyze α-arbutin into HQ, the sensitive detection of α-glucosidase was realized. Further, colorimetric paper-based device (c-PAD) was fabricated for on-site α-glucosidase detection. The LODs for α-glucosidase via three modes were 2.20, 1.62 and 2.83 U/L respectively, high sensitivities were realized. SIGNIFICANCE: The nanozyme Cu-BCN possesses higher peroxidase-like activity by doping boron to the substrate than non-doped Cu-CN. The proposed triple-mode detection of α-glucosidase is more sensitive than most previous reports, and is reliable when applied to practical sample. Further, the smartphone-based colorimetric paper-based analytical device (c-PAD) made of simple materials could also detect α-glucosidase sensitively. The smartphone-based on-site detection provided a convenient, instrument-free and sensitive sensing method for α-glucosidase.


Subject(s)
Boron , Colorimetry , Copper , Smartphone , alpha-Glucosidases , Colorimetry/methods , Copper/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Boron/chemistry , Nitrogen Compounds/chemistry , Limit of Detection , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Humans , Graphite
6.
Chemosphere ; 359: 142334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759811

ABSTRACT

This study presents a baseline evaluation of the distribution, human and ecotoxicological risk, and the potential interactions of fluoride and boron in the water-sediment interface in 25 locations from incredible Red Sea tourist destinations. Results showed comparable levels of B and F in the water and sediments with previous literature. Significant positive correlation was found between B and F (r = 0.57; P<0.01). Based on the sediment/liquid partition coefficient (Kd), F is more likely to be released from the sediment into seawater (logKd< 3) than B (3< logKd< 4). pH and alkalinity may affect water-sediment interactions of B and F, respectively, while SO42- and Cl- ions had no significant effect on adsorption ability of F and B. The majority of minerals had average saturation Index (SI) > 1 referring to the over saturation of seawater with these minerals and their inability to dissolve. The formation of CF, FAP, and CFAP may be related to the high correlation between Fw (r = 0.928, P< 0.01; r = 0.527, P< 0.01; r = 0.608, P< 0.01) and Bw (r = 0.38, P< 0.05; r = 0.38, P< 0.05; r = 0.397, P< 0.05). Total hazard quotient (THQ) for children and adults were <1, revealing no health risks from exposure to B and F through ingestion and skin contact while swimming. The risk characterization ratio; RCRmix(MEC/PNEC) showed high short-term risks to aquatic organisms. Further investigations might emphasis on emerging mitigation strategies to address these concerns.


Subject(s)
Boron , Environmental Monitoring , Fluorides , Geologic Sediments , Seawater , Water Pollutants, Chemical , Boron/analysis , Boron/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Egypt , Seawater/chemistry , Fluorides/analysis , Geologic Sediments/chemistry , Humans , Indian Ocean , Ions , Adult
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124470, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38761476

ABSTRACT

Recently, nanomaterials have attracted a lot of attention due to their potential as effective fluorescent nano-sensor probes. They were distinguishing substitutes for other luminescent techniques, such as fluorescent dyes and luminous derivatization, because of their affordability, environmental friendliness, and special photocatalytic properties. In the suggested work, a straightforward method was used to create boron and nitrogen carbon dots (B@CDs) with a good quantum yield value of 31.15 % utilizing boric acid and di-sodium EDTA. For the purpose of characterizing QDs, a variety of instruments were employed, such as transmission electron microscopy, fluorescence spectroscopy, X-ray FTIR, and UV-VIS spectroscopy. Nebivolol (NEB) is a cardiovascular medication used globally to treat congestive heart failure and hypertension, is in the meantime. For this reason, a brand-new, environmentally friendly analytical technique was created to determine the amount of human plasma, uniformity test, and commercial nebivolol (NEB) tablets. After gradually adding NEB, the response of B@CQDs was enhanced at 438 nm (excitation at 371 nm). The calibration graph ranged between 20 and 500 ng mL-1 with a quantification limit (LOQ) of 2.50 ng mL-1 and a detection limit (LOD) of 0.82 ng mL-1.


Subject(s)
Boron , Carbon , Nebivolol , Quantum Dots , Nebivolol/blood , Nebivolol/analysis , Humans , Carbon/chemistry , Quantum Dots/chemistry , Boron/chemistry , Green Chemistry Technology/methods , Spectrometry, Fluorescence/methods , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Tablets , Spectrophotometry, Ultraviolet
8.
Bioresour Technol ; 403: 130883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788807

ABSTRACT

Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2-15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.


Subject(s)
Bioelectric Energy Sources , Boron , Electrodes , Graphite , Graphite/chemistry , Boron/chemistry , Benzenesulfonates/chemistry , Oxidation-Reduction , Oxides/chemistry
9.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732218

ABSTRACT

Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B-F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands n → π* and π → π* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom.


Subject(s)
Benzaldehydes , Benzaldehydes/chemistry , Magnetic Resonance Spectroscopy , Density Functional Theory , Fluorine/chemistry , Boron/chemistry , Models, Molecular , Esters/chemistry , Spectrophotometry, Infrared , Molecular Structure , Ions/chemistry
10.
Bioelectrochemistry ; 158: 108691, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38574451

ABSTRACT

We present a novel application of a nanocrystalline boron-doped diamond electrode (B-NCDE) for the construction of an electrochemical DNA biosensor based on double-stranded DNA (dsDNA) for various bioanalytical applications. Surface characterization of the transducer surface (prior and after the fabrication of negatively charged O-terminated surface - O-B-NCDE) was performed by scanning electron microscopy (SEM), Raman spectroscopy, and linear sweep voltammetry (LSV) that was further used for the voltammetric determination, scan rate dependence investigation, and repeatability examination of dsDNA electrochemical oxidation at the O-B-NCDE. The fabrication of a dsDNA/O-B-NCDE biosensor via electrostatic adsorption of dsDNA involved a thorough optimization process of deposition potential (Edep), deposition time (tdep), and optimal saturation concentration (cg(satur)) with optimal values of 0.3 V, 3 min, and 10 mg/mL. The bioanalytical applicability of the fabricated dsDNA/O-B-NCDE biosensor was verified by examining the nature of the interaction between dsDNA and five selected DNA intercalators - namely thioridazine hydrochloride (TR), trimipramine maleate (TRIM), levomepromazine maleate (LEV), imipramine hydrochloride (IMI), and prochlorperazine maleate (PER) - where intercalation was proven for all of the five tested compounds. Moreover, the proposed novel bioanalytical test offers the possibility to selectively distinguish between the phenothiazine representatives (TR, LEV, and PER) and representatives of tricyclic antidepressants group (TRIM and IMI).


Subject(s)
Biosensing Techniques , Boron , DNA , Diamond , Electrodes , Biosensing Techniques/methods , DNA/chemistry , DNA/analysis , Diamond/chemistry , Boron/chemistry , Electrochemical Techniques/methods , Nanoparticles/chemistry
11.
Bull Environ Contam Toxicol ; 112(5): 71, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684523

ABSTRACT

The remarkable optical properties and strong biocompatibility of carbon dots make them highly promising for applications in biochemical sensing and environmental testing. These carbon dots possess a surface that is easily modifiable. In this study, carbon dots have been successfully synthesized and modified by the addition of N and B dopants using the microwave method, along with the functionalization of their surface functional groups with bovine serum albumin (BSA). The maximum fluorescence intensity of N, B-CDs is observed at 462 nm when excited at a wavelength of 352 nm. N, B-CDs have a spherical size with a diameter ranging from 2 to 6 nm, confirmed by UV-Vis absorption spectra and the presence of functional groups in the FT-IR absorption patterns. BSA-functionalized N, B-CDs as the fluorescent probe demonstrate great potential as a sensor for Pb(II) ions in water, with a very low detection limit of 1.05 µg/L. This research could contribute to the development of fluorescence nanosensors.


Subject(s)
Boron , Carbon , Lead , Nitrogen , Quantum Dots , Lead/analysis , Lead/chemistry , Boron/chemistry , Carbon/chemistry , Nitrogen/chemistry , Nitrogen/analysis , Quantum Dots/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Serum Albumin, Bovine/chemistry , Environmental Monitoring/methods , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry
12.
Bioelectrochemistry ; 158: 108713, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38688079

ABSTRACT

Boron doped diamond has been considered as a fouling-resistive electrode material for in vitro and in vivo detection of neurotransmitters. In this study, its performance in electrochemical detection of dopamine and serotonin in neuron cultivation media Neurobasal™ before and after cultivation of rat neurons was investigated. For differential pulse voltammetry the limits of detection in neat Neurobasal™ medium of 2 µM and 0.2 µM for dopamine and serotonin, respectively, were achieved on the polished surface, which is comparable with physiological values. On oxidized surface twofold higher values, but increased repeatabilities of the signals were obtained. However, in Neurobasal™ media with peptides-containing supplements necessary for cell cultivation, the voltammograms were notably worse shaped due to biofouling, especially in the medium isolated after neuron growth. In these complex media, the amperometric detection mode at +0.75 V (vs. Ag/AgCl) allowed to detect portion-wise additions of dopamine and serotonin (as low as 1-2 µM), mimicking neurotransmitter release from vesicles despite the lower sensitivity in comparison with neat NeurobasalTM. The results indicate substantial differences in detection on boron doped diamond electrode in the presence and absence of proteins, and the necessity of studies in real media for successful implementation to neuron-electrode interfaces.


Subject(s)
Biofouling , Boron , Culture Media , Diamond , Dopamine , Electrodes , Neurons , Serotonin , Serotonin/analysis , Dopamine/analysis , Boron/chemistry , Diamond/chemistry , Animals , Neurons/cytology , Neurons/metabolism , Rats , Biofouling/prevention & control , Culture Media/chemistry , Electrochemical Techniques/methods
13.
Food Chem ; 449: 139264, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593724

ABSTRACT

In this study, a microelectrode array sensor based on boron and nitrogen co-doped vertical graphene (BNVG) was assembled to quantify salicylic acid (SA) in living plants. The influence of B and N contents on the electrochemical reaction kinetics and SA response signal was investigated. A microneedle sensor with three optimized BNVG microelectrodes (3.57 at.% B and 3.27 at.% N) was used to quantitatively analyze SA in the 0.5-100 µM concentration range and pH 4.0-9.0, with limits of detection of 0.14-0.18 µM. Additionally, a quantitative electrochemical model database based on the BNVG microelectrode sensor was constructed to monitor the growth of cucumbers and cauliflowers, which confirmed that the SA level and plant growth rate were positively correlated. Moreover, the SA levels in various vegetables and fruits purchased from the market were measured to demonstrate the practical application prospects for on-site inspection and evaluation.


Subject(s)
Boron , Electrochemical Techniques , Fruit , Graphite , Microelectrodes , Nitrogen , Salicylic Acid , Vegetables , Graphite/chemistry , Salicylic Acid/analysis , Vegetables/chemistry , Fruit/chemistry , Electrochemical Techniques/instrumentation , Boron/chemistry , Nitrogen/analysis , Needles , Cucumis sativus/chemistry , Biosensing Techniques/instrumentation , Limit of Detection
14.
Environ Pollut ; 347: 123705, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38442825

ABSTRACT

The ongoing challenge of water pollution by contaminants of emerging concern calls for more effective wastewater treatment to prevent harmful side effects to the environment and human health. To this end, this study explored for the first time the implementation of single-crystal boron-doped diamond (BDD) anodes in electrochemical wastewater treatment, which stand out from the conventional polycrystalline BDD morphologies widely reported in the literature. The single-crystal BDD presented a pure diamond (sp3) content, whereas the three other investigated polycrystalline BDD electrodes displayed various properties in terms of boron doping, sp3/sp2 content, microstructure, and roughness. The effects of other process conditions, such as applied current density and anolyte concentration, were simultaneously investigated using carbamazepine (CBZ) as a representative target pollutant. The Taguchi method was applied to elucidate the optimal operating conditions that maximised either (i) the CBZ degradation rate constant (enhanced through hydroxyl radicals (•OH)) or (ii) the proportion of sulfate radicals (SO4•-) with respect to •OH. The results showed that the single-crystal BDD significantly promoted •OH formation but also that the interactions between boron doping, current density and anolyte concentration determined the underlying degradation mechanisms. Therefore, this study demonstrated that characterising the BDD material and understanding its interactions with other process operating conditions prior to degradation experiments is a crucial step to attain the optimisation of any wastewater treatment application.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Boron/chemistry , Oxidation-Reduction , Diamond/chemistry , Water Pollutants, Chemical/chemistry , Electrodes , Water Purification/methods
15.
Environ Sci Pollut Res Int ; 31(19): 28241-28252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538997

ABSTRACT

In this study, boron-doped porous carbon materials (BCs) with high surface areas were synthesized employing coffee grounds as carbon source and sodium bicarbonate and boric acid as precursors; afterward, nanoscale zero-valent iron (nZVI) and BCs composites (denoted as nZVI@BCs) were further prepared through reduction of FeSO4 by NaBH4 along with stirring. The performance of the nZVI@BCs for activating persulfate (PS) was evaluated for the degradation of bisphenol A (BPA). In comparison with nZVI@Cs/PS, nZVI@BCs/PS could greatly promote the degradation and mineralization of BPA via both radical and non-radical pathways. On the one hand, electron spin resonance and radical quenching studies represented that •OH, SO4•-, and O2•- were mainly produced in the nZVI@BCs/PS system for BPA degradation. On the other hand, the open circuit voltages of nZVI@BCs and nZVI@Cs in different systems indicated that non-radical pathway still existed in our system. PS could grab the unstable unpaired electron on nZVI@BCs to form a carbon material surface-confined complex ([nZVI@BCs]*) with a high redox potential, then accelerate BPA removal efficiency via direct electron transfer. Furthermore, the performances and mechanisms for BPA degradation were examined by PS activation with nZVI@BC composites at various conditions including dosages of nZVI@BCs, BPA and PS, initially pH value, temperature, common anions, and humid acid. Therefore, this study provides a novel insight for development of high-performance carbon catalysts toward environmental remediation.


Subject(s)
Benzhydryl Compounds , Boron , Carbon , Iron , Phenols , Benzhydryl Compounds/chemistry , Iron/chemistry , Boron/chemistry , Carbon/chemistry , Phenols/chemistry , Catalysis , Porosity
16.
PLoS One ; 19(3): e0298331, 2024.
Article in English | MEDLINE | ID: mdl-38530838

ABSTRACT

Electrochemical measurements, which exhibit high accuracy and sensitivity under low contamination, controlled electrolyte concentration, and pH conditions, have been used in determining various compounds. The electrochemical quantification capability decreases with an increase in the complexity of the measurement object. Therefore, solvent pretreatment and electrolyte addition are crucial in performing electrochemical measurements of specific compounds directly from beverages owing to the poor measurement quality caused by unspecified noise signals from foreign substances and unstable electrolyte concentrations. To prevent such signal disturbances from affecting quantitative analysis, spectral data of voltage-current values from electrochemical measurements must be used for principal component analysis (PCA). Moreover, this method enables highly accurate quantification even though numerical data alone are challenging to analyze. This study utilized boron-doped diamond (BDD) single-chip electrochemical detection to quantify caffeine content in commercial beverages without dilution. By applying PCA, we integrated electrochemical signals with known caffeine contents and subsequently utilized principal component regression to predict the caffeine content in unknown beverages. Consequently, we addressed existing research problems, such as the high quantification cost and the long measurement time required to obtain results after quantification. The average prediction accuracy was 93.8% compared to the actual content values. Electrochemical measurements are helpful in medical care and indirectly support our lives.


Subject(s)
Caffeine , Coffee , Caffeine/analysis , Boron/chemistry , Electrodes , Machine Learning , Electrolytes
17.
ACS Sens ; 9(3): 1611-1619, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38471116

ABSTRACT

Drug detection in biological solutions is essential in studying the pharmacokinetics of the body. Electrochemical detection is an accurate and rapid method, but measuring multiple drugs that react at similar potentials is challenging. Herein, we developed an electrochemical sensor using a boron-doped diamond (BDD) electrode modified with a molecularly imprinted polymer (MIP) to provide specificity in drug sensing. The MIP is a polymer material designed to recognize and capture template molecules, enabling the selective detection of target molecules. In this study, we selected the anticancer drug doxorubicin (DOX) as the template molecule. In the electrochemical measurements using an unmodified BDD, the DOX reduction was observed at approximately -0.5 V (vs Ag/AgCl). Other drugs, i.e., mitomycin C or clonazepam (CZP), also underwent a reduction reaction at a similar potential to that of DOX, when using the unmodified BDD, which rendered the accurate quantification of DOX in a mixture challenging. Similar measurements conducted in PBS using the MIP-BDD only resulted in a DOX reduction current, with no reduction reaction observed in the presence of mitomycin C and CZP. These results suggest that the MIP, whose template molecule is DOX, inhibits the reduction of other drugs on the electrode surface. Selective DOX measurement using the MIP-BDD was also possible in human plasma, and the respective limits of detection of DOX in PBS and human plasma were 32.10 and 16.61 nM. The MIP-BDD was durable for use in six repeated measurements, and MIP-BDD may be applicable as an electrochemical sensor for application in therapeutic drug monitoring.


Subject(s)
Electrochemical Techniques , Molecularly Imprinted Polymers , Humans , Electrochemical Techniques/methods , Boron/chemistry , Mitomycin , Limit of Detection , Electrodes , Doxorubicin
18.
ACS Sens ; 9(4): 1785-1798, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38384144

ABSTRACT

Real-time sensing of dopamine is essential for understanding its physiological function and clarifying the pathophysiological mechanism of diseases caused by impaired dopamine systems. However, severe fouling from nonspecific protein adsorption, for a long time, limited conventional neural recording electrodes concerning recording stability. This study reported a high-antifouling nanocrystalline boron-doped diamond microsensor grown on a carbon fiber substrate. The antifouling properties of this diamond sensor were strongly related to the grain size (i.e., nanocrystalline and microcrystalline) and surface terminations (i.e., oxygen and hydrogen terminals). Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond microsensor exhibited enhanced antifouling characteristics against protein adsorption, which was attributed to the formation of a strong hydration layer as a physical and energetic barrier that prevents protein adsorption on the surface. This finally allowed for in vivo monitoring of dopamine in rat brains upon potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors. Experimental observations and molecular dynamics calculations demonstrated that the oxygen-terminated nanocrystalline boron-doped diamond (O-NCBDD) microsensor exhibited ultrahydrophilic properties with a contact angle of 4.9°, which was prone to forming a strong hydration layer as a physical and energetic barrier to withstand the adsorption of proteins. The proposed O-NCBDD microsensor exhibited a high detection sensitivity of 5.14 µA µM-1 cm-2 and a low detection limit of 25.7 nM. This finally allowed for in vivo monitoring of dopamine with an average concentration of 1.3 µM in rat brains upon 2 µL of potassium chloride stimulation, thus presenting a potential solution for the design of next-generation antifouling neural recording sensors.


Subject(s)
Diamond , Dopamine , Dopamine/analysis , Dopamine/chemistry , Animals , Diamond/chemistry , Hydrophobic and Hydrophilic Interactions , Rats , Biofouling/prevention & control , Boron/chemistry , Neurotransmitter Agents/analysis , Biosensing Techniques/methods , Adsorption , Molecular Dynamics Simulation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Male , Nanoparticles/chemistry
19.
Chem Rev ; 124(5): 2441-2511, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38382032

ABSTRACT

Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.


Subject(s)
Boranes , Boron Neutron Capture Therapy , Neoplasms , Humans , Boron/chemistry , Chemistry, Pharmaceutical , Boron Compounds/chemistry , Neoplasms/drug therapy , Boronic Acids , Boron Neutron Capture Therapy/methods
20.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38391994

ABSTRACT

Amperometry is arguably the most widely used technique for studying the exocytosis of biological amines. However, the scarcity of human tissues, particularly in the context of neurological diseases, poses a challenge for exocytosis research. Human platelets, which accumulate 90% of blood serotonin, release it through exocytosis. Nevertheless, single-cell amperometry with encapsulated carbon fibers is impractical due to the small size of platelets and the limited number of secretory granules on each platelet. The recent technological improvements in amperometric multi-electrode array (MEA) devices allow simultaneous recordings from several high-performance electrodes. In this paper, we present a comparison of three MEA boron-doped diamond (BDD) devices for studying serotonin exocytosis in human platelets: (i) the BDD-on-glass MEA, (ii) the BDD-on-silicon MEA, and (iii) the BDD on amorphous quartz MEA (BDD-on-quartz MEA). Transparent electrodes offer several advantages for observing living cells, and in the case of platelets, they control activation/aggregation. BDD-on-quartz offers the advantage over previous materials of combining excellent electrochemical properties with transparency for microscopic observation. These devices are opening exciting perspectives for clinical applications.


Subject(s)
Serotonin , Humans , Boron/chemistry , Diamond/chemistry , Electrodes , Exocytosis , Quartz
SELECTION OF CITATIONS
SEARCH DETAIL
...